Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008055.doi: 10.3866/PKU.WHXB202008055
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• REVIEW • Previous Articles Next Articles
Zhang Xin, Dengbao Han, Xiaomei Chen, Yu Chen, Shuai Chang, Haizheng Zhong()
Received:
2020-08-19
Accepted:
2020-09-15
Published:
2020-09-17
Contact:
Haizheng Zhong
E-mail:hzzhong@bit.edu.cn
About author:
Haizheng Zhong, Email: hzzhong@bit.edu.cnSupported by:
MSC2000:
Zhang Xin, Dengbao Han, Xiaomei Chen, Yu Chen, Shuai Chang, Haizheng Zhong. Effects of Solvent Coordination on Perovskite Crystallization[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2008055.
Fig 2
(a) Gibbs free energy of the system as a function of crystal radius curve; (b) temperature-dependent solubility of MAPbI3 in GBL 30; (c) temperature-dependent solubility of FAPbI3 in GBL 30; (d) solubility curve of MAPbI3 in HI solution 31. (b, c) Adapted with permission from Ref. 30, Royal Society of Chemistry, 2015, (d) Adapted with permission from Ref. 31, Royal Society of Chemistry, 2015."
Table 1
Solubility of perovskite precursors in common solvents."
Solvent | PbI2 | MAI | MAPbI3 |
Methanol | × | √ | ![]() |
Ethanol | × | √ | ![]() |
Toluene | × | × | × |
N-hexane | × | × | × |
Tetrahydrofuran | ![]() | √ | ![]() |
N, N dimethylformamide | √ | √ | √ |
acetone | ![]() | √ | ![]() |
Chloroform | × | × | × |
Dichloromethane | × | × | × |
Isopropanol | × | √ | ![]() |
Acetonitrile | × | √ | √ |
√ soluble, × insoluble, partially soluble. |
Fig 3
(a) Coordination forms of perovskite precursors in solvents; (b) absorption spectra of 250 × 10?6 mol?L?1 PbI2 solution in DMF with increasing concentration of MAI from 6 to 24 × 10?3 mol?L?1 36; (c) Dn values of some common solvents 39. (b) Adapted with permission from ref. 36, Royal Society of Chemistry, 2015. (c) Adapted with permission from Ref. 39, American Chemical Society, 2017."
Fig 4
(a) Temperature-dependent solubility of FAPbBr3 in DMF 30; (b) temperature-dependent solubility of MAPbBr3 in DMF/GBL 30; (c) schematic representation of the crystallization mechanism 49. (a, b) Adapted with permission from Ref. 30, Royal Society of Chemistry, 2015, (c) Adapted with permission from Ref. 49, Nature Publishing Group, 2016."
Fig 5
(a) Schematic illustrations of the transformation process from a precursor (CH3NH3I and PbI2) to CH3NH3PbI3 perovskite in coordinated solvents (top) and noncoordinated solvents (bottom) 52; (b) XRD patterns of the resultants produced by varying the precursor ratios of PbBr2 to CsBr in DMSO and H2O 53. (a) Adapted with permission from Ref. 52, American Chemical Society, 2017. (b) Adapted with permission from Ref. 53, American Chemical Society, 2018."
1 |
Stranks S. D. ; Snaith H. J. Nat. Nanotechnol. 2015, 10, 391.
doi: 10.1038/nnano.2015.90 |
2 |
Saparov B. ; Mitzi D. B. Chem. Rev. 2016, 116, 4558.
doi: 10.1021/acs.chemrev.5b00715 |
3 |
Ha S. T. ; Su R. ; Xing J. ; Zhang Q. ; Xiong Q. Chem. Sci. 2017, 8, 2522.
doi: 10.1039/C6SC04474C |
4 | Ding L. M. ; Cheng Y. B. ; Tang J. Acta Phys. -Chim. Sin. 2018, 34, 449. |
丁黎明; 程一兵; 唐江. 物理化学学报, 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121 |
|
5 |
Hintermayr V. A. ; Richter A. F. ; Ehrat F. ; Döblinger M. ; Vanderlinden W. ; Sichert J. A. ; Tong Y. ; Polavarapu L. ; Feldmann J. ; Urban A. S. Adv. Mater. 2016, 28, 9478.
doi: 10.1002/adma.201602897 |
6 |
Zhu Z. Y. ; Yang Q. Q. ; Gao L. F. ; Zhang L. ; Shi A. Y. ; Sun C. L. ; Wang Q. ; Zhang H. L. J. Phys. Chem. Lett. 2017, 8, 1610.
doi: 10.1021/acs.jpclett.7b00431 |
7 |
Tong Y. ; Bladt E. ; Aygüler M. F. ; Manzi A. ; Milowska K. Z. ; Hintermayr V. A. ; Docampo P. ; Bals S. ; UrbanA. S. ; Polavarapu L. Angew. Chem. Int. Ed. 2016, 55, 13887.
doi: 10.1002/anie.201605909 |
8 |
Kojima A. ; Ikegami M. ; Teshima K. ; Miyasaka T. Chem. Lett. 2012, 41, 397.
doi: 10.1246/cl.2012.397 |
9 |
Niu Y. W. ; Zhang F. ; Bai Z. ; Dong Y. ; Yang J. ; Liu R. ; Zou B. ; Li J. ; Zhong H. Z. Adv. Opt. Mater. 2015, 3, 112.
doi: 10.1002/adom.201400403 |
10 |
Chang S. ; Bai Z. ; Zhong H. Z. Adv. Opt. Mater. 2018, 6, 1800380.
doi: 10.1002/adom.201800380 |
11 |
Sahli F. ; Werner J. ; Kamino B. A. Nat. Mater. 2018, 17, 820.
doi: 10.1038/s41563-018-0115-4 |
12 |
Yuan M. ; Quan L. N. ; Comin R. ; Walters G. ; Sabatini R. ; Voznyy O. ; Hoogland S. ; Zhao Y. ; Beauregard E. M. ; Kanjanaboos P. ; et al Nat. Nanotechnol. 2016, 11, 872.
doi: 10.1038/nnano.2016.110 |
13 | Xiao J. ; Zhang H. L. Acta Phys. -Chim. Sin. 2016, 32, 1894. |
肖娟; 张浩力. 物理化学学报, 2016, 32, 1894.
doi: 10.3866/PKU.WHXB201605034 |
|
14 |
Han D. ; Imran M. ; Zhang M. ; Chang S. ; Wu X. G. ; Zhang X. ; Tang J. L. ; Wang M. ; Ali S. ; Li X. ; et al ACS Nano 2018, 12, 8808.
doi: 10.1021/acsnano.8b05172 |
15 |
Ji H. ; Xu H. ; Jiang F. ; Bai Z. L. ; Zhong H. Z. International Conference on Display Technology 2019, 50, 411.
doi: 10.1002/sdtp.13513 |
16 |
Cao Y. ; Wang N. ; Tian H. ; Guo J. ; Wei Y. ; Chen H. ; Miao Y. ; Zou W. ; Pan K. ; He Y ; et al Nature 2018, 562, 249.
doi: 10.1038/s41586-018-0576-2 |
17 |
Lin K. ; Xing J. ; Quan L. N. ; de Arquer F. P. G. ; Gong X. ; Lu J. ; Xie L. ; Zhao W. ; Zhang D. ; Yan C. ; et al Nature 2018, 562, 245.
doi: 10.1038/s41586-018-0575-3 |
18 |
Shen Y. ; Cheng L. P. ; Li Y. Q. ; Li W. ; Chen J. D. ; Lee S. T. ; Tang J. X. Adv. Mater. 2019, 31, 1901517.
doi: 10.1002/adma.201901517 |
19 |
Wang L. ; Dai G. ; Deng L. ; Zhong H. Z. Sci. China Mater. 2020, 63, 1382.
doi: 10.1007/s40843-020-1336-6 |
20 |
Wei H. ; Fang Y. ; Mulligan P. ; Chuirazzi W. ; Fang H. H. ; Wang C. ; Ecker B. R. ; Gao Y. ; Loi M. A. ; Cao L. ; et al Nat. Photonics 2016, 10, 333.
doi: 10.1038/nphoton.2016.41 |
21 |
Yakunin S. ; Sytnyk M. ; Kriegner D. ; Shrestha S. ; Richter M. ; Matt G. J. ; Azimi H. ; Brabec C. J. ; Stangl J. ; Kovalenko M. V. Nat. Photonics 2015, 9, 444.
doi: 10.1038/nphoton.2015.82 |
22 |
Pan W. ; Wu H. ; Luo J. ; Deng Z. ; Ge C. ; Chen C. ; Jiang X. ; Yin W. J. ; Niu G. ; Zhu L. ; et al Nat. Photonics 2017, 11, 726.
doi: 10.1038/s41566-017-0012-4 |
23 |
Zhu W. ; Ma W. ; Su Y. ; Chen Z. ; Chen X. ; Ma Y. ; Bai L. ; Xiao W. ; Liu T. ; Zhu H. ; et al Light-Sci. Appl. 2020, 9, 112.
doi: 10.1038/s41377-020-00353-0 |
24 |
Jung M. ; Ji S. G. ; Kim G. ; Seok S. I. Chem. Soc. Rev. 2019, 48, 2011.
doi: 10.1039/C8CS00656C |
25 |
Cao X. ; Zhi L. ; Jia Y. ; Li Y. ; Zhao K. ; Cui X. ; Ci L. ; Zhuang D. ; Wei J. ACS Appl. Mater. Interfaces 2019, 11, 7639.
doi: 10.1021/acsami.8b16315 |
26 |
Li W. ; Wang Z. ; Deschler F. ; Gao S. ; Friend R. H. ; Cheetham A. K. Nat. Rev. Mater. 2017, 2, 16099.
doi: 10.1038/natrevmats.2016.99 |
27 |
Cho H. ; Kim Y. H. ; Wolf C. ; Lee H. D. ; Lee T. W. Adv. Mater. 2018, 30, 1704587.
doi: 10.1002/adma.201704587 |
28 |
Sugimoto T. Adv. Colloid Interface Sci. 1987, 28, 65.
doi: 10.1016/0001-8686(87)80009-X |
29 |
Zhang F. ; Chen C. ; Kershaw S. V. ; Xiao C. ; Han J. ; Zou B. ; Wu X. ; Chang S. ; Dong Y. ; Rogach A. L. ; et al Chem Nano Mater 2017, 3, 303.
doi: 10.1021/acsami.8b05664 |
30 |
Saidaminov M. I. ; Abdelhady A. L. ; Maculan G. ; Bakr O. M. Chem. Commun. 2015, 51, 176581.
doi: 10.1039/C5CC06916E |
31 |
Dang Y. ; Liu Y. ; Sun Y. ; Yuan D. ; Liu X. ; Lu W. ; Liu G. ; Xia H. ; Tao X. CrystEngComm 2015, 17, 665.
doi: 10.1039/C4CE02106A |
32 |
Yan K. ; Long M. ; Zhang T. ; Wei Z. ; Chen H. ; Yang S. ; Xu J. J. Am. Chem. Soc. 2015, 137, 4460.
doi: 10.1021/jacs.5b00321 |
33 |
Wu Y. ; Islam A. ; Yang X. ; Qin C. ; Liu J. ; Zhang K. ; Peng W. ; Han L. Energy Environ. Sci. 2014, 7, 2934.
doi: 10.1039/C4EE01624F |
34 |
Yang W. S. ; Noh J. H. ; Jeon N. J. ; Kim Y. C. ; Ryu S. ; Seo J. ; Seok S. I. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272 |
35 |
Lee J. W. ; Kim H. S. ; Park N. G. Acc. Chem. Res. 2016, 49, 311.
doi: 10.1021/acs.accounts.5b00440 |
36 |
Stamplecoskie K. G. ; Manser J. S. ; Kamat P. V. Energy Environ. Sci. 2015, 8, 208.
doi: 10.1039/C4EE02988G |
37 |
Jo Y. ; Oh K. S. ; Kim M. ; Kim K. H. ; Lee H. ; Lee C. W. ; Kim D. S. Adv. Mater. Interfaces 2016, 3, 1500768.
doi: 10.1002/admi.201500768 |
38 |
Li B. ; Binks D. ; Cao G. ; Tian J. Small 2019, 15, 1903613.
doi: 10.1002/smll.201903613 |
39 |
Hamill J. C. ; Schwartz J. ; Loo Y. L. ACS Energy Lett. 2018, 3, 92.
doi: 10.1021/acsenergylett.7b01057 |
40 |
Fang Y. ; Dong Q. ; Shao Y. ; Yuan Y. ; Huang J. Nat. Photonics 2015, 9, 679.
doi: 10.1038/nphoton.2015.156 |
41 |
Liu Y. ; Yang Z. ; Liu S. Adv. Sci. 2018, 5, 1700471.
doi: 10.1002/advs.201700471 |
42 |
Ding J. ; Yan Q. F. Sci. China Mater. 2017, 60, 1063.
doi: 10.1007/s40843-017-9039-8 |
43 |
Shi D. ; Adinolfi V. ; Comin R. ; Yuan M. ; Alarousu E. ; Buin A. ; Chen Y. ; Hoogland S. ; Rothenberger A. ; Katsiev K. Science 2015, 347, 519.
doi: 10.1126/science.aaa2725 |
44 | Lu Q. R. ; Li J. ; Lian Z. P. ; Zhao H. Y. ; Dong G. F. ; Li Q. ; Wang L. D. ; Yan Q. F. Acta Phys. -Chim. Sin. 2017, 33, 249. |
吕乾睿; 李晶; 廉志鹏; 赵昊岩; 董桂芳; 李强; 王立铎; 严清峰. 物理化学学报, 2017, 33, 249.
doi: 10.3866/PKU.WHXB201610142 |
|
45 |
Chen X. ; Zhang F. ; Ge Y. ; Shi L. ; Huang S. ; Tang J. ; Lv Z. ; Zhang L. ; Zou B. ; Zhong H. Adv. Funct. Mater. 2018, 28, 1706567.
doi: 10.1002/adfm.201706567 |
46 |
Wang Y. L. ; Chang S. ; Chen X. M. ; Ren Y. D. ; Shi L. F. ; Liu Y. H. ; Zhong H. Z. Chin. J. Chem. 2019, 37, 616.
doi: 10.1002/cjoc.201900071 |
47 |
Lian Z. ; Yan Q. ; Gao T. ; Ding J. ; Lv Q. ; Ning C. ; Li Q. ; Sun J. L. J. Am. Chem. Soc. 2016, 138, 9409.
doi: 10.1021/jacs.6b05683 |
48 |
Han Q. ; Bae S. H. ; Sun P. ; Hsieh Y. T. ; Yang Y. ; Rim Y. S. ; Zhao H. ; Chen Q. ; Shi W. ; Li G. Adv. Mater. 2016, 28, 2253.
doi: 10.1021/jacs.6b05683 |
49 |
Nayak P. K. ; Moore D. T. ; Wenger B. ; Nayak S. ; Haghighirad A. A. ; Fineberg A. ; Noel N. K. ; Reid O. G. ; Rumbles G. ; Kukura P ; et al Nat. Commun. 2016, 7, 13303.
doi: 10.1038/ncomms13303 |
50 |
Zhang F. ; Zhong H. Z. ; Chen C. ; Wu X. G. ; Hu X. ; Huang H. ; Han J. ; Zou B. ; Dong Y. ACS Nano 2015, 9, 4533.
doi: 10.1021/acsnano.5b01154 |
51 |
Protesescu L. ; Yakunin S. ; Bodnarchuk M. I. ; Krieg F. ; Caputo R. ; Hendon C. H. ; Yang R. X. ; Walsh A. ; Kovalenko M. V. Nano Lett. 2015, 15, 3692.
doi: 10.1021/nl5048779 |
52 |
Zhang F. ; Huang S. ; Wang P. ; Chen X. ; Zhao S. ; Dong Y. ; Zhong H. Chem. Mater. 2017, 29, 3793.
doi: 10.1021/acs.chemmater.7b01100 |
53 |
Liu M. ; Zhao J. ; Luo Z. ; Sun Z. ; Pan N. ; Ding H. ; Wang X. Chem. Mater. 2018, 30, 5846.
doi: 10.1021/acs.chemmater.8b00537 |
54 |
Li L. ; Chen Y. ; Liu Z. ; Chen Q. ; Wang X. ; Zhou H. Adv. Mater. 2016, 28, 9862.
doi: 10.1002/adma.201603021 |
55 |
Wharf I. ; Gramstad T. ; Makhija R. ; Onyszchuk M. Can. J. Chem. 1976, 54, 3430.
doi: 10.1139/v76-493 |
56 |
Miyamae H. ; Numahata Y. ; Nagata M. Chem. Lett. 1980, 9, 663.
doi: 10.1246/cl.1980.663 |
57 |
Jeon N. J. ; Noh J. H. ; Kim Y. C. ; Yang W. S. ; Ryu S. ; Seok S. I. Nat. Mater. 2014, 13, 897.
doi: 10.1038/nmat4014 |
58 |
Rong Y. ; Tang Z. ; Zhao Y. ; Zhong X. ; Venkatesan S. ; Graham H. ; Patton M. ; Jing Y. ; Guloy A. M. ; Yao Y. Nanoscale 2015, 7 (24), 10595.
doi: 10.1039/C5NR02866C |
59 |
Lee J. W. ; Dai Z. ; Lee C. ; Lee H. M. ; Han T. H. ; De Marco N. ; Lin O. ; Choi C. S. ; Dunn B. ; Koh J. J. Am. Chem. Soc. 2018, 140, 6317.
doi: 10.1021/jacs.8b01037 |
60 |
Zhang X. ; Han D. ; Wang C. ; Muhammad I. ; Zhang F. ; Shmshad A. ; Xue X. ; Ji W. ; Chang S. ; Zhong H. Adv. Opt. Mater. 2019, 7, 1900774.
doi: 10.1002/adom.201900774 |
61 |
Chao L. ; Niu T. ; Gu H. ; Yang Y. ; Wei Q. ; Xia Y. ; Hui W. ; Zuo S. ; Zhu Z. ; Pei C. ; et al Research 2020, 2616345.
doi: 10.34133/2020/2616345 |
62 |
Chao L. ; Xia Y. ; Li B. ; Xing G. ; Chen Y. ; Huang W. Chem 2019, 5, 995.
doi: 10.1016/j.chempr.2019.02.025 |
63 |
Lin Y. H. ; Sakai N. ; Da P. ; Wu J. ; Sansom H. C. ; Ramadan A. J. ; Mahesh S. ; Liu J. ; Oliver R. D. J. ; Lim J. ; et al Science 2020, 369, 96.
doi: 10.1126/science.aba1628 |
[1] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-0. |
[2] | Jionghua Wu, Yiming Li, Jiangjian Shi, Huijue Wu, Yanhong Luo, Dongmei Li, Qingbo Meng. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004041-0. |
[3] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-0. |
[4] | Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008051-0. |
[5] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-0. |
[6] | Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008095-0. |
[7] | Guangruixing Zou, Ziming Chen, Zhenchao Li, Hin-Lap Yip. Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009002-0. |
[8] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-0. |
[9] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-0. |
[10] | Haomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007006-0. |
[11] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-0. |
[12] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-0. |
[13] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-0. |
[14] | Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning. Progress and Perspective of Tin Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007090-0. |
[15] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-0. |
|