Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008090.doi: 10.3866/PKU.WHXB202008090
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo()
Received:
2020-08-31
Accepted:
2020-09-23
Published:
2020-10-09
Contact:
Jiayan Luo
E-mail:jluo@tju.edu.cn
About author:
Jiayan Luo, Email: jluo@tju.edu.cnSupported by:
MSC2000:
Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(2): 2008090.
"
Model | Solution | Strategy with composite anodes | Ref. |
Space charged model | Reduce effective current density/increase Li+ mobility/uniformize Li+ distribution | Composite with scaffolds | |
Plating model | Mechanically blocking | Composite with solid electrolytes | |
Charge induced model | Homogenize surface charge distribution | Composite with physical fields |
1 |
Grande L. ; Paillard E. ; Hassoun J. ; Park J. ; Lee Y. ; Sun Y. ; Passerini S. ; Scrosati B. Adv. Mater. 2015, 27, 784.
doi: 10.1002/adma.201403064 |
2 |
Zhang X. ; Wang A. ; Liu X. ; Luo J. Acc. Chem. Res. 2019, 52, 3223.
doi: 10.1021/acs.accounts.9b00437 |
3 |
Patil A. ; Patil V. ; Wook Shin D. ; Choi J. ; Paik D. ; Yoon S. Mater. Res. Bull. 2008, 43, 1913.
doi: 10.1016/j.materresbull.2007.08.031 |
4 |
Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
5 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
6 |
Zhang Z. ; Peng Z. ; Zheng J. ; Wang S. ; Liu Z. ; Bi Y. ; Chen Y. ; Wu G. ; Li H. ; Cui P. ; et al J. Mater. Chem. A 2017, 5, 9339.
doi: 10.1039/C7TA02144E |
7 |
Ye H. ; Xin S. ; Yin Y. ; Li J. ; Guo Y. ; Wan L. J. Am. Chem. Soc. 2017, 139, 5916.
doi: 10.1021/jacs.7b01763 |
8 |
Liu S. ; Zhang X. ; Li R. ; Gao L. ; Luo J. Energy Storage Mater. 2018, 14, 143.
doi: 10.1016/j.ensm.2018.03.004 |
9 |
Ma Q. ; Zhang X. ; Wang A. ; Xia Y. ; Liu X. ; Luo J. Adv. Funct. Mater. 2020, 30, 2002824.
doi: 10.1002/adfm.202002824 |
10 |
Wang C. ; Wang A. ; Ren L. ; Guan X. ; Wang D. ; Dong A. ; Zhang C. ; Li G. ; Luo J. Adv. Funct. Mater. 2019, 29, 1905940.
doi: 10.1002/adfm.201905940 |
11 |
Ren L. ; Wang A. ; Zhang X. ; Li G. ; Liu X. ; Luo J. Adv. Energy Mater. 2019, 10, 1902932.
doi: 10.1002/aenm.201902932 |
12 |
Tikekar M. D. ; Choudhury S. ; Tu Z. ; Archer L. A. Nat. Energy 2016, 1, 16114.
doi: 10.1038/nenergy.2016.114 |
13 |
Lin D. ; Liu Y. ; Liang Z. ; Lee H. ; Sun J. ; Wang H. ; Yan K. ; Xie J. ; Cui Y. Nat. Nanotech. 2016, 11, 626.
doi: 10.1038/nnano.2016.32 |
14 |
Ye H. ; Zhang Y. ; Yin Y. ; Cao F. ; Guo Y. ACS Cent. Sci. 2020, 6, 661.
doi: 10.1021/acscentsci.0c00351 |
15 |
Ye H. ; Xin S. ; Yin Y. ; Guo Y. Adv. Energy Mater. 2017, 7, 1700530.
doi: 10.1002/aenm.201700530 |
16 |
Shi P. ; Zhang X. Q. ; Shen X. ; Zhang R. ; Liu H. ; Zhang Q. Adv. Mater. Technol-US. 2020, 5, 1900806.
doi: 10.1002/admt.201900806 |
17 |
Zhang R. ; Cheng X. ; Zhao C. ; Peng H. ; Shi J. ; Huang J. ; Wang J. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28, 2155.
doi: 10.1002/adma.201504117 |
18 |
Guan X. ; Wang A. ; Liu S. ; Li G. ; Liang F. ; Yang Y. ; Liu X. ; Luo J. Small 2018, 14, 1801423.
doi: 10.1002/smll.201801423 |
19 |
Cheng X. ; Zhang R. ; Zhao C. ; Wei F. ; Zhang J. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
20 |
Zhang H. ; Eshetu G. G. ; Judez X. ; Li C. ; Rodriguez Martínez L. M. ; Armand M. Angew. Chem. Int. Ed. 2018, 130, 15220.
doi: 10.1002/ange.201712702 |
21 |
Li N. ; Yin Y. ; Yang C. ; Guo Y. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
22 |
Liu Y. ; Lin D. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
23 |
Wang A. ; Zhang X. ; Yang Y. ; Huang J. ; Liu X. ; Luo J. Chem 2018, 4, 2192.
doi: 10.1016/j.chempr.2018.06.017 |
24 |
Liu S. ; Wang A. ; Li Q. ; Wu J. ; Chiou K. ; Huang J. ; Luo J. Joule 2018, 2, 184.
doi: 10.1016/j.joule.2017.11.004 |
25 |
Guo W. ; Liu S. ; Guan X. ; Zhang X. ; Liu X. ; Luo J. Adv. Energy Mater. 2019, 9, 1900193.
doi: 10.1002/aenm.201900193 |
26 |
Zhang X. ; Lv R. ; Wang A. ; Guo W. ; Liu X. ; Luo J. Angew. Chem. Int. Ed. 2018, 130, 15248.
doi: 10.1002/ange.201808714 |
27 |
Tang W. ; Tang S. ; Guan X. ; Zhang X. ; Xiang Q. ; Luo J. Adv. Funct. Mater. 2019, 29, 1900648.
doi: 10.1002/adfm.201900648 |
28 |
Tang W. ; Tang S. ; Zhang C. ; Ma Q. ; Xiang Q. ; Yang Y. ; Luo J. Adv. Energy Mater. 2018, 8, 1800866.
doi: 10.1002/aenm.201800866 |
29 |
Gopalan A. ; Santhosh P. ; Manesh K. ; Nho J. ; Kim S. ; Hwang C. ; Lee K. J. Membrane Sci. 2008, 325, 683.
doi: 10.1016/j.memsci.2008.08.047 |
30 |
Zhang W. ; Tu Z. ; Qian J. ; Choudhury S. ; Archer L. A. ; Lu Y. Small 2018, 14, 1703001.
doi: 10.1002/smll.201703001 |
31 |
Goodenough J. B. Energy Storage Mater. 2015, 1, 158.
doi: 10.1016/j.ensm.2015.07.001 |
32 |
Chazalviel J. N. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/physreva.42.7355 |
33 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2005, 152, A396.
doi: 10.1149/1.1850854 |
34 |
Zuo T. ; Wu X. ; Yang C. ; Yin Y. ; Ye H. ; Li N. ; Guo Y. Adv. Mater. 2017, 29, 1700389.
doi: 10.1002/adma.201700389 |
35 |
Liang Z. ; Lin D. ; Zhao J. ; Lu Z. ; Liu Y. ; Liu C. ; Lu Y. ; Wang H. ; Yan K. ; Tao X. ; et al Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862.
doi: 10.1073/pnas.1518188113 |
36 |
Chi S. ; Liu Y. ; Song W. ; Fan L. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1700348.
doi: 10.1002/adfm.201700348 |
37 |
Chen K. ; Sanchez A. J. ; Kazyak E. ; Davis A. L. ; Dasgupta N. P. Adv. Energy Mater. 2019, 9, 1802534.
doi: 10.1002/aenm.201802534 |
38 |
Yang C. ; Yin Y. ; Zhang S. ; Li N. ; Guo Y. Nat. Commun. 2015, 6, 8058.
doi: 10.1038/ncomms9058 |
39 |
Lin D. ; Zhao J. ; Sun J. ; Yao H. ; Liu Y. ; Yan K. ; Cui Y. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4613.
doi: 10.1073/pnas.1619489114 |
40 |
Liu Y. ; Lin D. ; Liang Z. ; Zhao J. ; Yan K. ; Cui Y. Nat. Commun. 2016, 7, 10992.
doi: 10.1038/ncomms10992 |
41 |
Yamaki J. ; Tobishima S. ; Hayashi K. ; Keiichi S. ; Nemoto Y. ; Arakawa M. J. Power Sources 1998, 74, 219.
doi: 10.1016/S0378-7753(98)00067-6 |
42 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. ; Wang Z. ; Yang W. ; Hu C. ; Luo W. ; Huang Y. Angew. Chem. Int. Ed. 2020, 132, 3728.
doi: 10.1002/ange.201914417 |
43 |
Kim K. H. ; Iriyama Y. ; Yamamoto K. ; Kumazaki S. ; Asaka T. ; Tanabe K. ; Fisher C. A. J. ; Hirayama T. ; Murugan R. ; Ogumi Z. J. Power Sources 2011, 196, 764.
doi: 10.1016/j.jpowsour.2010.07.073 |
44 |
Yang C. ; Zhang L. ; Liu B. ; Xu S. ; Hamann T. ; McOwen D. ; Dai J. ; Luo W. ; Gong Y. ; Wachsman E. D. ; et al Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3770.
doi: 10.1073/pnas.1719758115 |
45 |
Zhang Y. ; Shi Y. ; Hu X. C. ; Wang W. P. ; Wen R. ; Xin S. ; Guo Y. G. Adv. Energy Mater. 2019, 10, 1903325.
doi: 10.1002/aenm.201903325 |
46 |
Xu S. ; Mcowen D. W. ; Wang C. ; Zhang L. ; Luo W. ; Chen C. ; Li Y. ; Gong Y. ; Dai J. ; Kuang Y. ; et al Nano Lett. 2018, 18, 3926.
doi: 10.1021/acs.nanolett.8b01295 |
47 |
Liu B. ; Zhang L. ; Xu S. ; Mcowen D. W. ; Gong Y. ; Yang C. ; Pastel G. R. ; Xie H. ; Fu K. ; Dai J. ; et al Energy Storage Mater. 2018, 14, 376.
doi: 10.1016/j.ensm.2018.04.015 |
48 |
Liu Y. ; Lin D. ; Jin Y. ; Liu K. ; Tao X. ; Zhang Q. ; Zhang X. ; Cui Y. Sci. Adv. 2017, 3, o713.
doi: 10.1126/sciadv.aao0713 |
49 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
50 |
Yun Q. ; He Y. ; Lv W. ; Zhao Y. ; Li B. ; Kang F. ; Yang Q. Adv. Mater. 2016, 28, 6932.
doi: 10.1002/adma.201601409 |
51 |
Li Q. ; Zhu S. ; Lu Y. Adv. Funct. Mater. 2017, 27, 1606422.
doi: 10.1002/adfm.201606422 |
52 |
Liang Z. ; Zheng G. ; Liu C. ; Liu N. ; Li W. ; Yan K. ; Yao H. ; Hsu P. ; Chu S. ; Cui Y. Nano Lett. 2015, 15, 2910.
doi: 10.1021/nl5046318 |
53 |
Cheng X. ; Hou T. ; Zhang R. ; Peng H. ; Zhao C. ; Huang J. ; Zhang Q. Adv. Mater. 2016, 28, 2888.
doi: 10.1002/adma.201506124 |
54 |
Yan K. ; Lu Z. ; Lee H. ; Xiong F. ; Hsu P. ; Li Y. ; Zhao J. ; Chu S. ; Cui Y. Nat. Energy 2016, 1, 16010.
doi: 10.1038/nenergy.2016.10 |
55 |
Wang S. ; Yin Y. ; Zuo T. ; Dong W. ; Li J. ; Shi J. ; Zhang C. ; Li N. ; Li C. ; Guo Y. Adv. Mater. 2017, 29, 1703729.
doi: 10.1002/adma.201703729 |
56 |
Ye H. ; Zheng Z. J. ; Yao H. R. ; Liu S. C. ; Zuo T. T. ; Wu X. W. ; Yin Y. X. ; Li N. W. ; Gu J. J. ; Cao F. F. ; et al Angew. Chem. Int. Ed. 2019, 58, 1094.
doi: 10.1002/anie.201811955 |
57 |
Tang W. ; Yin X. ; Kang S. ; Chen Z. ; Tian B. ; Teo S. L. ; Wang X. ; Chi X. ; Loh K. P. ; Lee H. ; et al Adv. Mater. 2018, 30, 1801745.
doi: 10.1002/adma.201801745 |
58 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
59 |
Yu Y. ; Huang W. ; Song X. ; Wang W. ; Hou Z. ; Zhao X. ; Deng K. ; Ju H. ; Sun Y. ; Zhao Y. ; et al Electrochim. Acta 2019, 294, 413.
doi: 10.1016/j.electacta.2018.10.117 |
60 |
Liu L. ; Yin Y. ; Li J. ; Li N. ; Zeng X. ; Ye H. ; Guo Y. ; Wan L. Joule 2017, 1, 563.
doi: 10.1016/j.joule.2017.06.004 |
61 |
Salvatierra R. V. ; López G. A. ; Jalilov A. S. ; Yoon J. ; Wu G. ; Tsai A. L. ; Tour J. M. Adv. Mater. 2018, 30, 1803869.
doi: 10.1002/adma.201803869 |
62 |
Kim H. ; Chou C. ; Ekerdt J. G. ; Hwang G. S. J. Phys. Chem. C 2010, 115, 2514.
doi: 10.1021/jp1083899 |
63 |
Ma J. ; Wang C. ; Wroblewski S. J. Power Sources 2007, 164, 849.
doi: 10.1016/j.jpowsour.2006.11.024 |
64 |
Zhang C. ; Liu S. ; Li G. ; Zhang C. ; Liu X. ; Luo J. Adv. Mater. 2018, 30, 1801328.
doi: 10.1002/adma.201801328 |
65 |
Yan C. ; Cheng X. ; Yao Y. ; Shen X. ; Li B. ; Li W. ; Zhang R. ; Huang J. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
66 |
Yang C. ; Xie H. ; Ping W. ; Fu K. ; Liu B. ; Rao J. ; Dai J. ; Wang C. ; Pastel G. ; Hu L. Adv. Mater. 2018, 31, 1804815.
doi: 10.1002/adma.201804815 |
67 |
Murugan R. ; Thangadurai V. ; Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.
doi: 10.1002/anie.200701144 |
68 | Gu L. Acta Phys. -Chim. Sin. 2018, 34, 331. |
谷林. 物理化学学报, 2018, 34, 331.
doi: 10.3866/PKU.WHXB201709281 |
|
69 |
Bouchet R. ; Maria S. ; Meziane R. ; Aboulaich A. ; Lienafa L. ; Bonnet J. ; Phan T. N. T. ; Bertin D. ; Gigmes D. ; Devaux D. ; et al Nat. Mater. 2013, 12, 452.
doi: 10.1038/nmat3602 |
70 |
Fu K. K. ; Gong Y. ; Liu B. ; Zhu Y. ; Xu S. ; Yao Y. ; Luo W. ; Wang C. ; Lacey S. D. ; Dai J. ; et al Sci. Adv. 2017, 3, e1601659.
doi: 10.1126/sciadv.1601659 |
71 |
Tsai C. L. ; Roddatis V. ; Chandran C. V. ; Ma Q. ; Uhlenbruck S. ; Bram M. ; Heitjans P. ; Guillon O. ACS Appl. Mater. Interfaces 2016, 8, 10617.
doi: 10.1021/acsami.6b00831 |
72 |
Sharafi A. ; Kazyak E. ; Davis A. L. ; Yu S. ; Thompson T. ; Siegel D. J. ; Dasgupta N. P. ; Sakamoto J. Chem. Mater. 2017, 29, 7961.
doi: 10.1021/acs.chemmater.7b03002 |
73 |
Li Y. ; Zhou W. ; Chen X. ; Lü X. ; Cui Z. ; Xin S. ; Xue L. ; Jia Q. ; Goodenough J. B. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13313.
doi: 10.1073/pnas.1615912113 |
74 |
Yu R. ; Du Q. ; Zou B. ; Wen Z. ; Chen C. J. Power Sources 2016, 306, 623.
doi: 10.1016/j.jpowsour.2015.12.065 |
75 |
Zheng J. ; Tang M. ; Hu Y. Angew. Chem. Int. Ed. 2016, 128, 12726.
doi: 10.1002/ange.201607539 |
76 |
Trevey J. E. ; Jung Y. S. ; Lee S. Electrochim. Acta 2011, 56, 4243.
doi: 10.1016/j.electacta.2011.01.086 |
77 |
Bai P. ; Li J. ; Brushett F. R. ; Bazant M. Z. Energy Environ. Sci. 2016, 9, 3221.
doi: 10.1039/C6EE01674J |
78 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
79 |
Monzon L. M. A. ; Coey J. M. D. Electrochem. Commun. 2014, 42, 38.
doi: 10.1016/j.elecom.2014.02.006 |
80 |
Chopart J. P. ; Aaboubi O. ; Merienne E. ; Olivier A. ; Amblard J. Energy Convers. Manage. 2002, 43, 365.
doi: 10.1016/S0196-8904(01)00110-8 |
81 |
Wang A. ; Deng Q. ; Deng L. ; Guan X. ; Luo J. Adv. Funct. Mater. 2019, 29, 1902630.
doi: 10.1002/adfm.201902630 |
82 |
Shen K. ; Wang Z. ; Bi X. ; Ying Y. ; Zhang D. ; Jin C. ; Hou G. ; Cao H. ; Wu L. ; Zheng G. ; et al Adv. Energy Mater. 2019, 9, 1900260.
doi: 10.1002/aenm.201900260 |
83 |
Chen Y. ; Dou X. ; Wang K. ; Han Y. Adv. Energy Mater. 2019, 9, 1900019.
doi: 10.1002/aenm.201900019 |
84 |
Li L. ; Basu S. ; Wang Y. ; Chen Z. ; Hundekar P. ; Wang B. ; Shi J. ; Shi Y. ; Narayanan S. ; Koratkar N. Science 2018, 359, 1513.
doi: 10.1126/science.aap8787 |
85 |
Yan K. ; Wang J. ; Zhao S. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/ange.201905251 |
[1] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-0. |
[2] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-0. |
[3] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-0. |
[4] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-0. |
[5] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-0. |
[6] | Shijie Yang, Xiangqun Xu, Xinbing Cheng, Xinmeng Wang, Jinxiu Chen, Ye Xiao, Hong Yuan, He Liu, Aibing Chen, Wancheng Zhu, Jiaqi Huang, Qiang Zhang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007058-0. |
[7] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-0. |
[8] | Xiaoguang Qiu, Wei Liu, Jiuding Liu, Junzhi Li, Kai Zhang, Fangyi Cheng. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009012-0. |
[9] | Qian Wang, Kai Wu, Hangchao Wang, Wen Liu, Henghui Zhou. Lithiophilic 3D SnS2@Carbon Fiber Cloth for Stable Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007092-0. |
[10] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-0. |
[11] | MENG Xiu-Xia, GONG Xun, YANG Nai-Tao, TAN Xiao-Yao, MA Zi-Feng. Preparation and Properties of Direct-Methane Solid Oxide Fuel Cell Based on a Graded Cu-CeO2-Ni-YSZ Composite Anode [J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1719-1726. |
[12] | SUN Ming-Ming; ZHANG Shi-Chao. Preparation and Performance of a Three-dimensional Nano-Sn/SnSb Composite Anode for LithiumIon Batteries [J]. Acta Phys. -Chim. Sin., 2007, 23(12): 1937-1942. |
[13] | HE Qiong; WANG Shi-Zhong. Effects of the Concentration of LSGMC5 on the Performance of Ni-Fe Composite Anodes for Dimethyl Ether Fuel Cells [J]. Acta Phys. -Chim. Sin., 2007, 23(04): 473-478. |
[14] | GAO Jie;WANG Shi-Zhong. Study of Ni Composite Anodes for Dimethyl Ether Fuel Cell [J]. Acta Phys. -Chim. Sin., 2006, 22(07): 851-855. |
|