Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008095.doi: 10.3866/PKU.WHXB202008095
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• PERSPECTIVE • Previous Articles Next Articles
Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li()
Received:
2020-08-31
Accepted:
2020-09-25
Published:
2020-10-16
Contact:
Meicheng Li
E-mail:mcli@ncepu.edu.cn
About author:
Meicheng Li, Email: mcli@ncepu.edu.cnSupported by:
MSC2000:
Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2008095.
Fig 1
Self-doping mechanism of perovskite materials. (a) Valence spectra of CH3NH3PbI3 films formed by one-step solution method with different annealing temperatures and the energetic levels of the corresponding perovskite films; (b) annealing temperatures dependent carrier concentration and carrier mobility in perovskite films (circle) and the spiro-MeOTAD film (square) by Hall measurement; (c) photoemission spectra of perovskite samples annealed at 100 ℃ for 10 and 100 min. UPS secondary electron cut-off spectra and XPS valence spectra; (d) composition dependent carrier concentration (circle) and carrier mobility (square) in perovskite films; (e) the formation energies of intrinsic point defects in CH3NH3PbI3; (f) schematic conductivity type conversions in perovskite films by excess CH3NH3I (left side) or excess PbI2 (right side). Possible point defects in perovskite films caused by composition variation were illustrated correspondingly. (a, b) Adapted from Wiley publisher24. (c) Adapted from Royal Society of Chemistry publisher 31. (d, f) Adapted from AIP publishing publisher 23. (e) Adapted from AIP publishing publisher 34. "
Fig 2
Exogenous doping mechanism of perovskite materials. (a) Calculated formations energies of defects formed by group-IA and-IB elements as functions as the Fermi levels at I-rich/Pb-poor and I-poor/Pb-rich conditions. The vertical dotted lines indicate the Fermi level pinning, the Fermi levels are referenced to the VBM; (b) calculated total DOS and partial DOS for acceptors of OI, SI, SeI, and TeI; (c) the Seebeck effects for organo-metal halide perovskite films based on lateral Au/perovskite/Au device design (Single: CH3NH3PbI3, Mixed: CH3NH3PbIxCl3-x); (d) illustration of energy band bending in the perovskite layer with PEIE film. (a, b) Adapted from ACS Publications publisher 35. (c) Adapted from Elsevier publisher 37. (d) Adapted from Elsevier publisher 27. "
Fig 3
Perovskite p-n homojunction. (a) Schematic diagram of p-type and n-type perovskite energy bands; (b) electric field structure and energy band diagram of perovskite homojunction; (c) diagram of carrier transport in perovskite homojunction structure; (d) AFM topography images of the perovskite solar cells cross section (Vb = 0). The dashed blue lines are used to identify the layers in the device; (e) the corresponding KPFM images. The color scale bars of the KPFM indicate the relative scales of the surface potential; (f) potential profiles of the device under the various bias voltages; (g) electric field profiles under the various bias voltages. (c-g) Adapted from Springer Nature publisher 30."
1 | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf (accessed Aug 9, 2020). |
2 |
Giordano F. ; Abate A. ; Correa Baena J. P. ; Saliba M. ; Matsui T. ; Im S. H. ; Zakeeruddin S. M. ; Nazeeruddin M. K. ; Hagfeldt A. ; Graetzel M. Nat. Commun. 2016, 7, 10379.
doi: 10.1038/ncomms10379 |
3 |
Wei D. ; Ji J. ; Song D. ; Li M. ; Cui P. ; Li Y. ; Mbengue J. M. ; Zhou W. ; Ning Z. ; Park N. G. J. Mater. Chem. A 2017, 5, 1406.
doi: 10.1039/C6TA10418E |
4 |
Jiang Q. ; Zhang L. ; Wang H. ; Yang X. ; Meng J. ; Liu H. ; Yin Z. ; Wu J. ; Zhang X. ; You J. Nat. Energy 2016, 2, 16177.
doi: 10.1038/nenergy.2016.177 |
5 |
Huang H. ; Liu X. ; Duan M. ; Ji J. ; Jiang H. ; Liu B. ; Sajid S. ; Cui P. ; Wei D. ; Li Y. ; Li M. ACS Appl. Energy Mater. 2020, 3, 5039.
doi: 10.1021/acsaem.0c00563 |
6 |
Han J. ; Kwon H. ; Kim E. ; Kim D. W. ; Son H. J. ; Kim D. H. J. Mater. Chem. A 2020, 8, 2105.
doi: 10.1039/C9TA12750J |
7 |
Jeng J. Y. ; Chen K. C. ; Chiang T. Y. ; Lin P. Y. ; Tsai T. D. ; Chang Y. C. ; Guo T. F. ; Chen P. ; Wen T. C. ; Hsu Y. J. Adv. Mater. 2014, 26, 4107.
doi: 10.1002/adma.201306217 |
8 |
Liu B. ; Cui R. ; Huang H. ; Guo X. ; Dong J. ; Yao H. ; Li Y. ; Zhao D. ; Wang J. ; Zhang J. ; Chen Y. ; Sun B. J. Mater. Chem. A 2020, 8, 3145.
doi: 10.1039/C9TA10763K |
9 |
Liu Q. ; Fan L. ; Zhang Q. E. ; Zhou A. A. ; Wang B. ; Bai H. ; Tian Q. ; Fan B. ; Zhang T. ChemSusChem 2017, 10, 3098.
doi: 10.1002/cssc.201700872 |
10 |
Yoo J. J. ; Wieghold S. ; Sponseller M. C. ; Chua M. R. ; Bertram S. N. ; Hartono N. T. P. ; Tresback J. S. ; Hansen E. C. ; Correa-Baena J.P. ; Bulović V. ; et al Energ. Environ. Sci. 2019, 12, 2192.
doi: 10.1039/C9EE00751B |
11 |
Kim Y. ; Jung E. H. ; Kim G. ; Kim D. ; Kim B. J. ; Seo J. Adv. Energy Mater. 2018, 8, 1801668.
doi: 10.1002/aenm.201801668 |
12 |
Zhao X. ; Chen J. ; Park N. G. Sol. RRL 2019, 3, 1800339.
doi: 10.1002/solr.201800339 |
13 |
Leijtens T. ; Eperon G. E. ; Pathak S. ; Abate A. ; Lee M. M. ; Snaith H. J. Nat. Commun. 2013, 4, 2885.
doi: 10.1038/ncomms3885 |
14 |
Ji J. ; Liu X. ; Jiang H. ; Duan M. ; Liu B. ; Huang H. ; Wei D. ; Li Y. ; Li M. iScience 2020, 23, 101013.
doi: 10.1016/j.isci.2020.101013 |
15 |
Divitini G. ; Cacovich S. ; Matteocci F. ; Cinà L. ; Di Carlo A. ; Ducati C. Nat. Energy 2016, 1, 15012.
doi: 10.1038/nenergy.2015.12 |
16 |
Luo J. ; Jia C. ; Wan Z. ; Han F. ; Zhao B. ; Wang R. J. Power Sources 2017, 342, 886.
doi: 10.1016/j.jpowsour.2017.01.010 |
17 | Lu Y. ; Ge Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2021, 37, 2007088. |
卢岳; 葛杨; 隋曼龄. 物理化学学报, 2021, 37, 2007088.
doi: 10.3866/PKU.WHXB202007088 |
|
18 | Ge Y. ; Mu X. L. ; Lu Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039. |
葛杨; 牟许霖; 卢岳; 隋曼龄. 物理化学学报, 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039 |
|
19 |
Poorkazem K. ; Liu D. ; Kelly T. L. J. Mater. Chem. A 2015, 3, 9241.
doi: 10.1039/C5TA00084J |
20 |
Ahn S. M. ; Jung E. D. ; Kim S. H. ; Kim H. ; Lee S. ; Song M. H. ; Kim J. Y. Nano Lett. 2019, 19, 3707.
doi: 10.1021/acs.nanolett.9b00796 |
21 |
You P. ; Liu Z. ; Tai Q. ; Liu S. ; Yan F. Adv. Mater. 2015, 27, 3632.
doi: 10.1002/adma.201501145 |
22 |
Ou X. L. ; Feng J. ; Xu M. ; Sun H. B. Opt. Lett. 2017, 42, 1958.
doi: 10.1364/OL.42.001958 |
23 |
Wang Q. ; Shao Y. ; Xie H. ; Lyu L. ; Liu X. ; Gao Y. ; Huang J. Appl. Phys. Lett. 2014, 105, 163508.
doi: 10.1063/1.4899051 |
24 |
Cui P. ; Wei D. ; Ji J. ; Song D. ; Li Y. ; Liu X. ; Huang J. ; Wang T. ; You J. ; Li M. Sol. RRL 2017, 1, 1600027.
doi: 10.1002/solr.201600027 |
25 |
Semonin O. E. ; Elbaz G. A. ; Straus D. B. ; Hull T. D. ; Paley D. W. ; Van der Zande A. M. ; Hone J. C. ; Kymissis I. ; Kagan C. R. ; Roy X. ; Owen J. S. J. Phys. Chem. Lett. 2017, 8, 6092.
doi: 10.1021/acs.jpclett.7b03064 |
26 |
Shi T. ; Yin W. J. ; Hong F. ; Zhu K. ; Yan Y. Appl. Phys. Lett. 2015, 106, 103902.
doi: 10.1063/1.4914544 |
27 |
Song S. ; Moon B. J. ; Hörantner M. T. ; Lim J. ; Kang G. ; Park M. ; Kim J. Y. ; Snaith H. J. ; Park T. Nano Energy 2016, 28, 269.
doi: 10.1016/j.nanoen.2016.06.046 |
28 |
Bin Z. ; Li J. ; Wang L. ; Duan L. Energ Environ. Sci. 2016, 9, 3424.
doi: 10.1039/C6EE01987K |
29 |
Zhang J. ; Shang M. H. ; Wang P. ; Huang X. ; Xu J. ; Hu Z. ; Zhu Y. ; Han L. ACS Energy Lett. 2016, 1, 535.
doi: 10.1021/acsenergylett.6b00241 |
30 |
Cui P. ; Wei D. ; Ji J. ; Huang H. ; Jia E. ; Dou S. ; Wang T. ; Wang W. ; Li M. Nat. Energy 2019, 4, 150.
doi: 10.1038/s41560-018-0324-8 |
31 |
Ralaiarisoa M. ; Busby Y. ; Frisch J. ; Salzmann I. ; Pireaux J. J. ; Koch N. Phys. Chem. Chem. Phys. 2017, 19, 828.
doi: 10.1039/C6CP06347K |
32 |
Frolova L. A. ; Dremova N. N. ; Troshin P. A. Chem. Commun. 2015, 51, 14917.
doi: 10.1039/C5CC05205J |
33 |
Naikaew A. ; Prajongtat P. ; Lux-Steiner M. C. ; Arunchaiya M. ; Dittrich T. Appl. Phys. Lett. 2015, 106, 232104.
doi: 10.1063/1.4922554 |
34 |
Yin W. J. ; Shi T. ; Yan Y. Appl. Phys. Lett. 2014, 104, 063903.
doi: 10.1063/1.4864778 |
35 |
Shi T. ; Yin W. J. ; Yan Y. J. Phys. Chem. C 2014, 118, 25350.
doi: 10.1021/jp508328u |
36 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
37 |
Liu Q. ; Hsiao Y. C. ; Ahmadi M. ; Wu T. ; Liu L. ; Haacke S. ; Wang H. ; Hu B. Org. Electron. 2016, 35, 216.
doi: 10.1016/j.orgel.2016.05.025 |
38 | Xiong S. ; Zhu M. Solar cell foundation and application 2nd Ed. Science Press: Beijing, 2009, pp. 43- 132. |
熊绍珍; 朱美芳. 太阳能电池基础与应用, 第2版 北京: 科学出版社, 2009, 43- 132. |
[1] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[2] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[3] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[4] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[5] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[6] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[7] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[8] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-. |
[9] | Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008051-. |
[10] | Zhang Xin, Dengbao Han, Xiaomei Chen, Yu Chen, Shuai Chang, Haizheng Zhong. Effects of Solvent Coordination on Perovskite Crystallization [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008055-. |
[11] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[12] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-. |
[13] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
[14] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[15] | Haomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007006-. |
|