Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2009002.doi: 10.3866/PKU.WHXB202009002
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• REVIEW • Previous Articles Next Articles
Guangruixing Zou1, Ziming Chen1,2,*(), Zhenchao Li1, Hin-Lap Yip1,*(
)
Received:
2020-09-01
Accepted:
2020-10-04
Published:
2020-10-22
Contact:
Ziming Chen,Hin-Lap Yip
E-mail:chenziming@scut.edu.cn;msangusyip@scut.edu.cn
About author:
Email: msangusyip@scut.edu.cn (H.Y.)Supported by:
MSC2000:
Guangruixing Zou, Ziming Chen, Zhenchao Li, Hin-Lap Yip. Blue Perovskite Light-Emitting Diodes: Opportunities and Challenges[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2009002.
Fig 2
(a) Crystal structure of cubic perovskite 8; (b) emission-color tuning of perovskite materials by X-site anion modulation 12; (c) emission-color tuning of perovskite materials by A-site cation modulation 13; (d) a series of <100> oriented RP phase layered perovskites 17; (e) a series of <100> oriented DJ phase perovskites 18; (f) emission-color tuning of two-dimensional perovskite by n value modulation 19. (a) Copyright 2018 Wiley online library. (b) Copyright 2015 American Chemical Society. (c) Copyright 2020 American Chemical Society. (d) Copyright 2001 Royal Society of Chemistry (e) Copyright 2018 American Chemical Society. (f) Copyright 2017 Wiley online library."
Fig 3
(a) Energy level diagram of perovskite LED with perovskite multi-quantum wells 28; (b) schematic diagram of energy transfer in perovskite multi-quantum wells 28; (c) schematic diagram of charge transfer in PA2(CsPbBr3)n?1PbBr4 multi-quantum wells 29; (d) carrier transfer process (energy funnels) in multi-phase PEA2MAn-1PbnI3n+1 perovskite crystals 30. (a, b) adapted from Nat. Photonics 2016, 10, 699; (c) adapted from Nano Energy 2018, 50, 615; (d) adapted from Nat. Nanotechnol. 2016, 11, 872."
Fig 5
(a) p-i-n architecture of a perovskite LED; (b) n-i-p architecture of a perovskite LED; (c) energy levels of different layers in a perovskite LED and its working mechanism; (d) general electron/hole transport layers used in blue perovskite LEDs. The energy level of each layer is recorded from Ref. 34."
Table 1
Device structures of blue perovskite LEDs."
Perovskites | Device structure | Ref. | |
3D perovskites | MAPb(Br1–xClx)3 | ITO/PEDOT:PSS/perovskite/PCBM/Ag | |
Cs10(MA0.17FA0.83)(100-x)PbCl1.5Br1.5 | ITO/ZnO/perovskite/α-NPD/MoO3/Al | ||
(Cs/Rb/FA/PEA/K)Pb(Cl/Br)3 | ITO/LiF/perovskite/LiF/Bphen /LiF/Al | ||
Quasi-2D perovskites | 4-PBA2(CsPbBr3)n-1PbBr4 | ITO/ZnO/PEIE/perovskite/TFB/MoO3/Al | |
POEA2MAn–1PbnBr3n+1 | ITO/PEDOT:PSS/perovskite/TPBi/Ba/Al | ||
PEA2Csn-1Pbn(ClxBr1-x)3n +1 | ITO/PEDOT:PSS/perovskite/TPBi/LiF/Al | ||
(EA)2MAn–1PbnBr3n+1 | ITO/PEDOT:PSS/perovskite/TmPyPB/CsF/Al | ||
BA2[MAPbX3]PbX4 | ITO/PEDOT:PSS/perovskite/TmPyPB/LiF/Al | ||
BA2Csn-1Pbn(Br/Cl)3n +1 | ITO/PEDOT:PSS/PVK/perovskite/TPBi/Al | ||
NaBr:PEA-CsPb(Br1-xClx)3 | ITO/NiOx/PTAA/PVK/perovskite/TPBi/LiF/Al | ||
PBABry(Cs0.7FA0.3PbBr3) | ITO/NiO/TFB/PVK/perovskite/TPBi/LiF/Al | ||
Perovskite quantum dots | CsPb(Cl/Br)3 | ITO/PEDOT:PSS/PVK/perovskite/TPBi/LiF/Al | |
CsPbBrxCl3–x | ITO/PEDOT:PSS/TFB:PFI/perovskite/TPBi/LiF/Al | ||
CsPbClxBr3–x | ITO/PEDOT:PSS/Poly-TPD/perovskite/TPBi/LiF/Al | ||
CsPb(Br/Cl)3 | ITO/PEDOT:PSS/Poly-TPD/CBP/perovskite/B3PYMPM/LiF/Al | ||
CsPb(Br/Cl)3 | ITO/PEDOT:PSS/TFB/perovskite/TPBi/Liq/Al |
Table 2
Research progress of sky-blue perovskite LEDs."
Perovskites | EL peak/nm | Max. EQE/% | Max. Luminance/(cd∙m-2) | Ref. | |
Three-dimensional perovskites | Cs10(MA0.17FA0.83)(100–x)PbCl1.5Br1.5 | 475 | 1.7 | 3567 | |
Csx(MA0.17FA0.83)(100–x)Pb(Br3–xClx)3 | 475 | 2.58 | 6426 | ||
MAPb(Br1–xClx)3 | 482 | < 0.1 | 1.7 | ||
(Cs/Rb/FA/PEA/K)Pb(Cl/Br)3 | 484 | 2.01 | 4015 | ||
Quasi-2D perovskites | PEA2(Rb0.6Cs0.4)2Pb3Br10 | 475 | 1.35 | 100.6 | |
PEA2Csn–1Pbn(ClxBr1–x)3n+1 | 480 | 5.7 | 3780 | ||
PEOA2MAn–1PbnBr3n+1 | 480, 494 | 1.1 | 19.25 | ||
PBABry(Cs0.7FA0.3PbBr3) | 483 | 9.5 | ~700 | ||
(BAxPEA1-x)2Csn-1Pbn(Br0.7Cl0.3)3n+1 | 485 | 7.84 | 1130 | ||
(EA)2MAn –1PbnBr3n+1 | 485 | 2.6 | 200 | ||
PEACl:CsPbClxBr3-x:YCl3 | 485 | 11 | 9040 | ||
BA2Csn-1Pbn(Br/Cl)3n +1 | 487 | 6.2 | 3340 | ||
PBA2(Cs/MA/FA)n–1PbnBr3n+1 | 487, 493 | 4.34, 5.08 | 643.8, 1151 | ||
PEAxPA2-x(CsPbBr3)n-1PbBr4 | 488 | 7.51 | 1765 | ||
PEA2(Cs1-xEAxPbBr3)2PbBr4 | 488 | 12.1 | 2191 | ||
NaBr:PEA-CsPb(Br1–xClx)3 | 488 | 11.7 | 2060 | ||
(IPA/PEA)-(MA/Cs)PbBr3 | 490 | 1.5 | 2480 | ||
4-PBA2(CsPbBr3)n–1PbBr4 | 491 | 0.015 | 186 | ||
GABr, PEABr-CsPbBr3 | 492 | 8.2 | 1687 | ||
PA2(CsPbBr3)n-1PbBr4 | 492 | 1.45 | 5737 | ||
Perovskite quantum dots | CsPbBr3 | 477 | 1.96 | 86.95 | |
CsPbBr3 | 479 | 12.3 | / | ||
CsPbBr3 (nanoplates) | 480 | 0.1 | 25 | ||
RbxCs1–xPbBr3 | 490 | 0.87 | 186 | ||
CsPb(Br1–xClx)3 | 490 | 1.9 | 35 | ||
CsPb(Br1–xClx)3 | 495 | 0.075 | 750 | ||
CsPbBr2.4Cl0.6 | 495 | 1.13 | 2452 |
Fig 6
(a) Absorption spectra and (b) PL spectra of MAPb(Br1?xClx)3 37; (c) device properties of Cs10(MA0.17FA0.83)(100?x)PbBr1.5Cl1.5 perovskite LED38; (d) EL spectra of (Cs/Rb/FA/PEA/K)Pb(Cl/Br)3 perovskite LED under various applied voltages 13. (a, b) Copyright 2015 2020 American Chemical Society. (c) Copyright 2017 Wiley online library. (d) Copyright 2020 American Chemical Society."
Fig 7
(a) Scanning electronic microscope images of perovskite films fabricated from MAPbBr3 precursor solutions with various ratios of POEA and a schematic diagram of structural change of perovskite from bulk to layered structure upon increasing POEA concentration; (b) XRD patterns of perovskite thin films fabricated from MAPbBr3 precursor solutions with various ratios of POEA; (c) EL spectra of perovskite thin films fabricated from MAPbBr3 precursor solutions with various ratios of POEA 19. (a-c) Copyright 2017 Wiley online library."
Fig 8
(a) PL spectra of PEA2A1.5Pb2.5Br8.5 perovskites with 0-60% IPABr additives; (b) transient absorption spectra of PEA2A1.5Pb2.5Br8.5 with 0 and 40% IPABr 41; (c) PL spectra of CsPbClxBr3?x with various ratios of Cl?; (d) trap densities and PLQYs of CsPbCl0.9Br2.1 thin films with various ratios of PEABr; (e) PL spectra of CsPbCl0.9Br2.1 thin films with various ratios of PEABr; (f) EL spectra of CsPbCl0.9Br2.1 perovskite LED with various ratios of PEABr 42; (g) EQE-current density curves of PEACl-CsPbBr3 perovskite LED with various ratios of YCl3 43; (h) current density-voltage-luminance curves of PEA2(Cs1?xEAxPbBr3)2PbBr4 perovskite LED 44. (a, b) Copyright 2018 Nature Publishing Group. (c-g) Copyright 2019 Nature Publishing Group. (h) Copyright 2020 Nature Publishing Group."
Table 3
Research progress of pure-blue perovskite LEDs."
Perovskites | EL peak/nm | Peak EQE/% | Luminance/(cd·m-2) | Ref. | |
Three-dimensional perovskites | RbCl-CsPbBr3 | 468 | 0.062 | 112 | |
Quasi-2D perovskites | BA2Csn -1Pbn(Br/Cl)3n+1 | 465 | 2.4 | 962 | |
P-PDA, PEACsn –1PbnBr3n+1 | 465 | 2.6 | 211 | ||
PBA2(Cs/MA/FA)n–1PbnBr3n+1 | 465 | 2.34 | 144.9 | ||
(BA)2(MA)2Pb3Br7Cl3 | 468 | 0.01 | 21 | ||
POEA-CsPbBrxCl3-x | 468 | 0.71 | 122.1 | ||
PBABry(Cs0.7FA0.3PbBr3) | 474 | 4 | – | ||
Perovskite quantum dots | (Rb0.33Cs0.67)0.42-FA0.58PbBr1.75Cl1.25 | 466 | 0.61 | 39 | |
CsMnyPb1–yBrxCl3–x | 466 | 2.12 | 245 | ||
CsPbBrxCl3–x | 469 | 0.5 | 111 | ||
Ni2+-CsPbClxBr3–x | 470 | 2.4 | 612 | ||
CsPbClxBr3–x | 470 | 0.07 | 350 | ||
CsPbClxBr3–x | 470 | 2.15 | 507 | ||
CsPbBrxCl3–x | 470 | 6.3 | 465 |
Fig 10
(a) Absorption and PL spectra of quasi-two-dimensional perovskites with different cations; (b) absorption and PL spectra of quasi-two-dimensional perovskites with different cations after anti-solvent treatment; (c) the schematic diagram of the formation of quasi-two-dimensional perovskites with intermediate n value by A-site cation modulation (Cs+); (d) summary of strategies to form intermediate domains for blue emissive quasi-two-dimensional perovskite films 49; (e) molecular structure of P-PDABr2; (f) absorption spectra of CsPbBr3 films with various ratios of P-PDABr2; (g) exciton contributions from different domains according to the intensity of ground state bleaching signal; (h) schematic diagram of n value engineering in quasi-two-dimensional perovskite via the addition of two different organic molecules 50. (a-d) Copyright 2020 American Chemical Society. (e-h) Copyright 2019 Wiley online library."
Fig 11
(a) Current density and luminance versus voltage curves of (Rb0.33Cs0.67)0.42-FA0.58PbBr1.75Cl1.25 quantum dot perovskite LED 52; (b) current density and luminance versus voltage curves of Mn2+:CsPbClxBr3-x perovskite LEDs with various ratio of Mn2+ 36; (c) EL spectra of CsPbClxBr3?x perovskite quantum dot LEDs before and after Ni2+ doping 53; (d) the schematic diagram of C12H25NH3SCN passivation 54. (a) Copyright 2019 Royal Society of Chemistry. (b) Adapted from Joule 2018, 2, 2421. (c, d) Copyright 2020 American Chemical Society "
Table 4
Research progress of deep-blue perovskite LEDs."
Perovskites | EL peak/nm | Peak EQE/% | Luminance/(cd·m-2) | Ref. | |
Three-dimensional perovskites | MAPb(Br1-xClx)3 | 425, 450 | – | – | |
Quasi-2D perovskites | 2D n(MAPbBr3), n = 1/3/5 | 432, 456 | 0.004, 0.024 | 1.2,8.5 | |
BA2[MAPbX3]PbX4 | 440 | 0.0054 | – | ||
POEA2MAn-1PbnBr3n+1 | 462 | 0.06 | 1.26 | ||
Perovskite quantum dots | CsPbBr1.5Cl1.5 | 445 | 1.38 | 2673 | |
CsPb(Cl/Br)3 | 455 | 0.07 | 742 | ||
CsPb(Cl/Br)3 | 456 | 1.1 | 43.2 | ||
CsPbClxBr3-x | 460 | 1.35 | 33 | ||
CsPbBr3@CsPbBrx | 463 | – | – | ||
CsPb(Cl/Br)3 | 463 | 3.3 | 569 | ||
CsPbBr3 | 463 | 0.124 | 62 | ||
CsPb(Br/Cl)3 | 463 | 1.4 | 318 | ||
RbxCs1-xPbBr3 | 464 | 0.11 | 71 | ||
2D CsPbBr3 | 464 | 0.057 | 38 | ||
Perovskite Variant | Cs3Cu2I5 | 445 | 1.12 | 262.6 |
Fig 13
(a) The core-shell structure of CsPbBr3@CsPbBrx 60; (b) schematic diagram of in situ quantum dot passivation by HBr 61; (c) schematic diagram of the ligand-exchange process between SOX2 and long-chain organic ligand 62. (a) Copyright 2017 American Chemical Society. (b) Copyright 2018 American Chemical Society. (c) Copyright 2019 American Chemical Society."
1 | Li Z. C. ; Chen Z. M. ; Zou G. R. X. ; Yip H. L. ; Cao Y. Acta Phys. Sin. 2019, 68, 158505. |
黎振超; 陈梓铭; 邹广锐兴; 叶轩立; 曹镛. 物理学报, 2019, 68, 158505.
doi: 10.7498/aps.68.20190307 |
|
2 |
Era M. ; Morimoto S. ; Tsutsui T. ; Saito S. Appl. Phys. Lett. 1994, 65, 676.
doi: 10.1063/1.112265 |
3 |
Tan Z. K. ; Moghaddam R. S. ; Lai M. L. ; Docampo P. ; Higler R. ; Deschler F. ; Price M. ; Sadhanala A. ; Pazos L. M. ; Credgington D. ; et al Nat. Nanotechnol. 2014, 9, 687.
doi: 10.1038/nnano.2014.149 |
4 |
Lin K. ; Xing J. ; Quan L. N. ; de Arquer F. P. G. ; Gong X. ; Lu J. ; Xie L. ; Zhao W. ; Zhang D. ; Yan C. ; et al Nature 2018, 562, 245.
doi: 10.1038/s41586-018-0575-3 |
5 |
Chiba T. ; Hayashi Y. ; Ebe H. ; Hoshi K. ; Sato J. ; Sato S. ; Pu Y. J. ; Ohisa S. ; Kido J. Nat. Photonics 2018, 12, 681.
doi: 10.1038/s41566-018-0260-y |
6 |
Dong Y. ; Wang Y. K. ; Yuan F. ; Johnston A. ; Liu Y. ; Ma D. ; Choi M. J. ; Chen B. ; Chekini M. ; Baek S. W. ; et al Nat. Nanotechnol. 2020, 15, 668.
doi: 10.1038/s41565-020-0714-5 |
7 |
Ma D. ; Todorovic P. ; Meshkat S. ; Saidaminov M. I. ; Wang Y. K. ; Chen B. ; Li P. ; Scheffel B. ; Quintero-Bermudez R. ; Fan J. Z. ; et al J. Am. Chem. Soc. 2020, 142, 5126.
doi: 10.1021/jacs.9b12323 |
8 |
Quan L. N. ; Garcia de Arquer F. P. ; Sabatini R. P. ; Sargent E. H. Adv. Mater. 2018, 30, e1801996.
doi: 10.1002/adma.201801996 |
9 |
Umari P. ; Mosconi E. ; De Angelis F. Sci. Rep. 2014, 4, 4467.
doi: 10.1038/srep04467 |
10 |
Liu G. ; Gong J. ; Kong L. ; Schaller R. D. ; Hu Q. ; Liu Z. ; Yan S. ; Yang W. ; Stoumpos C. C. ; Kanatzidis M. G. ; et al Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 8076.
doi: 10.1073/pnas.1809167115 |
11 |
Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
doi: 10.1002/adma.201306281 |
12 |
Protesescu L. ; Yakunin S. ; Bodnarchuk M. I. ; Krieg F. ; Caputo R. ; Hendon C. H. ; Yang R. X. ; Walsh A. ; Kovalenko M. V. Nano Lett. 2015, 15, 3692.
doi: 10.1021/nl5048779 |
13 |
Yuan F. ; Ran C. ; Zhang L. ; Dong H. ; Jiao B. ; Hou X. ; Li J. ; Wu Z. ACS Energy Lett. 2020, 5, 1062.
doi: 10.1021/acsenergylett.9b02562 |
14 |
Leng M. ; Yang Y. ; Chen Z. ; Gao W. ; Zhang J. ; Niu G. ; Li D. ; Song H. ; Zhang J. ; Jin S. ; Tang J. Nano Lett. 2018, 18, 6076.
doi: 10.1021/acs.nanolett.8b03090 |
15 |
Tan Z. ; Li J. ; Zhang C. ; Li Z. ; Hu Q. ; Xiao Z. ; Kamiya T. ; Hosono H. ; Niu G. ; Lifshitz E. ; et al Adv. Funct. Mater. 2018, 28, 1801131.
doi: 10.1002/adfm.201801131 |
16 |
Wang L. ; Shi Z. ; Ma Z. ; Yang D. ; Zhang F. ; Ji X. ; Wang M. ; Chen X. ; Na G. ; Chen S. ; et al Nano Lett. 2020, 20, 3568.
doi: 10.1021/acs.nanolett.0c00513 |
17 |
Mitzi D. B. J. Chem. Soc. Dalton Trans. 2001, (1)
doi: 10.1039/b007070j |
18 |
Mao L. ; Ke W. ; Pedesseau L. ; Wu Y. ; Katan C. ; Even J. ; Wasielewski M. R. ; Stoumpos C. C. ; Kanatzidis M. G. J. Am. Chem. Soc. 2018, 140, 3775.
doi: 10.1021/jacs.8b00542 |
19 |
Chen Z. ; Zhang C. ; Jiang X. F. ; Liu M. ; Xia R. ; Shi T. ; Chen D. ; Xue Q. ; Zhao Y. J. ; Su S. ; et al Adv. Mater. 2017, 29, 1603157.
doi: 10.1002/adma.201603157 |
20 |
Herz L. M. Annu. Rev. Phys. Chem. 2016, 67, 65.
doi: 10.1146/annurev-physchem-040215-112222 |
21 |
Sutherland B. R. ; Sargent E. H. Nat. Photonics 2016, 10, 295.
doi: 10.1038/nphoton.2016.62 |
22 |
Liang D. ; Peng Y. ; Fu Y. ; Shearer M. J. ; Zhang J. ; Zhai J. ; Zhang Y. ; Hamers R. J. ; Andrew T. L. ; Jin S. ACS Nano 2016, 10, 6897.
doi: 10.1021/acsnano.6b02683 |
23 |
Hong X. ; Ishihara T. ; Nurmikko A. V. Phys. Rev. B 1992, 45, 6961.
doi: 10.1103/PhysRevB.45.6961 |
24 |
Ishihara T. ; Takahashi J. ; Goto T. Solid State Commun. 1989, 69, 933.
doi: 10.1016/0038-1098(89)90935-6 |
25 |
Tanaka K. ; Takahashi T. ; Kondo T. ; Umeda K. ; Ema K. ; Umebayashi T. ; Asai K. ; Uchida K. ; Miura N. Jpn. J. Appl. Phys 2005, 44, 5923.
doi: 10.1143/jjap.44.5923 |
26 |
Kataoka T. ; Kondo T. ; Ito R. ; Sasaki S. ; Uchida K. ; Miura N. Phys. B 1993, 184, 132.
doi: 10.1016/0921-4526(93)90336-5 |
27 |
Straus D. B. ; Kagan C. R. J. Phys. Chem. Lett. 2018, 9, 1434.
doi: 10.1021/acs.jpclett.8b00201 |
28 |
Wang N. ; Cheng L. ; Ge R. ; Zhang S. ; Miao Y. ; Zou W. ; Yi C. ; Sun Y. ; Cao Y. ; Yang R. ; et al Nat. Photonics 2016, 10, 699.
doi: 10.1038/nphoton.2016.185 |
29 |
Chen P. ; Meng Y. ; Ahmadi M. ; Peng Q. ; Gao C. ; Xu L. ; Shao M. ; Xiong Z. ; Hu B. Nano Energy 2018, 50, 615.
doi: 10.1016/j.nanoen.2018.06.008 |
30 |
Yuan M. ; Quan L. N. ; Comin R. ; Walters G. ; Sabatini R. ; Voznyy O. ; Hoogland S. ; Zhao Y. ; Beauregard E. M. ; Kanjanaboos P. ; et al Nat. Nanotechnol. 2016, 11, 872.
doi: 10.1038/nnano.2016.110 |
31 |
Yang D. ; Zou Y. ; Li P. ; Liu Q. ; Wu L. ; Hu H. ; Xu Y. ; Sun B. ; Zhang Q. ; Lee S. T. Nano Energy 2018, 47, 235.
doi: 10.1016/j.nanoen.2018.03.019 |
32 |
Liang Z. ; Zhao S. ; Xu Z. ; Qiao B. ; Song P. ; Gao D. ; Xu X. ACS Appl. Mater. Interfaces 2016, 8, 28824.
doi: 10.1021/acsami.6b08528 |
33 |
Nedelcu G. ; Protesescu L. ; Yakunin S. ; Bodnarchuk M. I. ; Grotevent M. J. ; Kovalenko M. V. Nano Lett. 2015, 15, 5635.
doi: 10.1021/acs.nanolett.5b02404 |
34 |
Kumawat N. K. ; Liu X. K. ; Kabra D. ; Gao F. Nanoscale 2019, 11, 2109.
doi: 10.1039/c8nr09885a |
35 |
Chen X. ; Peng L. ; Huang K. ; Shi Z. ; Xie R. ; Yang W. Nano Res. 2016, 9, 1994.
doi: 10.1007/s12274-016-1090-1 |
36 |
Hou S. ; Gangishetty M. K. ; Quan Q. ; Congreve D. N. Joule 2018, 2, 2421.
doi: 10.1016/j.joule.2018.08.005 |
37 |
Kumawat N. K. ; Dey A. ; Kumar A. ; Gopinathan S. P. ; Narasimhan K. L. ; Kabra D. ACS Appl. Mater. Interfaces 2015, 7, 13119.
doi: 10.1021/acsami.5b02159 |
38 |
Kim H. P. ; Kim J. ; Kim B. S. ; Kim H. M. ; Kim J. ; Yusoff A. R. B. M. ; Jang J. ; Nazeeruddin M. K. Adv. Opt. Mater. 2017, 5, 1600920.
doi: 10.1002/adom.201600920 |
39 |
Cheng L. ; Cao Y. ; Ge R. ; Wei Y. Q. ; Wang N. N. ; Wang J. P. ; Huang W. Chin. Chem. Lett. 2017, 28, 29.
doi: 10.1016/j.cclet.2016.07.001 |
40 |
Yang X. ; Zhang X. ; Deng J. ; Chu Z. ; Jiang Q. ; Meng J. ; Wang P. ; Zhang L. ; Yin Z. ; You J. Nat. Commun. 2018, 9, 570.
doi: 10.1038/s41467-018-02978-7 |
41 |
Xing J. ; Zhao Y. ; Askerka M. ; Quan L. N. ; Gong X. ; Zhao W. ; Zhao J. ; Tan H. ; Long G. ; Gao L. ; et al Nat. Commun. 2018, 9, 3541.
doi: 10.1038/s41467-018-05909-8 |
42 |
Li Z. ; Chen Z. ; Yang Y. ; Xue Q. ; Yip H. L. ; Cao Y. Nat. Commun. 2019, 10, 1027.
doi: 10.1038/s41467-019-09011-5 |
43 |
Wang Q. ; Wang X. ; Yang Z. ; Zhou N. ; Deng Y. ; Zhao J. ; Xiao X. ; Rudd P. ; Moran A. ; Yan Y. ; Huang J. Nat. Commun. 2019, 10, 5633.
doi: 10.1038/s41467-019-13580-w |
44 |
Chu Z. ; Zhao Y. ; Ma F. ; Zhang C. X. ; Deng H. ; Gao F. ; Ye Q. ; Meng J. ; Yin Z. ; Zhang X. ; You J. Nat. Commun. 2020, 11, 4165.
doi: 10.1038/s41467-020-17943-6 |
45 |
Liu Y. ; Cui J. ; Du K. ; Tian H. ; He Z. ; Zhou Q. ; Yang Z. ; Deng Y. ; Chen D. ; Zuo X. ; et al Nat. Photonics 2019, 13, 760.
doi: 10.1038/s41566-019-0505-4 |
46 |
Pan J. ; Quan L. N. ; Zhao Y. ; Peng W. ; Murali B. ; Sarmah S. P. ; Yuan M. ; Sinatra L. ; Alyami N. M. ; Liu J. ; et al Adv. Mater. 2016, 28, 8718.
doi: 10.1002/adma.201600784 |
47 |
Comin R. ; Walters G. ; Thibau E. S. ; Voznyy O. ; Lu Z. H. ; Sargent E. H. J. Mater. Chem. C 2015, 3, 8839.
doi: 10.1039/c5tc01718a |
48 |
Wang H. ; Zhao X. ; Zhang B. ; Xie Z. J. Mater. Chem. C 2019, 7, 5596.
doi: 10.1039/c9tc01205b |
49 |
Yantara N. ; Jamaludin N. F. ; Febriansyah B. ; Giovanni D. ; Bruno A. ; Soci C. ; Sum T. C. ; Mhaisalkar S. ; Mathews N. ACS Energy Lett. 2020, 5, 1593.
doi: 10.1021/acsenergylett.0c00559 |
50 |
Yuan S. ; Wang Z. K. ; Xiao L. X. ; Zhang C. F. ; Yang S. Y. ; Chen B. B. ; Ge H. T. ; Tian Q. S. ; Jin Y. ; Liao L. S. Adv. Mater. 2019, 31, 1904319.
doi: 10.1002/adma.201904319 |
51 |
Pang P. ; Jin G. ; Liang C. ; Wang B. ; Xiang W. ; Zhang D. ; Xu J. ; Hong W. ; Xiao Z. ; Wang L. X ; et al ACS Nano 2020, 14, 11420.
doi: 10.1021/acsnano.0c03765 |
52 |
Meng F. ; Liu X. ; Cai X. ; Gong Z. ; Li B. ; Xie W. ; Li M. ; Chen D. ; Yip H. L. ; Su S. J. Nanoscale 2019, 11, 1295.
doi: 10.1039/c8nr07907b |
53 |
Pan G. ; Bai X. ; Xu W. ; Chen X. ; Zhai Y. ; Zhu J. ; Shao H. ; Ding N. ; Xu L. ; Dong B. ; et al ACS Appl. Mater. Interfaces 2020, 12, 14195.
doi: 10.1021/acsami.0c01074 |
54 |
Zheng X. ; Yuan S. ; Liu J. ; Yin J. ; Yuan F. ; Shen W. S. ; Yao K. ; Wei M. ; Zhou C. ; et al ACS Energy Lett. 2020, 5, 793.
doi: 10.1021/acsenergylett.0c00057 |
55 |
Sadhanala A. ; Ahmad S. ; Zhao B. ; Giesbrecht N. ; Pearce P. M. ; Deschler F. ; Hoye R. L. Z. ; Gödel K. C. ; Bein T. ; Docampo P. ; et al Nano Lett. 2015, 15, 6095.
doi: 10.1021/acs.nanolett.5b02369 |
56 |
Nenon D. P. ; Pressler K. ; Kang J. ; Koscher B. A. ; Olshansky J. H. ; Osowiecki W. T. ; Koc M. A. ; Wang L. W. ; Alivisatos A. P. J. Am. Chem. Soc. 2018, 140, 17760.
doi: 10.1021/jacs.8b11035 |
57 |
Congreve D. N. ; Weidman M. C. ; Seitz M. ; Paritmongkol W. ; Dahod N. S. ; Tisdale W. A. ACS Photonics 2017, 4, 476.
doi: 10.1021/acsphotonics.6b00963 |
58 |
Ishihara T. ; Hong X. ; Ding J. ; Nurmikko A. V. Surf. Sci. 1992, 267, 323.
doi: 10.1016/0039-6028(92)91147-4 |
59 |
Song J. ; Li J. ; Li X. ; Xu L. ; Dong Y. ; Zeng H. Adv. Mater. 2015, 27, 7162.
doi: 10.1002/adma.201502567 |
60 |
Wang S. ; Bi C. ; Yuan J. ; Zhang L. ; Tian J. ACS Energy Lett. 2017, 3, 245.
doi: 10.1021/acsenergylett.7b01243 |
61 |
Wu Y. ; Wei C. ; Li X. ; Li Y. ; Qiu S. ; Shen W. ; Cai B. ; Sun Z. ; Yang D. ; Deng Z. ; Zeng H. ACS Energy Lett. 2018, 3, 2030.
doi: 10.1021/acsenergylett.8b01025 |
62 |
Zhang B. B. ; Yuan S. ; Ma J. P. ; Zhou Y. ; Hou J. ; Chen X. ; Zheng W. ; Shen H. ; Wang X. C. ; Sun B. ; et al J. Am. Chem. Soc. 2019, 141, 15423.
doi: 10.1021/jacs.9b08140 |
63 | Yao J. ; Wang L. ; Wang K. ; Yin Y. ; Yang J. ; Zhang Q. ; Yao H. Sci. Bull. 2020, 65, 1150. |
64 |
Gangishetty M. K. ; Hou S. ; Quan Q. ; Congreve D. N. Adv. Mater. 2018, 30, 1706226.
doi: 10.1002/adma.201706226 |
65 | Wang Y. N. ; Ma P. ; Peng L. M. ; Zhang D. ; Fang Y. Y. ; Zhou X. W. ; Lin Y. Acta Phys. -Chim. Sin. 2017, 33, 2099. |
王亚楠; 马品; 彭路梅; 张迪; 方艳艳; 周晓文; 林原. 物理化学学报, 2017, 33, 2099.
doi: 10.3866/PKU.WHXB201705115 |
|
66 |
Luo C. ; Li W. ; Xiong D. ; Fu J. ; Yang W. Nanoscale 2019, 11, 15206.
doi: 10.1039/c9nr05217h |
67 |
Shao H. ; Zhai Y. ; Wu X. ; Xu W. ; Xu L. ; Dong B. ; Bai X. ; Cui H. ; Song H. Nanoscale 2020, 12, 11728.
doi: 10.1039/d0nr02597f |
68 |
Zirak M. ; Moyen E. ; Alehdaghi H. ; Kanwat A. ; Choi W. C. ; Jang J. ACS Appl. Nano Mater. 2019, 2, 5655.
doi: 10.1021/acsanm.9b01187 |
69 | Zhang X. ; Han D. B. ; Chen X. M. ; Chen Y. ; Chang S. ; Zhong H. Z. Acta Phys. -Chim. Sin. 2021, 37, 2008055. |
张欣; 韩登宝; 陈小梅; 陈宇; 常帅; 钟海政. 物理化学学报, 2021, 37, 2008055.
doi: 10.3866/PKU.WHXB202008055 |
|
70 |
Ten Brinck S. ; Infante I. ACS Energy Lett. 2016, 1, 1266.
doi: 10.1021/acsenergylett.6b00595 |
71 |
Ohmann R. ; Ono L. K. ; Kim H. S. ; Lin H. ; Lee M. V. ; Li Y. ; Park N. G. ; Qi Y. J. Am. Chem. Soc. 2015, 137, 16049.
doi: 10.1021/jacs.5b08227 |
72 |
Huang X. ; Paudel T. R. ; Dowben P. A. ; Dong S. ; Tsymbal E. Y. Phys. Rev. B 2016, 94, 195309.
doi: 10.1103/PhysRevB.94.195309 |
73 |
Han G. ; Koh T. M. ; Lim S. S. ; Goh T. W. ; Guo X. ; Leow S. W. ; Begum R. ; Sum T. C. ; Mathews N. ; Mhaisalkar S. ACS Appl. Mater. Interfaces 2017, 9, 21292.
doi: 10.1021/acsami.7b05133 |
74 | Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; et al. 2021, 37, J. Phys. Chem. Lett. 2015, 6, 5027. doi: 10.1021/acs.jpclett.5b02460 |
75 |
Tan Y. ; Zou Y. ; Wu L. ; Huang Q. ; Yang D. ; Chen M. ; Ban M. ; Wu C. ; Wu T. ; Bai S. ; et al ACS Appl. Mater. Interfaces 2018, 10, 3784.
doi: 10.1021/acsami.7b17166 |
76 |
Ahmed G. H. ; El-Demellawi J. K. ; Yin J. ; Pan J. ; Velusamy D. B. ; Hedhili M. N. ; Alarousu E. ; Bakr O. M. ; Alshareef H. N. ; Mohammed O. F. ACS Energy Lett. 2018, 3, 2301.
doi: 10.1021/acsenergylett.8b01441 |
77 |
Yong Z. J. ; Guo S. Q. ; Ma J. P. ; Zhang J. Y. ; Li Z. Y. ; Chen Y. M. ; Zhang B. B. ; Zhou Y. ; Shu J. ; Gu J. L. ; et al J. Am. Chem. Soc. 2018, 140, 9942.
doi: 10.1021/jacs.8b04763 |
78 |
Luo C. ; Yan C. ; Li W. ; Chun F. ; Xie M. ; Zhu Z. ; Gao Y. ; Guo B. ; Yang W. Adv. Funct. Mater. 2020, 30, 2000026.
doi: 10.1002/adfm.202000026 |
79 |
Cho H. ; Kim Y. H. ; Wolf C. ; Lee H. D. ; Lee T. W. Adv. Mater. 2018, 30, e1704587.
doi: 10.1002/adma.201704587 |
80 |
Yoon S. J. ; Stamplecoskie K. G. ; Kamat P. V. J. Phys. Chem. Lett. 2016, 7, 1368.
doi: 10.1021/acs.jpclett.6b00433 |
81 |
Yoon S. J. ; Kuno M. ; Kamat P. V. ACS Energy Lett. 2017, 2, 1507.
doi: 10.1021/acsenergylett.7b00357 |
82 |
Chiba T. ; Ishikawa S. ; Sato J. ; Takahashi Y. ; Ebe H. ; Ohisa S. ; Kido J. Adv. Opt. Mater. 2020, 8, 2000289.
doi: 10.1002/adom.202000289 |
83 |
Yao E. P. ; Yang Z. ; Meng L. ; Sun P. ; Dong S. ; Yang Y. ; Yang Y. Adv. Mater. 2017, 29, 1606859.
doi: 10.1002/adma.201606859 |
84 |
Zhang X. ; Liu H. ; Wang W. ; Zhang J. ; Xu B. ; Karen K. L. ; Zheng Y. ; Liu S. ; Chen S. ; Wang K. ; Sun X. W. Adv. Mater. 2017, 29, 1606405.
doi: 10.1002/adma.201606405 |
85 |
Zou S. ; Liu Y. ; Li J. ; Liu C. ; Feng R. ; Jiang F. ; Li Y. ; Song J. ; Zeng H. ; Hong M. ; Chen X. J. Am. Chem. Soc. 2017, 139, 11443.
doi: 10.1021/jacs.7b04000 |
86 |
Shi Z. ; Li Y. ; Zhang Y. ; Chen Y. ; Li X. ; Wu D. ; Xu T. ; Shan C. ; Du G. Nano Lett. 2017, 17, 313.
doi: 10.1021/acs.nanolett.6b04116 |
87 |
Shan Q. ; Li J. ; Song J. ; Zou Y. ; Xu L. ; Xue J. ; Dong Y. ; Huo C. ; Chen J. ; Han B. ; Zeng H. J. Mater. Chem. C. 2017, 5, 4565.
doi: 10.1039/c6tc05578h |
88 |
Cheng T. ; Tumen-Ulzii G. ; Klotz D. ; Watanabe S. ; Matsushima T. ; Adachi C. ACS Appl. Mater. Interfaces 2020, 12, 33004.
doi: 10.1021/acsami.0c06737 |
89 |
Yusoff A. R. B. M. ; Gavim A. E. X. ; Macedo A. G. ; da Silva W. J. ; Schneider F. K. ; Teridi M. A. M. Mater. Today Chem. 2018, 10, 104.
doi: 10.1016/j.mtchem.2018.08.005 |
90 |
Vashishtha P. ; Ng M. ; Shivarudraiah S. B. ; Halpert J. E. Chem. Mater. 2019, 31, 83.
doi: 10.1021/acs.chemmater.8b02999 |
91 |
Wang F. ; Wang Z. ; Sun W. ; Wang Z. ; Bai Y. ; Hayat T. ; Alsaedi A. ; Tan Z. Small 2020, 16, e2002940.
doi: 10.1002/smll.202002940 |
92 |
Zhang F. ; Cai B. ; Song J. ; Han B. ; Zhang B. ; Zeng H. Adv. Funct. Mater. 2020, 30, 2001732.
doi: 10.1002/adfm.202001732 |
93 |
Jiang Y. ; Qin C. ; Cui M. ; He T. ; Liu K. ; Huang Y. ; Luo M. ; Zhang L. ; Xu H. ; Li S. ; et al Nat Commun 2019, 10, 1868.
doi: 10.1038/s41467-019-09794-7 |
94 |
Ren Z. ; Xiao X. ; Ma R. ; Lin H. ; Wang K. ; Sun X. W. ; Choy W. C. H. Adv. Funct. Mater. 2019, 29, 1905339.
doi: 10.1002/adfm.201905339 |
95 |
Wang Q. ; Ren J. ; Peng X. F. ; Ji X. X. ; Yang X. H. ACS Appl. Mater. Interfaces 2017, 9, 29901.
doi: 10.1021/acsami.7b07458 |
96 |
Yang F. ; Chen H. ; Zhang R. ; Liu X. ; Zhang W. ; Zhang J. ; Gao F. ; Wang L. Adv. Funct. Mater. 2020, 30, 1908760.
doi: 10.1002/adfm.201908760 |
97 |
Yassitepe E. ; Yang Z. ; Voznyy O. ; Kim Y. ; Walters G. ; Castañeda J. A. ; Kanjanaboos P. ; Yuan M. ; Gong X. ; Fan F. ; et al Adv. Funct. Mater. 2016, 26, 8757.
doi: 10.1002/adfm.201604580 |
98 |
Deng W. ; Xu X. ; Zhang X. ; Zhang Y. ; Jin X. ; Wang L. ; Lee S. T. ; Jie J. Adv. Funct. Mater. 2016, 26, 4797.
doi: 10.1002/adfm.201601054 |
99 |
Tan Z. ; Luo J. ; Yang L. ; Li X. ; Deng Z. ; Gao L. ; Chen H. ; Li J. ; Du P. ; Niu G. ; Tang J. Adv. Opt. Mater. 2019, 8, 1901094.
doi: 10.1002/adom.201901094 |
100 |
Hu H. ; Salim T. ; Chen B. ; Lam Y. M. Sci. Rep. 2016, 6, 33546.
doi: 10.1038/srep33546 |
101 |
Kumar S. ; Jagielski J. ; Yakunin S. ; Rice P. ; Chiu Y. C. ; Wang M. ; Nedelcu G. ; Kim Y. ; Lin S. ; Santos E. J. G. ; et al ACS Nano 2016, 10, 9720.
doi: 10.1021/acsnano.6b05775 |
102 |
Ochsenbein S. T. ; Krieg F. ; Shynkarenko Y. ; Raino G. ; Kovalenko M. V. ACS Appl. Mater. Interfaces 2019, 11, 21655.
doi: 10.1021/acsami.9b02472 |
103 |
Bohn B. J. ; Tong Y. ; Gramlich M. ; Lai M. L. ; Doblinger M. ; Wang K. ; Hoye R. L. Z. ; Muller-Buschbaum P. ; Stranks S. D. ; Urban A. S. ; et al Nano Lett. 2018, 18, 5231.
doi: 10.1021/acs.nanolett.8b02190 |
104 |
Ren Z. ; Li L. ; Yu J. ; Ma R. ; Xiao X. ; Chen R. ; Wang K. ; Sun X. W. ; Yin W. J. ; Choy W. C. H. ACS Energy Lett. 2020, 5, 2569.
doi: 10.1021/acsenergylett.0c01015 |
105 |
Todorović P. ; Ma D. ; Chen B. ; Quintero-Bermudez R. ; Saidaminov M. I. ; Dong Y. ; Lu Z. H. ; Sargent E. H. Adv. Opt. Mater. 2019, 7, 1901440.
doi: 10.1002/adom.201901440 |
[1] | Cheng Wang, Chi Zhang, Ruifeng Li, Qi Chen, Lei Qian, Liwei Chen. Charge Accumulation Behavior in Quantum Dot Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2104030-. |
[2] | Baiquan Liu, Huayu Gao, Sujuan Hu, Chuan Liu. Progress in the Development of Colloidal Quantum Well Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2204052-. |
[3] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[4] | Yichen Du, Zhuangzhuang Zhang, Yifan Xu, Jianchun Bao, Xiaosi Zhou. Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205017-. |
[5] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[6] | Yingjie Ma, Linjie Zhi. Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101004-. |
[7] | Yunyun Ling, Yunsheng Xia. Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912006-. |
[8] | Kai XUE, Minnan YAN, Fei PAN, Mengying TIAN, Xudong PAN, Hongmei ZHANG. Single-Layer Organic Light-Emitting Devices with C60 and MoO3 Mixed Materials as Hole Injection Layer [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 896-902. |
[9] | Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles [J]. Acta Physico-Chimica Sinica, 2018, 34(8): 838-844. |
[10] | Youkun ZHENG,Hui JIANG,Xuemei WANG. Multiple Strategies for Controlled Synthesis of Atomically Precise Alloy Nanoclusters [J]. Acta Phys. -Chim. Sin., 2018, 34(7): 740-754. |
[11] | Sisi LIANG,Mengmeng SHANG,Jun LIN. Single-Component Luminescent Materials Activated with Mixed-Valence Eu(+2, +3): Designed Synthesis, Luminescent Properties and Mechanisms [J]. Acta Phys. -Chim. Sin., 2018, 34(3): 237-246. |
[12] | Dan DONG,Zhiyuan MIN,Jun LIU,Gufeng HE. Improved Hole Injection Property of Solution-Processed MoO3 with UV-Ozone Treatment [J]. Acta Physico-Chimica Sinica, 2018, 34(11): 1286-1292. |
[13] | Lu-Hua LAN,Hong TAO,Mei-Ling LI,Dong-Yu GAO,Jian-Hua ZOU,Miao XU,Lei WANG,Jun-Biao PENG. Progress of Light Extraction Technology for Organic Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1548-1572. |
[14] | Kang-Ming TAN,Min-Nan YAN,Ying-Nan WANG,Ling-Hai XIE,Yan QIAN,Hong-Mei ZHANG,Wei HUANG. White Organic Light-Emitting Diodes Based on Exciton and Electroplex Dual Emissions [J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1057-1064. |
[15] | Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728. |
|