Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2009022.doi: 10.3866/PKU.WHXB202009022
Special Issue: Two-Dimensional Photocatalytic Materials
• REVIEW • Previous Articles Next Articles
Yan Li, Xingsheng Hu, Jingwei Huang(), Lei Wang, Houde She, Qizhao Wang(
)
Received:
2020-09-07
Accepted:
2020-10-22
Published:
2020-10-28
Contact:
Jingwei Huang,Qizhao Wang
E-mail:huangjingwei2009@163.com;wangqizhao@163.com; qizhaosjtu@gmail.com
About author:
Email: wangqizhao@163.com, qizhaosjtu@gmail.com Tel: +86-931-7972677 (Q.W.)Supported by:
MSC2000:
Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation[J].Acta Phys. -Chim. Sin., 2021, 37(8): 2009022.
"
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
WO3@a-Fe2O3/FeOOH | 0.3 to 1.12 mA·cm-2 at 1.23 V vs. RHE | 0.9 V to 0.78 V | AM 1.5G, 100 mW·cm-2 | |
V2O5/rGO/BiVO4/FeOOH/NiOOH | 0.25 to 3.06 mA·cm-2 at 1.5 V vs. Ag/AgCl | 0.5 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH NFs on Au/Fe | 1.45 to 3.1 mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.7 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH QDs/ZnO | 0.21 to 0.44 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
h-FeOOH/Fe2O3 | 0.85 to 1.31 mA·cm-2 at 1.23 V vs. RHE | 0.92 V to 0.83 V | AM 1.5G, 100 mW·cm-2 | |
3C-SiC/FeOOH | 0.52 to 0.73 mA·cm-2 at 1.23 V vs. RHE | 0.4 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
β-FeOOH/BiVO4 | 0.62 to 4.3 mA·cm-2 at 1.23 V vs. RHE | 0.8 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/BiVO4 | 1.1 to 2.3 mA·cm-2 at 1.23 V vs. RHE | 0.45 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
rGO-α-Fe2O3/β-FeOOH | 0.26 to 0.62 mA·cm-2 at 1.23 V vs. RHE | 0.88 V to 0.75 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4@Ni:FeOOH | 0.25 to 2.86 mA·cm-2 at 1.23 V vs. RHE | 0.6 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/H:BiVO4 | 0.42 to 1.66 mA·cm-2 at 1.23 V vs. RHE | 0.95 V to 0.23 V | 150 W Xe lamp, 100 mW·cm-2 | |
CuWO4/CdS/FeOOH | 0.58 to 2.05 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.25 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/NiFeOOH | 0.09 to 0.67 mA·cm-2 at 1.23 V vs. RHE | 1 V to 0.8 V | AM 1.5G, 100 mW·cm-2 | |
Ti-Fe2O3/FeOOH | nearly zero to mA·cm-2 at 1.5 V vs. RHE | 1 V to 0.92 V | AM 1.5G, 100 mW·cm-2 | |
ZnO/TiO2/FeOOH | 0.23 to 1.59 mA·cm-2 at 1.8 V vs. RHE | 0.41 V to 0.14 V | AM 1.5G, 100 mW·cm-2 | |
Fe2O3/FeOOH | 0.83 to 0.91 mA·cm-2 at 1.23 V vs. RHE | 0.72 V to 0.63 V | AM 1.5G, 100 mW·cm-2 | |
WO3/FeOOH | 0.65 to 1.3 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
Co-FeOOH | 0.69 to 4.71 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
Ni-FeOOH | 0.69 to 2.55 mA·cm-2 at 1.0 V vs. RHE | 1.5 V to 1.23 V | AM 1.5G, 100 mW·cm-2 | |
WO3/porous-BiVO4/FeOOH | 1.01 to 4.4 mA·cm-2 at 1.23 V vs. RHE | 0.3 V to 0.2 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 1.55 to 2.4 mA·cm-2 at 1.23 V vs. RHE | 0.661 V to 0.582 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/rGO/BiVO4 | 0.99 to 3.25 mA·cm-2 at 1.23 V vs. RHE | 0.35 V to 0.3 V | AM 1.5G, 100 mW·cm-2 | |
FeOOH/Fe2O3 | 0.612 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.77 V to 0.65 V | AM 1.5G, 100 mW·cm-2 |
"
Photoanode | Photocurrent density change | The onset potential change | Illumination conditions | Ref. |
BiVO4/NiFe-LDH | 0.5 to 1.58 mA·cm-2 at 1.23 V vs. RHE | 0.75 V to 0.32 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/rGO/Fe2O3 | 0.45 to 0.95 mA·cm-2 at 1.23 V vs. RHE | 1.0 V to 0.85 V | AM 1.5G, 100 mW·cm-2 | |
TiO2/BiVO4/NiFe-LDH | 6.9 to 17.6 μA·cm-2 at 0.1 V vs. Ag/AgCl | 0.74 V to 0.72 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/BiVO4 | 0.79 mA to 1.93 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Ni0.5Fe0.5-LDH | 0.3 to 1.21 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.15 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/Co0.5Fe0.5-LDH | 0.3 to 1.05 mA·cm-2 at 1.23 V vs. RHE | 0.47 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
WO3/Fe2O3/NiFe-LDH | 1.6 to 3.0 mA·cm-2 at 1.8 V vs. RHE | 0.2 V to 0.1 V | AM 1.5G, 100 mW·cm-2 | |
BiVO4/rGO/NiFe-LDH | 1.14 to 3.26 mA·cm-2 at 1.23 V vs. RHE | similar onset potential | AM 1.5G, 100 mW·cm-2 | |
TiO2/NiFe-LDH | 0.92 to 1.18 mA·cm-2 at 1.245 V vs. RHE | -0.2 V to -0.3 V | AM 1.5G, 100 mW·cm-2 | |
Ti-TiO2-x@CoFe-LDH | 0.65 to 0.78 mA·cm-2 at 1.23 V vs. RHE | 0.23 V to 0.18 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH/TNWs | 0.33 to 3.0 mA·cm-2 at 1.23 V vs. RHE | 0.33 V to 0.22 V | AM 1.5G, 100 mW·cm-2 | |
CoFe-LDH@g-C3N4 | 0.061 to 0.196 mA·cm-2 at 1.23 V vs. RHE | 0.38 V to 0.346 V | AM 1.5G, 100 mW·cm-2 | |
NiFe-LDH/TiO2 | 0.23 to 0.41 mA·cm-2 at 1.23 V vs. RHE | 0.36 V to 0.29 V | AM 1.5G, 100 mW·cm-2 | |
a-Fe2O3/NiFe-LDH | 47 to 141 μA·cm-2 at 1.23 V vs. RHE | 0.5 V to 0.4 V | AM 1.5G, 100 mW·cm-2 | |
Mn:Fe2O3/NiFe-LDH | 0.5 to 1.8 mA·cm-2 at 1.23 V vs. RHE | 0.7 V to 0.6 V | AM 1.5G, 100 mW·cm-2 |
1 |
Shao Y. B. ; Zheng M. Y. ; Cai M. M. ; He L. ; Xu C. L. Electrochim. Acta 2017, 257, 1.
doi: 10.1016/j.electacta.2017.09.093 |
2 |
Wang J. Y. ; Li S. M. ; Lin R. B. ; Tu G. M. ; Wang J. ; Li Z. Q. Electrochim. Acta 2019, 301, 258.
doi: 10.1016/j.electacta.2019.01.157 |
3 | Sun S. ; Zhang X. ; Liu X. ; Pan L. ; Zhang X. ; Zou J. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905007. |
孙尚聪; 张旭雅; 刘显龙; 潘伦; 张香文; 邹吉军; 物理化学学报, 2020, 36 (3), 1905007.
doi: 10.3866/PKU.WHXB201905007 |
|
4 |
Kong D. ; Zheng Y. ; Kobielusz M. ; Wang Y. ; Bai Z. ; Macyk W. ; Wang X. ; Tang J. Mater. Today 2018, 21 (8), 897.
doi: 10.1016/j.mattod.2018.04.009 |
5 |
Osterloh F. E. Chem. Soc. Rev. 2013, 42 (6), 2294.
doi: 10.1039/C2CS35266D |
6 | Qiu W. T. ; Huang Y. C. ; Wang Z. L. ; Xiao S. ; Ji H. B. ; Tong Y. X. Acta Phys. -Chim. Sin. 2017, 33 (1), 80. |
邱伟涛; 黄勇潮; 王子龙; 肖爽; 纪红兵; 童叶翔; 物理化学学报, 2017, 33 (1), 80.
doi: 10.3866/PKU.WHXB201607293 |
|
7 |
Chen S. ; Thind S. S. ; Chen A. Electrochem. Commun. 2016, 63, 10.
doi: 10.1016/j.elecom.2015.12.003 |
8 |
Das D. V. T. N. Int. J. Hydrog. Energy 2001, 26, 13.
doi: 10.1016/S0360-3199(00)00058-6 |
9 |
She H. ; Jiang M. ; Yue P. ; Huang J. ; Wang L. ; Li J. ; Zhu G. ; Wang Q. J. Colloid Interface Sci. 2019, 549, 80.
doi: 10.1016/j.jcis.2019.04.038 |
10 |
Fujishima A. H. K. Nature 1972, 238 (5358), 37.
doi: 10.1038/238037a0 |
11 | Wang Y. Q. ; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
12 | Jiang C. X. ; Hu Y. X. ; Dong W. ; Zheng F. G. ; Su X. D. ; Fang L. ; Shen M. R. Acta Phys. -Chim. Sin. 2014, 30 (10), 1867. |
姜春香; 胡玉祥; 董雯; 郑分刚; 苏晓东; 方亮; 沈明荣; 物理化学学报, 2014, 30 (10), 1867.
doi: 10.3866/PKU.WHXB201407221 |
|
13 |
Wang Y. ; Ni Y. Y. ; Liu B. ; Shang S. X. ; Yang S. ; Cao M. H. ; Hu C. W. Electrochim. Acta 2017, 257, 356.
doi: 10.1016/j.electacta.2017.10.011 |
14 |
Zhang J. ; Zhu G. ; Liu W. ; Xi Y. ; Golosov D. A. ; Zavadski S. М. ; Melnikov S. N. J. Alloy. Compd. 2020, 834, 154992.
doi: 10.1016/j.jallcom.2020.154992 |
15 |
Li N. B. ; Wei S. T. ; Xu Y. X. ; Liu J. ; Wu J. D. ; Jia G. R. ; Cui X. Q. Electrochim. Acta 2018, 290, 364.
doi: 10.1016/j.electacta.2018.09.098 |
16 |
Liao A. Z. ; He H. C. ; Tang L. Q. ; Li Y. C. ; Zhang J. J. ; Chen J. N. ; Chen L. ; Zhang C. F. ; Zhou Y. ; Zou Z. G. ACS Appl. Mater. Interfaces 2018, 10 (12), 10141.
doi: 10.1021/acsami.8b00367 |
17 |
Hu Y. W. ; Zhu J. S. ; Yang H. ; Lyu S. S. ; Chen J. Inorg. Chem. Commun. 2020, 117
doi: 10.1016/j.inoche.2020.107971 |
18 |
Niu S. Q. ; Sun Y. C. ; Sun G. J. ; Rakov D. ; Li Y. Z. ; Ma Y. ; Chu J. Y. ; Xu P. ACS Appl. Energy Mater. 2019, 2 (5), 3927.
doi: 10.1021/acsaem.9b00785 |
19 |
Wang Y. ; Ni Y. M. ; Wang X. ; Zhang N. ; Li P. H. ; Dong J. ; Liu B. ; Liu J. H. ; Cao M. H. ; Hu C. W. ACS Appl. Energy Mater. 2018, 5725
doi: 10.1021/acsaem.8b01289 |
20 |
Chen J. D. ; Zheng F. ; Zhang S. J. ; Fisher A. ; Zhou Y. ; Wang Z. Y. ; Li Y.Y. ; Xu B. B. ; Li J. T. ; Sun S. G. ACS Catal. 2018, 8 (12), 11342.
doi: 10.1021/acscatal.8b03489 |
21 |
Chemelewski W. D. ; Lee H. C. ; Lin J. F. ; Bard A. J. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136 (7), 2843.
doi: 10.1021/ja411835a |
22 |
Lee J. M. ; Baek J. H. ; Gill T. M. ; Shi X. ; Lee S. ; Cho I. S. ; Jung H. S. ; Zheng X. J. Mater. Chem. A 2019, 7 (15), 9019.
doi: 10.1039/c9ta00205g |
23 |
Tolstoy V. P. ; Kuklo L. I. ; Gulina L. B. J. Alloy. Compd. 2019, 786, 198.
doi: 10.1016/j.jallcom.2019.01.324 |
24 |
Zhang X. F. ; Zhang B. Y. ; Liub S. S. ; Kang H. W. ; Kong W. Q. ; Zhang S. R. ; Shen Y. ; Yang B. C. Appl. Surf. Sci. 2018, 436, 974.
doi: 10.1016/j.apsusc.2017.12.078 |
25 |
Zhou S. Q. ; Chen K. Y. ; Huang J. W. ; Wang L. ; Zhang M. Y. ; Bai B. ; Wang Q. Z. Appl. Catal. B 2020, 266, 118513.
doi: 10.1016/j.apcatb.2019.118513 |
26 |
Yang X. D. ; Xu B. ; Zhang S. T. ; Zhao Z. H. ; Sun Y. Q. ; Liu G. N. ; Liu Q. S. ; Li C. C. Int. J. Hydrog. Energy 2020, 45 (16), 9546.
doi: 10.1016/j.ijhydene.2020.01.159 |
27 |
Zheng M. Y. ; Guo K. L. ; Jiang W. J. ; T T. ; Wang X. Y. ; Zhou P. P. ; Du J. ; Zhao Y. Q. ; Xua C. L. ; Hu J. S. Appl. Catal. B: Environ. 2019, 244, 1004.
doi: 10.1016/j.apcatb.2018.12.019 |
28 |
Yin J. ; Jin J. ; Lin H. ; Yin Z. ; Li J. ; Lu M. ; Guo L. ; Xi P. ; Tang Y. ; Yan C. H. Adv. Sci. 2020, 7 (10), 1903070.
doi: 10.1002/advs.201903070 |
29 |
Newman S. P. ; Jones W. New J. Chem. 1998, 22 (2), 105.
doi: 10.1039/a708319j |
30 |
Yan L. T. ; Cao L. ; Dai P. C. ; Gu X. ; Liu D. D. ; Li L. J. ; Wang Y. ; Zhao X. B. Adv. Funct. Mater. 2017, 27 (40)
doi: 10.1002/adfm.201703455 |
31 |
Zhang X. H. ; Cockreham C. B. ; Yilmaz E. ; Li G. N. ; Li N. L. ; Ha S. ; Fu L. J. ; Qi J. Q. ; Xu H. W. ; Wu D. J. Phys. Chem. Lett. 2020, 11 (9), 3745.
doi: 10.1021/acs.jpclett.0c00865 |
32 |
Fang X. Q. ; Han S. C. ; Liu D. K. ; Zhu Y. F. Chem. Phys. Lett. 2020, 746, 137282.
doi: 10.1016/j.cplett.2020.137282 |
33 |
Chen X. ; Wang H. ; Meng R. ; Xia B. ; Ma Z. ACS Appl. Energy Mater. 2020, 3 (2), 1305.
doi: 10.1021/acsaem.9b02352 |
34 |
Zhang J. ; Si C. H. ; Kou T. Y. ; Wang J. F. ; Zhang Z. H. Sustain. Energ. Fuels 2020, 4 (6), 2625.
doi: 10.1039/c9se01312a |
35 |
Hu Y. W. ; Yang H. ; Chen J. J. ; Xiong T. Z. ; Balogun M. S. J. T. ; Tong Y. X. ACS Appl. Mater. Interfaces 2019, 11 (5), 5152.
doi: 10.1021/acsami.8b20717 |
36 |
Lewis N. S. Science 2016, 351 (6271), aad1920.
doi: 10.1126/science.aad1920 |
37 |
Chen D. ; Liu Z. F. ; Zhou M. ; Wu P. D. ; Wei J. D. J. Alloy. Compd. 2018, 742, 918.
doi: 10.1016/j.jallcom.2018.01.334 |
38 |
Malathi A. ; Madhavan J. ; Ashokkumar M. ; Arunachalam P. Appl. Catal. A: Gen. 2018, 555, 47.
doi: 10.1016/j.apcata.2018.02.010 |
39 |
Ye S. ; Ding C. ; Chen R. ; Fan F. ; Fu P. ; Yin H. ; Wang X. ; Wang Z. ; Du P. ; Li C. J. Am. Chem. Soc. 2018, 140 (9), 3250.
doi: 10.1021/jacs.7b10662 |
40 |
Wang Q. ; He J. ; Shi Y. ; Zhang S. ; Niu T. ; She H. ; Bi Y. ; Lei Z. Appl. Catal. B 2017, 214, 158.
doi: 10.1016/j.apcatb.2017.05.044 |
41 |
Wu P. ; Liu Z. ; Chen D. ; Zhou M. ; Wei J. Appl. Surf. Sci. 2018, 440, 1101.
doi: 10.1016/j.apsusc.2018.01.292 |
42 |
Huang J. ; Yue P. ; Wang L. ; She H. ; Wang Q. Chin. J. Catal. 2019, 40 (10), 1408.
doi: 10.1016/s1872-2067(19)63399-1 |
43 |
Shen L. J. ; Cao Y. N. ; Du Z. J. ; Zhao W. T. ; Lin K. ; Jiang L. L. Appl. Surf. Sci. 2017, 425, 212.
doi: 10.1016/j.apsusc.2017.06.295 |
44 |
Guo Y. D. ; Li C. X. ; Gong Z. H. ; Guo Y. P. ; Wang X. G. ; Gao B. ; Qin W. J. ; Wang G. H. J. Hazard. Mater. 2020, 397, 122580.
doi: 10.1016/j.jhazmat.2020.122580 |
45 |
Fu X. H. ; Jia L. C. ; Wang A. L. ; Cao H. J. ; Ling Z. C. ; Liu C. Q. ; Shi E. ; Wu Z. C. ; Li B. ; Zhang J. Icarus 2020, 336, 113435.
doi: 10.1016/j.icarus.2019.113435 |
46 |
Fan J. Y. ; Zhao Z. W. ; Ding Z. X. ; Liu J. RSC Adv. 2018, 8 (13), 7269.
doi: 10.1039/c7ra12615h |
47 |
Fracchia M. ; Visibile A. ; Ahlberg E. ; Vertova A. ; Minguzzi A. ; Ghigna P. ; Rondinini S. ACS Appl. Energy Mater. 2018, 1 (4), 1716.
doi: 10.1021/acsaem.8b00209 |
48 |
Lima A. L. D. ; Batalha D. C. ; Fajardo H. V. ; Rodrigues J. L. ; Pereira M. C. ; Silva A. C. Catal. Today 2020, 344, 118.
doi: 10.1016/j.cattod.2018.10.035 |
49 |
Wan C. ; Jiao Y. ; Qiang T. ; Li J. Carbohydr. Polym. 2017, 156, 427.
doi: 10.1016/j.carbpol.2016.09.028 |
50 |
Hien V. X. ; Hung P. T. Mat. Sci. Semicon. Proc. 2020, 107, 104857.
doi: 10.1016/j.mssp.2019.104857 |
51 |
Sakamoto Y. ; Noda Y. ; Ohno K. ; Koike K. ; Fujii K. ; Suzuki T. M. ; Morikawa T. ; Nakamura S. Phys. Chem. Chem. Phys. 2019, 21 (34), 18486.
doi: 10.1039/c9cp00157c |
52 |
Huang Z. X. ; Han F. S. ; Li M. T. ; Zhou Z. H. ; Guan X. J. ; Guo L. J. Comp. Mater. Sci. 2019, 169, 109110.
doi: 10.1016/j.commatsci.2019.109110 |
53 |
Dutrizac J. E. ; Soriano C. Hydrometallurgy 2018, 176, 87.
doi: 10.1016/j.hydromet.2018.01.015 |
54 |
Fortunato L. F. ; Zubieta C. E. ; Fuente S. A. ; Belelli P. G. ; Ferullo R. M. Appl. Surf. Sci. 2016, 387, 894.
doi: 10.1016/j.apsusc.2016.07.011 |
55 |
Yin H. ; Wu Y. L. ; Hou J. T. ; Yan X. R. ; Li Z. H. ; Zhu C. W. ; Zhang J. ; Feng X. H. ; Tan W. F. ; Liu F. Chem. Geol. 2020, 532
doi: 10.1016/j.chemgeo.2019.119378 |
56 |
Suzuki T. M. ; Nonaka T. ; Suda A. ; Suzuki N. ; Matsuoka Y. ; Arai T. ; Sato S. ; Morikawa T. Sustain. Energ. Fuels 2017, 1 (3), 636.
doi: 10.1039/c7se00043j |
57 |
Snow C. L. ; Smith S. J. ; Lang B. E. ; Shi Q. ; Boerio-Goates J. ; Woodfield B. F. ; Navrotsky A. J. Chem. Thermodyn. 2011, 43 (2), 190.
doi: 10.1016/j.jct.2010.08.022 |
58 |
Li Z. Y. ; Liu G. G. ; Su Q. ; Jin X. Y. ; Wen X. Q. ; Zhang G. J. ; Huang R. Arab. J. Chem. 2018, 11 (6), 910.
doi: 10.1016/j.arabjc.2018.02.005 |
59 |
Yang L. S. ; Liu Y. ; Li J. B. ; Du G. P. J. Alloy. Compd. 2018, 763, 134.
doi: 10.1016/j.jallcom.2018.05.305 |
60 |
Wang Y. C. ; Gu Y. ; Li H. M. ; Ye M. X. ; Qin W. X. ; Zhang H. M. ; Wang G. Z. ; Zhang Y. X. ; Zhao H. J. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123773 |
61 |
Ma P. ; Luo S. ; Luo Y. ; Huang X. ; Yang M. ; Zhao Z. ; Yuan F. ; Chen M. ; Ma J. J. Colloid Interface Sci. 2020, 574, 241.
doi: 10.1016/j.jcis.2020.04.058 |
62 |
Chowdhury D. R. ; Spiccia L. ; Amritphale S. S. ; Paul A. ; Singh A. J. Mater. Chem. A 2016, 4 (10), 3655.
doi: 10.1039/c6ta00313c |
63 |
Lee J. ; Lee H. ; Lim B. J. Ind. Eng. Chem. 2018, 58, 100.
doi: 10.1016/j.jiec.2017.09.013 |
64 |
Yaw C. S. ; Tang J. ; Soh A. K. ; Chong M. N. Chem. Eng. J. 2020, 380
doi: 10.1016/j.cej.2019.122501 |
65 |
Wang L. ; Nguyen N. T. ; Zhang Y. ; Bi Y. ; Schmuki P. ChemSusChem 2017, 10 (13), 2720.
doi: 10.1002/cssc.201700522 |
66 |
Kanan M. W. ; Nocera D. G. Science 2008, 321 (5892), 1072.
doi: 10.1126/science.1162018 |
67 |
Shi X. J. ; Zhang K. ; Park J. H. Int. J. Hydrog. Energy 2013, 38 (29), 12725.
doi: 10.1016/j.ijhydene.2013.07.057 |
68 |
Ponomarev E. A. ; Peter L. M. J. Electroanal. Chem. 1995, 396 (1-2), 219.
doi: 10.1016/0022-0728(95)04115-5 |
69 |
Zhan F. Q. ; Yang Y. H. ; Liu W. H. ; Wang K. K. ; Li W. Z. ; Li J. ACS Sustain. Chem. Eng. 2018, 6 (6), 7789.
doi: 10.1021/acssuschemeng.8b00776 |
70 |
Xiao J. R. ; Fan L. L. ; Huang Z. L. ; Zhong J. ; Zhao F. G. ; Xu K. J. ; Zhou S. F. ; Zhan G. W. Chin. J. Catal. 2020, 41 (11), 1761.
doi: 10.1016/s1872-2067(20)63618-x |
71 |
Jian J. X. ; Shi Y. C. ; Syväjärvi M. ; Yakimova R. ; Sun J. W. Sol. RRL 2019, 4 (1), 1900364.
doi: 10.1002/solr.201900364 |
72 |
Zhang B. ; Wang L. ; Zhang Y. ; Ding Y. ; Bi Y. Angew. Chem. Int. Ed. 2018, 57 (8), 2248.
doi: 10.1002/anie.201712499 |
73 |
She H.D. ; Yue P. F. ; Huang J. W. ; Wang L. ; Wang Q. Z. Chem. Eng. J. 2020, 392
doi: 10.1016/j.cej.2019.123703 |
74 |
Wang L. ; Yang Y. ; Zhang Y. J. ; Rui Q. ; Zhang B. B. ; Shen Z. Q. ; Bi Y. P. J. Mater. Chem. A 2017, 5 (32), 17056.
doi: 10.1039/c7ta05318e |
75 |
Bazri B. ; Kowsari E. ; Seifvand N. ; Naseri N. J. Electroanal. Chem. 2019, 843, 1.
doi: 10.1016/j.jelechem.2019.04.069 |
76 |
Zhang X. F. ; Li H. ; Kong W. Q. ; Liu H. L. ; Fan H. B. ; Wang M. K. Electrochim. Acta 2019, 300, 77.
doi: 10.1016/j.electacta.2019.01.073 |
77 |
Singh A. P. ; Saini N. ; Mehta B. R. ; Hellman A. ; Iandolo B. ; Wickman B. Catal. Today 2019, 321-322, 87.
doi: 10.1016/j.cattod.2018.03.041 |
78 |
Zhou M. ; Liu Z. H. ; Li X. F. ; Liu Z. F. Ind. Eng. Chem. Res. 2018, 57 (18), 6210.
doi: 10.1021/acs.iecr.8b00358 |
79 |
Chen D. ; Liu Z. ; Zhang S. Appl. Catal. B: Environ. 2020, 265
doi: 10.1016/j.apcatb.2019.118580 |
80 |
Abel A. J. ; Patel A. M. ; Smolin S. Y. ; Opasanont B. ; Baxter J. B. J. Mater. Chem. A 2016, 4 (17), 6495.
doi: 10.1039/c6ta01862a |
81 |
Li Z. H. ; Feng S. L. ; Liu S. Y. ; Li X. ; Wang L. ; Lu W. Q. Nanoscale 2015, 7 (45), 19178.
doi: 10.1039/c5nr06212h |
82 |
Deng J. J. ; Zhang Q. Z. ; Feng K. ; Lan H. W. ; Zhong J. ; Chaker M. ; Ma D. ChemSusChem 2018, 11 (21), 3783.
doi: 10.1002/cssc.201801751 |
83 |
Huang J. W. ; Ding Y. ; Luo X. ; Feng Y. Y. J. Catal. 2016, 333, 200.
doi: 10.1016/j.jcat.2015.11.003 |
84 |
Yan J. Q. ; Li P. ; Ji Y. J. ; Bian H. ; Li Y. Y. ; Liu S. Z. J. Catal. 2017, 5 (40), 21478.
doi: 10.1039/c7ta07208b |
85 |
Ma Z. Z. ; Hou H. L. ; Song K. ; Fang Z. ; Wang L. ; Gao F. M. ; Yang Z. B. ; Tang B. ; Yang W. Y. ChemElectroChem 2018, 5 (23), 3660.
doi: 10.1002/celc.201801233 |
86 |
Shi Q. ; Liu Q. ; Ma Y. ; Fang Z. ; Liang Z. ; Shao G. ; Tang B. ; Yang W. ; Qin L. ; Fang X. Adv. Energy Mater. 2020, 10 (10)
doi: 10.1002/aenm.201903854 |
87 |
Zeng G. H. ; Hou L. Q. ; Zhang J. ; Zhu J. Q. ; Yu X. ; Fu X. H. ; Zhu Y. ; Zhang Y. M. ChemCatChem 2020, 12, 3769.
doi: 10.1002/cctc.202000382 |
88 |
Kim J. Y. ; Youn D. H. ; Kang K. ; Lee J. S. Angew. Chem. Int. Ed. 2016, 55 (36), 10854.
doi: 10.1002/anie.201605924 |
89 |
Rosenberg S. P. ; Armstrong L. Light Metals 2016, 1, 235.
doi: 10.1007/978-3-319-48176-0_31 |
90 |
She H. D. ; Yue P. F. ; Ma X. Y. ; Huang J. W. ; Wang L. ; Wang Q. Z. Appl. Catal. B. 2020, 263, 118280.
doi: 10.1016/j.apcatb.2019.118280 |
91 |
Reichle W. T. Solid State Ion 1986, 22 (1), 135.
doi: 10.1016/0167-2738(86)90067-6 |
92 |
Vanderlaan R. K. ; White J. L. ; Hem S. L. J. Pharm. Sci. 1982, 71 (7), 780.
doi: 10.1002/jps.2600710715 |
93 |
Allmann R. J. H. P. Neues Jahrb. Miner. Monatsh. 1969, 12, 544.
doi: 10.1016/0927-7757(96)03542-X |
94 |
Taylor H. F. W. Mineral. Mag. 1969, 37, 338.
doi: 10.1107/S0567740870002443 |
95 |
Pachayappan L. ; Nagendran S. ; Kamath P. V. Cryst. Growth Des. 2017, 17 (5), 2536.
doi: 10.1021/acs.cgd.7b00071 |
96 |
Dewangan N. ; Hui W. M. ; Jayaprakash S. ; Bawah A.-R. ; Poerjoto A. J. ; Jie T. ; Jangam A. ; Hidajat K. ; Kawi S. Catal. Today 2020, 356, 490.
doi: 10.1016/j.cattod.2020.06.020 |
97 |
Guo J. ; Yang X. ; Bai S. ; Xiang X. ; Luo R. ; He J. ; Chen A. J. Colloid Interface Sci. 2019, 540, 9.
doi: 10.1016/j.jcis.2018.12.069 |
98 |
Fan G. ; Li F. ; Evans D. G. ; Duan X. Chem. Soc. Rev. 2014, 43 (20), 7040.
doi: 10.1039/c4cs00160e |
99 |
Gao R. ; Yan D. Adv. Energy Mater. 2019, 10 (11)
doi: 10.1002/aenm.201900954 |
100 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112 (7), 4124.
doi: 10.1021/cr200434v |
101 |
Zhou W. ; Jiang T. ; Zhao Y. ; Xu C. ; Pei C. ; Xue H. J. Colloid Interface Sci. 2019, 549, 42.
doi: 10.1016/j.jcis.2019.04.026 |
102 |
Youn D. H. ; Park Y. B. ; Kim J. Y. ; Magesh G. ; Jang Y. J. ; Lee J. S. J. Power Sources 2015, 294, 437.
doi: 10.1016/j.jpowsour.2015.06.098 |
103 |
Wang Q. ; Niu T. ; Wang L. ; Huang J. ; She H. Chin. J. Catal. 2018, 39 (4), 613.
doi: 10.1016/s1872-2067(17)62987-5 |
104 |
Lv X. W. ; Xiao X. ; Cao M. L. ; Bu Y. ; Wang C. Q. ; Wang M. K. ; Shen Y. Appl. Surf. Sci. 2018, 439, 1065.
doi: 10.1016/j.apsusc.2017.12.182 |
105 |
Zhu Y. ; Ren J. ; Yang X. ; Chang G. ; Bu Y. ; Wei G. ; Han W. ; Yang D. J. Mater. Chem. A 2017, 5 (20), 9952.
doi: 10.1039/c7ta02179h |
106 |
Bai S. ; Yang X. ; Liu C. ; Xiang X. ; Luo R. ; He J. ; Chen A. ACS Sustain. Chem. Eng. 2018, 6 (10), 12906.
doi: 10.1021/acssuschemeng.8b02267 |
107 |
Chen H. ; Wang S. ; Wu J. ; Zhang X. ; Zhang J. ; Lyu M. ; Luo B. ; Qian G. ; Wang L. J. Mater. Chem. A 2020, 8 (26), 13231.
doi: 10.1039/d0ta04572a |
108 |
Ning F. ; Shao M. ; Xu S. ; Fu Y. ; Zhang R. ; Wei M. ; Evans D. G. ; Duan X. Energy Environ. Sci. 2016, 9 (8), 2633.
doi: 10.1039/c6ee01092j |
109 |
Guo J. ; Mao C. Y. ; Zhang R. K. ; Shao M. F. ; Wei M. ; Feng P. Y. J. Mater. Chem. A 2017, 5 (22), 11016.
doi: 10.1039/c7ta00770a |
110 |
Sayed R. A. ; Abd El Hafiz S. E. ; Gamal N. ; GadelHak Y. ; El Rouby W. M. A. J. Alloy. Compd. 2017, 728, 1171.
doi: 10.1016/j.jallcom.2017.09.083 |
111 |
Arif M. ; Yasin G. ; Shakeel M. ; Mushtaq M. A. ; Ye W. ; Fang X. ; Ji S. ; Yan D. Mater. Chem. Front. 2019, 3 (3), 520.
doi: 10.1039/c8qm00677f |
112 |
Cui W. C. ; Bai H. Y. ; Shang J. P. ; Wang F. G. ; Xu D. B. ; Ding J. R. ; Fan W. Q. ; Shi W. D. Electrochim. Acta 2020, 349, 136383.
doi: 10.1016/j.electacta.2020.136383 |
113 |
Zhu Y. ; Zhao X. ; Li J. ; Zhang H. ; Chen S. ; Han W. ; Yang D. J. Alloy. Compd. 2018, 764, 341.
doi: 10.1016/j.jallcom.2018.06.064 |
114 |
Huang J. W. ; Hu G. W. ; Ding Y. ; Pang M. C. ; Ma B. C. J. Catal. 2016, 340, 261.
doi: 10.1016/j.jcat.2016.05.007 |
115 |
AlSalka Y. ; Granone L. I. ; Ramadan W. ; Hakki A. ; Dillert R. ; Bahnemann D. W. Appl. Catal. B: Environ. 2019, 244, 1065.
doi: 10.1016/j.apcatb.2018.12.014 |
116 |
Singh D. ; Tabari T. ; Ebadi M. ; Trochowski M. ; Baris Yagci M. ; Macyk W. Appl. Surf. Sci. 2019, 471, 1017.
doi: 10.1016/j.apsusc.2018.12.082 |
117 |
Lam S. M. ; Sin J. C. ; Mohamed A. R. Mater. Res. Bull. 2017, 90, 15.
doi: 10.1016/j.materresbull.2016.12.052 |
118 |
McDonnell K. A. ; Wadnerkar N. ; English N. J. ; Rahman M. ; Dowling D. Chem. Phys. Lett. 2013, 572, 78.
doi: 10.1016/j.cplett.2013.04.024 |
119 |
Chen G. ; Zhu Y. ; Chen H. M. ; Hu Z. ; Hung S. F. ; Ma N. ; Dai J. ; Lin H. J. ; Chen C. T. ; Zhou W. ; et al Adv Mater. 2019, 31 (28), 1900883.
doi: 10.1002/adma.201900883 |
120 |
Wang W. ; Xu M. G. ; Xu X. M. ; Zhou W. ; Shao Z. P. Angew. Chem. Int. Ed. 2020, 59 (1), 136.
doi: 10.1002/anie.201900292 |
121 |
Huang Y. ; Liu J. ; Deng Y. ; Qian Y. ; Jia X. ; Ma M. ; Yang C. ; Liu K. ; Wang Z. ; Qu S. ; et al J. Semicond. 2020, 41 (1), 011701.
doi: 10.1088/1674-4926/41/1/011701 |
122 |
Han B. ; Grimaud A. ; Giordano L. ; Hong W. T. ; Diaz-Morales O. ; Yueh-Lin L. ; Hwang J. ; Charles N. ; Stoerzinger K. A. ; Yang W. ; et al J. Phys. Chem. C 2018, 122 (15), 8445.
doi: 10.1021/acs.jpcc.8b01397 |
123 |
Wang Z. ; Tan S. P. ; Xiong Y. P. ; Wei J. H. Prog. Nat. Sci. Mater. 2018, 28 (4), 399.
doi: 10.1016/j.pnsc.2018.03.002 |
124 |
Khan R. ; Mehran M. T. ; Naqvi S. R. ; Khoja A. H. ; Mahmood K. ; Shahzad F. ; Hussain S. Int. J. Energy Res. 2020, 44 (12), 9714.
doi: 10.1002/er.5635 |
125 |
Hu C. ; Bai Y. ; Xiao S. ; Zhang T. ; Meng X. ; Ng W. K. ; Yang Y. ; Wong K. S. ; Chen H. ; Yang S. J. Mater. Chem. A 2017, 5 (41), 21858.
doi: 10.1039/C7TA07139F |
126 |
Wu X. ; Li H. ; Wang X. ; Jiang L. ; Xi J. ; Du G. ; Ji Z. J. Alloy. Compd. 2019, 783, 643.
doi: 10.1016/j.jallcom.2018.12.345 |
127 |
Xie J. L. ; Guo C. X. ; Yang P. P. ; Wang X. D. ; Liu D. Y. ; Li C. M. Nano Energy 2017, 31, 28.
doi: 10.1016/j.nanoen.2016.10.048 |
128 |
Khoomortezaei S. ; Abdizadeh H. ; Golobostanfard M. R. ACS Appl. Energy Mater. 2019, 2 (9), 6439.
doi: 10.1021/acsaem.9b01041 |
[1] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[2] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-. |
[3] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[4] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[5] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
[6] | Chufeng ZHANG,Zhewei CHEN,Yuebin LIAN,Yujie CHEN,Qin LI,Yindong GU,Yongtao LU,Zhao DENG,Yang PENG. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1404-1411. |
[7] | Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087. |
[8] | Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404. |
[9] | Hai-Yan WANG, Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion [J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35. |
[10] | Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164. |
[11] | Jin-Fa CHANG,Yao XIAO,Zhao-Yan LUO,Jun-Jie GE,Chang-Peng LIU,Wei XING. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1556-1592. |
[12] | WANG Sen-Lin, WANG Li-Pin, ZHANG Zhen-Hong. Preparation and Oxygen Evolution Reaction Performance of Ni/NiCo2O4 Electrode [J]. Acta Phys. -Chim. Sin., 2013, 29(05): 981-988. |
[13] | DU Wei-Ping, LI Zhen, LENG Wen-Hua, XU Yi-Ming. Photocatalytic Reduction of Silver Ions on Ferric Oxides and Ferric Hydroxides [J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1530-1534. |
[14] | LI Hai-Ling; WANG Wen-Jing; KANG Guo-Hu; HUANG Jin-Zhao; XU Zheng. The Effect of Reactive Pressure to Fe:NiOx Film as Anode Catalytic Film in Hydrogen Producing System by Solar Cell [J]. Acta Phys. -Chim. Sin., 2006, 22(03): 330-334. |
[15] | SUN Zhen-ya; HUANG Jiang-bo. Effect of Dextran on the Crystallization of Ferric Hydroxide [J]. Acta Phys. -Chim. Sin., 2006, 22(02): 172-177. |
|