Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2009035.doi: 10.3866/PKU.WHXB202009035
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia()
Received:
2020-09-09
Accepted:
2020-10-12
Published:
2020-10-23
Contact:
Bao Yu Xia
E-mail:byxia@hust.edu.cn
About author:
Bao Yu Xia, Email: byxia@hust.edu.cnSupported by:
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2009035.
"
Synthesis method | Shape and composition of Pt-based NFs | ||
Oxidative etching | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Five-Fold-Twinned PtCu | Concave cubic PtCu | |
Rhombic dodecahedral PtCuRh | Octahedral PtCu | Five-Fold-Twinned PtCuMn | |
Chemical etching | Rhombic dodecahedral PtNi | Vertex-Reinforced PtCuCo | Truncated octahedral PtNiAu |
Spiny rhombic dodecahedral PtCu | Vertex-Reinforced PtCuRh | Octahedral PtNi | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCuNi | Skeletal octahedral PtNi | |
Rhombic dodecahedral PtRhNi | Rhombic dodecahedral PtCo | Polyhedral PtCo | |
Core-Shell AgAuPt | Truncated octahedral PtAu | PtAu bipyramid | |
Ultra-Small PtPdRhAg | Porous Pt-Bi(OH)3 | Dendrite-Embedded PtNi | |
Galvanic replacement | Cubic PtPdCu | Triangular PtAg | |
CO etching | Tetrahexahedral PtNi |
"
Electrocatalytic reaction | Shape and composition of Pt-based NFs | ||
Oxygen reduction | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Rhombic dodecahedral PtNi | Cubic Pt | |
Five-Fold-Twinned PtCu | Rhombic dodecahedral PtCo | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Spiny rhombic dodecahedral PtCu | Skeletal octahedral PtNi | |
Octahedral PtCu | Five-Fold-Twinned PtCuMn | Dendrite-Embedded PtNi | |
Methanol oxidation | Rhombic dodecahedral PtCuRh | Rhombic dodecahedral PtCu | Cubic PtCu |
Concave cubic PtCu | Five-Fold-Twinned PtCu | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Octahedral PtNi | Truncated octahedronal PtNiAu | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCo | Octahedral PtCu | |
Core-Shell AgAuPt | truncated octahedral PtAu | AuPt bipyramid | |
Ultra-Small PtPdRhAg | |||
Ethanol oxidation | Rhombic dodecahedral PtCuRh | Vertex-Reinforced PtCuRh | Porous Pt-Bi(OH)3 |
Rhombic dodecahedral PtRhNi |
1 |
Choi S. I. ; Shao M. ; Lu N. ; Ruditskiy A. ; Peng H. C. ; Park J. ; Guerrero S. ; Wang J. ; Kim M. J. ; Xia Y. ACS Nano 2014, 8, 10363.
doi: 10.1021/nn5036894 |
2 |
Huang L. ; Wei M. ; Hu N. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2019, 258, 117974.
doi: 10.1016/j.apcatb.2019.117974 |
3 | Li M. G. ; Xia Z. H. ; Huang Y. R. ; Tao L. ; Chao Y. G. ; Yin K. ; Yang W. X. ; Yang W. W. ; Yu Y. S. ; Guo S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
4 | Lv L. ; Zhang L. Y. ; He X. B. ; Yuan H. ; Ouyang S. X. ; Zhang T. R. Acta Phys. -Chim. Sin. 2021, 37, 2007079. |
吕琳; 张立阳; 何雪冰; 原弘; 欧阳述昕; 张铁锐; 物理化学学报, 2021, 37, 2007079.
doi: 10.3866/PKU.WHXB202007079 |
|
5 | Zhang Y. J. ; Zhu Y. Z. ; Li J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052. |
张月皎; 朱越洲; 李剑锋; 物理化学学报, 2021, 37, 2004052.
doi: 10.3866/PKU.WHXB202004052 |
|
6 |
Kongkanand A. ; Mathias M. F. J. Phys. Chem. Lett. 2016, 7, 1127.
doi: 10.1021/acs.jpclett.6b00216 |
7 |
Ma S. Y. ; Li H. H. ; Hu B. C. ; Cheng X. ; Fu Q. Q. ; Yu S. H. J. Am. Chem. Soc. 2017, 139, 5890.
doi: 10.1021/jacs.7b01482 |
8 | Li K. X. ; Zhang T. L. ; Li H. Z. ; Li M. Z. ; Song Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. |
李凯旋; 张泰隆; 李会增; 李明珠; 宋延林; 物理化学学报, 2020, 36, 1911057.
doi: 10.3866/PKU.WHXB201911057 |
|
9 |
Kang Y. ; Snyder J. ; Chi M. ; Li D. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R. Nano Lett. 2014, 14, 6361.
doi: 10.1021/nl5028205 |
10 | Tang Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 2004050. |
唐智勇; 物理化学学报, 2020, 36, 2004050.
doi: 10.3866/PKU.WHXB202004050 |
|
11 |
You H. ; Yang S. ; Ding B. ; Yang H. Chem. Soc. Rev. 2013, 42, 2880.
doi: 10.1039/C2CS35319A |
12 | Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Chem. Rev. 2020, doi: 10.1021/acs.chemrev.0c00454 |
13 |
Kwon T. ; Jun M. ; Lee K. Adv. Mater. 2020, 32, 2001345.
doi: 10.1002/adma.202001345 |
14 |
Park J. ; Kanti Kabiraz M. ; Kwon H. ; Park S. ; Baik H. ; Choi S. I. ; Lee K. ACS Nano 2017, 11, 10844.
doi: 10.1021/acsnano.7b04097 |
15 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜; 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
16 |
Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; et al Science 2015, 349, 412.
doi: 10.1126/science.aab0801 |
17 |
Nosheen F. ; Zhang Z. C. ; Zhuang J. ; Wang X. Nanoscale 2013, 5, 3660.
doi: 10.1039/C3NR00833A |
18 |
Carpenter M. K. ; Moylan T. E. ; Kukreja R. S. ; Atwan M. H. ; Tessema M. M. J. Am. Chem. Soc. 2012, 134, 8535.
doi: 10.1021/ja300756y |
19 |
Mourdikoudis S. ; Liz-Marzán L. M. Chem. Mater. 2013, 25, 1465.
doi: 10.1021/cm4000476 |
20 |
Liu H. L. ; Nosheen F. ; Wang X. Chem. Soc. Rev. 2015, 44, 3056.
doi: 10.1039/C4CS00478G |
21 |
Kong F. ; Ren Z. ; Norouzi Banis M. ; Du L. ; Zhou X. ; Chen G. ; Zhang L. ; Li J. ; Wang S. ; Li M. ; et al ACS Catal. 2020, 10, 4205.
doi: 10.1021/acscatal.9b05133 |
22 | Liu M. M. ; Yang M. M. ; Shu X. X. ; Zhang J. T. Acta Phys. -Chim. Sin. 2021, 37, 2007072. |
刘苗苗; 杨茅茂; 舒欣欣; 张进涛; 物理化学学报, 2021, 37, 2007072.
doi: 10.3866/PKU.WHXB202007072 |
|
23 |
Ding J. ; Bu L. ; Guo S. ; Zhao Z. ; Zhu E. ; Huang Y. ; Huang X. Nano Lett. 2016, 16, 2762.
doi: 10.1021/acs.nanolett.6b00471 |
24 |
Kwon T. ; Jun M. ; Kim H. Y. ; Oh A. ; Park J. ; Baik H. ; Joo S. H. ; Lee K. Adv. Funct. Mater. 2018, 28, 1706440.
doi: 10.1002/adfm.201706440 |
25 |
Park J. ; Wang H. ; Vara M. ; Xia Y. ChemSusChem 2016, 9, 2855.
doi: 10.1002/cssc.201600984 |
26 |
Wang Y. ; Chen Y. ; Nan C. ; Li L. ; Wang D. ; Peng Q. ; Li Y. Nano Res. 2014, 8, 140.
doi: 10.1007/s12274-014-0603-z |
27 |
Beermann V. ; Holtz M. E. ; Padgett E. ; de Araujo J. F. ; Muller D. A. ; Strasser P. Energy Environ. Sci. 2019, 12, 2476.
doi: 10.1039/C9EE01185D |
28 |
Cui C. ; Gan L. ; Heggen M. ; Rudi S. ; Strasser P. Nat. Mater. 2013, 12, 765.
doi: 10.1038/nmat3668 |
29 |
Zhu C. ; Du D. ; Eychmuller A. ; Lin Y. Chem. Rev. 2015, 115, 8896.
doi: 10.1021/acs.chemrev.5b00255 |
30 |
Bu L. ; Guo S. ; Zhang X. ; Shen X. ; Su D. ; Lu G. ; Zhu X. ; Yao J. ; Guo J. ; Huang X. Nat. Commun. 2016, 7, 11850.
doi: 10.1038/ncomms11850 |
31 |
Godinez-Salomon F. ; Mendoza-Cruz R. ; Arellano-Jimenez M. J. ; Jose-Yacaman M. ; Rhodes C. P. ACS Appl. Mater. Interfaces 2017, 9, 18660.
doi: 10.1021/acsami.7b00043 |
32 |
Huang X. Y. ; You L. X. ; Zhang X. F. ; Feng J. J. ; Zhang L. ; Wang A. J. Electrochim. Acta 2019, 299, 89.
doi: 10.1016/j.electacta.2019.01.002 |
33 |
Niu H. J. ; Chen H. Y. ; Wen G. L. ; Feng J. J. ; Zhang Q. L. ; Wang A. J. J. Colloid. Interface Sci. 2019, 539, 525.
doi: 10.1016/j.jcis.2018.12.066 |
34 |
Sun X. ; Huang B. ; Cui X. ; E B. ; Feng Y. ; Huang X. ChemCatChem 2018, 10, 931.
doi: 10.1002/cctc.201701768 |
35 |
Ding J. ; Zhu X. ; Bu L. ; Yao J. ; Guo J. ; Guo S. ; Huang X. Chem. Commun. 2015, 51, 9722.
doi: 10.1039/C5CC03190G |
36 |
Huang L. ; Jiang Z. ; Gong W. ; Wang Z. ; Shen P. K. J. Power Sources 2018, 406, 42.
doi: 10.1016/j.jpowsour.2018.10.041 |
37 |
Ye W. ; Chen S. ; Ye M. ; Ren C. ; Ma J. ; Long R. ; Wang C. ; Yang J. ; Song L. ; Xiong Y. Nano Energy 2017, 39, 532.
doi: 10.1016/j.nanoen.2017.07.025 |
38 |
Luo S. ; Tang M. ; Shen P. K. ; Ye S. Adv. Mater. 2017, 29, 1601687.
doi: 10.1002/adma.201601687 |
39 |
Zhang Z. ; Luo Z. ; Chen B. ; Wei C. ; Zhao J. ; Chen J. ; Zhang X. ; Lai Z. ; Fan Z. ; Tan C. ; et al Adv. Mater. 2016, 28, 8712.
doi: 10.1002/adma.201603075 |
40 |
Luo S. ; Shen P. K. ACS Nano 2017, 11, 11946.
doi: 10.1021/acsnano.6b04458 |
41 |
Wang Z. ; Huang L. ; Tian Z. Q. ; Shen P. K. J. Mater. Chem. A 2019, 7, 18619.
doi: 10.1039/C9TA06119C |
42 |
Zhu G. ; Liu J. ; Li S. ; Zuo Y. ; Li D. ; Han H. ACS Appl. Energy Mater. 2019, 2, 2862.
doi: 10.1021/acsaem.9b00205 |
43 |
Qin Y. ; Zhang W. ; Guo K. ; Liu X. ; Liu J. ; Liang X. ; Wang X. ; Gao D. ; Gan L. ; Zhu Y. ; et al Adv. Funct. Mater. 2020, 30, 1910107.
doi: 10.1002/adfm.201910107 |
44 |
Becknell N. ; Kang Y. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V. R. ; Yang P. J. Am. Chem. Soc. 2015, 137, 15817.
doi: 10.1021/jacs.5b09639 |
45 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; Chi M. ; et al Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
46 |
Chen S. ; Niu Z. ; Xie C. ; Gao M. ; Lai M. ; Li M. ; Yang P. ACS Nano 2018, 12, 8697.
doi: 10.1021/acsnano.8b04674 |
47 |
Becknell N. ; Son Y. ; Kim D. ; Li D. ; Yu Y. ; Niu Z. ; Lei T. ; Sneed B. T. ; More K. L. ; Markovic N. M. ; et al J. Am. Chem. Soc. 2017, 139, 11678.
doi: 10.1021/jacs.7b05584 |
48 |
Wu Y. ; Wang D. ; Zhou G. ; Yu R. ; Chen C. ; Li Y. J. Am. Chem. Soc. 2014, 136, 11594.
doi: 10.1021/ja5058532 |
49 |
Lyu L. M. ; Kao Y. C. ; Cullen D. A. ; Sneed B. T. ; Chuang Y. C. ; Kuo C. H. Chem. Mater. 2017, 29, 5681.
doi: 10.1021/acs.chemmater.7b01550 |
50 |
Wang K. ; Du H. ; Sriphathoorat R. ; Shen P. K. Adv. Mater. 2018, 30, e1804074.
doi: 10.1002/adma.201804074 |
51 |
Ren F. ; Wang Z. ; Luo L. ; Lu H. ; Zhou G. ; Huang W. ; Hong X. ; Wu Y. ; Li Y. Chem. Eur. J. 2015, 21, 13181.
doi: 10.1002/chem.201501923 |
52 |
Shang C. ; Guo Y. ; Wang E. J. Mater. Chem. A 2019, 7, 2547.
doi: 10.1039/C9TA00191C |
53 |
Oh A. ; Baik H. ; Choi D. S. ; Cheon J. Y. ; Kim B. ; Kim H. ; Kwon S. J. ; Joo S. H. ; Jung Y. ; Lee K. ACS Nano 2015, 9, 2856.
doi: 10.1021/nn5068539 |
54 |
Gruzel G. ; Piekarz P. ; Pawlyta M. ; Donten M. ; Parlinska-Wojtan M. ACS Appl. Mater. Interfaces 2019, 11, 22352.
doi: 10.1021/acsami.9b04690 |
55 |
Chen S. ; Li M. ; Gao M. ; Jin J. ; van Spronsen M. A. ; Salmeron M. B. ; Yang P. Nano Lett. 2020, 20, 1974.
doi: 10.1021/acs.nanolett.9b05251 |
56 |
Becknell N. ; Zheng C. ; Chen C. ; Yu Y. ; Yang P. Surf. Sci. 2016, 648, 328.
doi: 10.1016/j.susc.2015.09.024 |
57 |
Yan X. ; Yu S. ; Tang Y. ; Sun D. ; Xu L. ; Xue C. Nanoscale 2018, 10, 2231.
doi: 10.1039/C7NR08899J |
58 |
Yoo S. ; Cho S. ; Kim D. ; Ih S. ; Lee S. ; Zhang L. ; Li H. ; Lee J. Y. ; Liu L. ; Park S. Nanoscale 2019, 11, 2840.
doi: 10.1039/C8NR08231F |
59 |
Fang C. ; Zhao G. ; Zhang Z. ; Ding Q. ; Yu N. ; Cui Z. ; Bi T. Chem. Eur. J. 2019, 25, 7351.
doi: 10.1002/chem.201900403 |
60 |
Saleem F. ; Ni B. ; Yong Y. ; Gu L. ; Wang X. Small 2016, 12, 5261.
doi: 10.1002/smll.201601299 |
61 |
Yuan X. ; Jiang B. ; Cao M. ; Zhang C. ; Liu X. ; Zhang Q. ; Lyu F. ; Gu L. ; Zhang Q. Nano Res. 2020, 13, 265.
doi: 10.1007/s12274-019-2609-z |
62 |
Kwon H. ; Kabiraz M. K. ; Park J. ; Oh A. ; Baik H. ; Choi S. I. ; Lee K. Nano Lett. 2018, 18, 2930.
doi: 10.1021/acs.nanolett.8b00270 |
63 |
Tsuji M. ; Hamasaki M. ; Yajima A. ; Hattori M. ; Tsuji T. ; Kawazumi H. Mater. Lett. 2014, 121, 113.
doi: 10.1016/j.matlet.2014.01.093 |
64 |
Wang C. ; Zhang L. ; Yang H. ; Pan J. ; Liu J. ; Dotse C. ; Luan Y. ; Gao R. ; Lin C. ; Zhang J. ; et al Nano Lett. 2017, 17, 2204.
doi: 10.1021/acs.nanolett.6b04731 |
65 |
Zheng Y. ; Zeng J. ; Ruditskiy A. ; Liu M. ; Xia Y. Chem. Mater. 2013, 26, 22.
doi: 10.1021/cm402023g |
66 |
Yu X. ; Li L. ; Su Y. ; Jia W. ; Dong L. ; Wang D. ; Zhao J. ; Li Y. Chem. Eur. J. 2016, 22, 4960.
doi: 10.1002/chem.201600079 |
67 |
Liao H. G. ; Zherebetskyy D. ; Xin H. ; Czarnik C. ; Ercius P. ; Elmlund H. ; Pan M. ; Wang L. W. ; Zheng H. Science 2014, 345, 916.
doi: 10.1126/science.1253149 |
68 |
Zhou J. ; Yang Y. ; Yang Y. ; Kim D. S. ; Yuan A. ; Tian X. ; Ophus C. ; Sun F. ; Schmid A. K. ; Nathanson M. ; et al Nature 2019, 570, 500.
doi: 10.1038/s41586-019-1317-x |
69 |
Wang D. ; Li Y. Adv. Mater. 2011, 23, 1044.
doi: 10.1002/adma.201003695 |
70 |
Gan L. ; Cui C. ; Heggen M. ; Dionigi F. ; Rudi S. ; Strasser P. Science 2014, 346, 1502.
doi: 10.1126/science.1261212 |
71 |
Chen M. ; Wu B. ; Yang J. ; Zheng N. Adv. Mater. 2012, 24, 862.
doi: 10.1002/adma.201104145 |
72 |
Xu X. ; Zhang X. ; Sun H. ; Yang Y. ; Dai X. ; Gao J. ; Li X. ; Zhang P. ; Wang H. H. ; Yu N. F. ; Sun S. G. Angew. Chem. Int. Ed. 2014, 53, 12522.
doi: 10.1002/ange.201406497 |
73 |
Jin H. ; Hong Y. ; Yoon J. ; Oh A. ; Chaudhari N. K. ; Baik H. ; Joo S. H. ; Lee K. Nano Energy 2017, 42, 17.
doi: 10.1016/j.nanoen.2017.10.033 |
74 |
Sun X. ; Jiang K. ; Zhang N. ; Guo S. ; Huang X. ACS Nano 2015, 9, 7634.
doi: 10.1021/acsnano.5b02986 |
75 |
Ahmadi M. ; Cui C. ; Mistry H. ; Strasser P. ; Cuenya B. R. ACS Nano 2015, 9, 10686.
doi: 10.1021/acsnano.5b01807 |
76 |
Hong J. W. ; Kim Y. ; Wi D. H. ; Lee S. ; Lee S. U. ; Lee Y. W. ; Choi S. I. ; Han S. W. Angew. Chem. Int. Ed. 2016, 55, 2753.
doi: 10.1002/anie.201510460 |
77 |
Saleem F. ; Zhang Z. ; Xu B. ; Xu X. ; He P. ; Wang X. J. Am. Chem. Soc. 2013, 135, 18304.
doi: 10.1021/ja4101968 |
78 |
Li Y. ; Quan F. ; Chen K. ; Chen L. ; Chen C. Catal. Today 2016, 278, 247.
doi: 10.1016/j.cattod.2016.01.047 |
79 |
Wang X. ; Vara M. ; Luo M. ; Huang H. ; Ruditskiy A. ; Park J. ; Bao S. ; Liu J. ; Howe J. ; Chi M. ; et al J. Am. Chem. Soc. 2015, 137, 15036.
doi: 10.1021/jacs.5b10059 |
80 |
Zhu J. ; Xie M. ; Chen Z. ; Lyu Z. ; Chi M. ; Jin W. ; Xia Y. Adv. Energy Mater. 2020, 10, 1904114.
doi: 10.1002/aenm.201904114 |
81 |
Luo X. ; Liu C. ; Wang X. ; Shao Q. ; Pi Y. ; Zhu T. ; Li Y. ; Huang X. Nano Lett. 2020, 20, 1967.
doi: 10.1021/acs.nanolett.9b05250 |
82 |
Huang L. ; Zhang X. ; Han Y. ; Wang Q. ; Fang Y. ; Dong S. Chem. Mater. 2017, 29, 4557.
doi: 10.1021/acs.chemmater.7b01282 |
83 |
Wang Y. ; Chen S. ; Wang X. ; Rosen A. ; Beatrez W. ; Sztaberek L. ; Tan H. ; Zhang L. ; Koenigsmann C. ; Zhao J. ACS Appl. Energy Mater. 2020, 3, 768.
doi: 10.1021/acsaem.9b01930 |
84 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2013, 52, 12337.
doi: 10.1002/anie.201307518 |
85 |
Zhu X. ; Huang L. ; Wei M. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2021, 281, 119460.
doi: 10.1016/j.apcatb.2020.119460 |
86 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2012, 134, 13934.
doi: 10.1021/ja3051662 |
87 |
Lin R. ; Cai X. ; Zeng H. ; Yu Z. Adv. Mater. 2018, 30, e1705332.
doi: 10.1002/adma.201705332 |
88 |
Liu M. ; Zhao Z. ; Duan X. ; Huang Y. Adv. Mater. 2019, 31, 1802234.
doi: 10.1002/adma.201802234 |
89 |
Liu L. ; Samjeské G. ; Takao S. ; Nagasawa K. ; Iwasawa Y. J. Power Sources 2014, 253, 1.
doi: 10.1016/j.jpowsour.2013.12.028 |
90 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/nmat3458 |
91 |
Niu Z. ; Becknell N. ; Yu Y. ; Kim D. ; Chen C. ; Kornienko N. ; Somorjai G. A. ; Yang P. Nat. Mater. 2016, 15, 1188.
doi: 10.1038/nmat4724 |
92 |
Huang X. ; Zhao Z. ; Cao L. ; Chen Y. ; Zhu E. ; Lin Z. ; Li M. ; Yan A. ; Zettl A. ; Wang Y. M. ; et al Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
93 |
Lim B. ; Jiang M. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. Science 2009, 324, 1302.
doi: 10.1126/science.1170377 |
94 |
Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. ; Liu Z. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; et al Nat. Chem. 2010, 2, 454.
doi: 10.1038/nchem.623 |
95 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
96 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; Huang X. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
97 |
Tian X. ; Zhao X. ; Su Y. Q. ; Wang L. ; Wang H. ; Dang D. ; Chi B. ; Liu H. ; Hensen E. J. M. ; Lou X. W. D. ; Xia B. Y. Science 2019, 366, 850.
doi: 10.1126/science.aaw7493 |
98 |
Pizzutilo E. ; Knossalla J. ; Geiger S. ; Grote J. P. ; Polymeros G. ; Baldizzone C. ; Mezzavilla S. ; Ledendecker M. ; Mingers A. ; Cherevko S. ; et al Adv. Energy Mater. 2017, 7, 1700835.
doi: 10.1002/aenm.201700835 |
99 |
Cao Y. ; Yang Y. ; Shan Y. ; Huang Z. ACS Appl. Mater. Interfaces 2016, 8, 5998.
doi: 10.1021/acsami.5b11364 |
100 |
Sneed B. T. ; Young A. P. ; Jalalpoor D. ; Golden M. C. ; Mao S. ; Jiang Y. ; Wang Y. ; Tsung C. K. ACS Nano 2014, 8, 7239.
doi: 10.1021/nn502259g |
101 |
Gunji T. ; Tanabe T. ; Jeevagan A. J. ; Usui S. ; Tsuda T. ; Kaneko S. ; Saravanan G. ; Abe H. ; Matsumoto F. J. Power Sources 2015, 273, 990.
doi: 10.1016/j.jpowsour.2014.09.182 |
102 |
Han L. ; Liu H. ; Cui P. ; Peng Z. ; Zhang S. ; Yang J. Sci. Rep. 2014, 4, 6414.
doi: 10.1038/srep06414 |
103 | Bao Y. F. ; Feng L. G. Acta Phys. -Chim. Sin. 2021, 37, 2008031. |
包玉菲; 冯立纲; 物理化学学报, 2021, 37, 2008031.
doi: 10.3866/PKU.WHXB202008031 |
|
104 |
Yang S. ; Li S. ; Song L. ; Lv Y. ; Duan Z. ; Li C. ; Praeg R. F. ; Gao D. ; Chen G. Nano Res. 2019, 12, 2881.
doi: 10.1007/s12274-019-2530-5 |
105 |
Dong J. C. ; Su M. ; Briega-Martos V. ; Li L. ; Le J. B. ; Radjenovic P. ; Zhou X. S. ; Feliu J. M. ; Tian Z. Q. ; Li J. F. J. Am. Chem. Soc. 2020, 142, 715.
doi: 10.1021/jacs.9b12803 |
106 | Fang B. ; Feng L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023. |
方波; 冯立纲; 物理化学学报, 2020, 36, 1905023.
doi: 10.3866/PKU.WHXB201905023 |
[1] | Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2004052-0. |
[2] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-0. |
[3] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-0. |
[4] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-0. |
[5] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[6] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-0. |
[7] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[8] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-0. |
[9] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-0. |
[10] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-0. |
[11] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-0. |
[12] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-0. |
[13] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-0. |
[14] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-0. |
[15] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-0. |
|