Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2009036.doi: 10.3866/PKU.WHXB202009036
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• ARTICLE • Previous Articles Next Articles
Peiliang Lü1,2, Caiyun Gao1,2, Xiuhong Sun2, Mingliang Sun1,*(), Zhipeng Shao2,*(
), Shuping Pang2,*(
)
Received:
2020-09-09
Accepted:
2020-10-26
Published:
2020-11-02
Contact:
Mingliang Sun,Zhipeng Shao,Shuping Pang
E-mail:mlsun@ouc.edu.cn;shaozp@qibebt.ac.cn;pangsp@qibebt.ac.cn
About author:
Email: pangsp@qibebt.ac.cn. (S.P.)Supported by:
MSC2000:
Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2009036.
Fig 1
(a) Schematics of the fabrication process of FAxCs1−xPbI3 film using FAI additive in one step reaction. (b) The photos of FA0.15Cs0.85PbI3 films prepared with different additives. (c) XRD patterns of precursor films using different additives placed in vacuum at room temperature for 5 min. (d) XRD patterns of precursor films using different additives after annealing at 100 ℃ for 5 min."
Fig 2
(a, f) XRD patterns of the film with MAI additive annealed at 100 and 200 ℃. (b, g) XRD patterns of the films with DMAI additive annealed at 100 and 200 ℃. (c, h) XRD patterns of the films with EAI additive annealed at 100 and 200 ℃. (d, i) XRD patterns of the films with FAAC additive annealed at 100 and 200 ℃. (e, j) XRD patterns of the films with NH4I additive annealed at 100 and 200 ℃."
Fig 3
(a, b) Comparison of the XRD patterns of the perovskite films with MAI additive heated at 200 ℃ for different time. (c) Comparison of the UV-Vis absorbance spectra of the perovskite films with MAI additive heated at 200 ℃ for different time. (d, e) Comparison of the XRD patterns of the perovskite films with DMAI additive heated at 200 ℃ for different time. (f) Comparison of the UV-Vis absorbance spectra of the perovskite films with DMAI additive heated at 200 ℃ for different time."
1 |
Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643.
doi: 10.1126/science.1228604 |
2 |
Stranks S. D. ; Eperon G. E. ; Grancini G. ; Menelaou C. ; Alcocer M. J. ; Leijtens T. ; Herz L. M. ; Petrozza A. ; Snaith H. J. Science 2013, 342, 341.
doi: 10.1126/science.1243982 |
3 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc 2009, 131, 6050.
doi: 10.1021/ja809598r |
4 | NREL Research Cell Record Efficiency Chart NREL, 2019. |
5 |
Wehrenfennig C. ; Eperon G. E. ; Johnston M. B. ; Snaith H. J. ; Herz L. M. Adv. Mater 2014, 26, 1584.
doi: 10.1002/adma.201305172 |
6 | Huang Y. ; Sun Q. D. ; Xu W. ; He Y. ; Yin W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730. |
黄杨; 孙庆德; 徐文; 何垚; 尹万健. 物理化学学报, 2017, 33, 1730.
doi: 10.3866/PKU.WHXB201705042 |
|
7 |
Yang W. S. ; Park B. W. ; Jung E. H. ; Jeon N. J. ; Kim Y. C. ; Lee D. U. ; Shin S. S. ; Seo J. ; Kim E. K. ; Noh J. H. ; Seok S. I. Science 2017, 356, 1376.
doi: 10.1126/science.aan2301 |
8 |
Jung E. H. ; Jeon N. J. ; Park E. Y. ; Moon C. S. ; Shin. T. J. ; Yang T. Y. ; Noh J. H. ; Seo J. Nature 2019, 567, 511.
doi: 10.1038/s41586-019-1036-3 |
9 |
Wang J. ; Zhang J. ; Zhou Y. ; Liu H. ; Xue Q. ; Li X. ; Chueh C. C. ; Yip H. L. ; Zhu Z. ; Jen A. K. Y. Nat. Commun. 2020, 11, 177.
doi: 10.1038/s41467-019-13909-5 |
10 |
Jena A. K. ; Kulkarni A. ; Miyasaka T. Chem. Rev. 2019, 119, 3036.
doi: 10.1021/acs.chemrev.8b00539 |
11 |
Zhou W. ; Zhao Y. ; Zhou X. ; Fu R. ; Li Q. ; Zhao Y. ; Liu K. ; Yu D. ; Zhao Q. J. Phys. Chem. Lett. 2017, 8, 4122.
doi: 10.1021/acs.jpclett.7b01851 |
12 |
Binek A. ; Hanusch F. C. ; Docampo P. ; Bein T. J. Phys. Chem. Lett. 2015, 6, 1249.
doi: 10.1021/acs.jpclett.5b00380 |
13 |
Chen W. ; Zhang J. ; Xu G. ; Xue R. ; Li Y. ; Zhou Y. ; Hou J. ; Li Y. Adv. Mater. 2018, 30, e1800855.
doi: 10.1002/adma.201800855 |
14 |
Liang J. ; Zhao P ; Wang C. ; Wang Y. ; Hu Y. ; Zhu G. ; Ma L. ; Liu J. ; Jin Z. J. Am. Chem. Soc. 2017, 139, 14009.
doi: 10.1021/jacs.7b07949.5156 |
15 |
Saparov B. ; Mitzi D. B. Chem. Rev. 2016, 116, 4558.
doi: 10.1021/acs.chemrev.5b00715.516 |
16 |
Wei D. ; Ma F. ; Wang R. ; Dou S. ; Cui P. ; Huang H. ; Ji J. ; Jia E. ; Jia X. ; Sajid S. ; et al Adv. Mater. 2018, 30, e1707583.
doi: 10.1002/adma.201707583.315 |
17 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
18 |
Jing C. Q. ; Wu J. H ; Cao Y. Y. ; Che H. X. ; Zhao X. M. ; Yue M. ; Liao Y. Y. ; Yue C. Y. ; Lei X. W. Chem. Commun. 2020, 56, 5925.
doi: 10.1039/d0cc01779e |
19 |
De Marco N. ; Zhou H. ; Chen Q. ; Sun P. ; Liu Z. ; Meng L. ; Yao E. P. ; Liu Y. ; Schiffer A. ; Yang Y. Nano Lett 2016, 16, 1009.
doi: 10.1021/acs.nanolett.5b04060 |
20 |
Saliba M. ; Correa-Baena J. P. ; Grätzel M. ; Hagfeldt A. ; Abate A. Angew. Chem. Int. Ed. 2018, 57, 2554.
doi: 10.1002/anie.201703226.151 |
21 |
Marronnier A. ; Roma G. ; Boyer-Richard S. ; Pedesseau L. ; Jancu J. M. ; Bonnassieux Y. ; Katan C. ; Stoumpos C. C. ; Kanatzidis M. G. ; Even J. ACS Nano 2018, 12, 3477.
doi: 10.1021/acsnano.8b00267.1651 |
22 |
Ke W. ; Spanopoulos I. ; Stoumpos C. C. ; Kanatzidis M. G. Nat. Commun. 2018, 9, 4785d.
doi: 10.1038/s41467-018-07204-y.5151 |
23 |
Zhang J. ; Yang L. ; Zhong Y. ; Hao H. ; Yang M. ; Liu R. Phys. Chem. Chem. Phys. 2019, 21, 11175.
doi: 10.1039/c9cp01211g |
24 |
Pang S. ; Hu H. ; Zhang J. ; Lv S. ; Yu Y. ; Wei F. ; Qin T. ; Xu H. ; Liu Z. ; Cui G. Chem. Mater. 2014, 26, 1485.
doi: 10.1021/cm404006p |
25 |
Luo P. ; Zhou S. ; Zhou Y. ; Xia W. ; Sun L. ; Cheng J. ; Xu C. ; Lu Y. ACS Appl. Mater. Interfaces. 2017, 9, 42708.
doi: 10.1021/acsami.7b12939.3 |
26 |
Luo P. ; Xia W. ; Zhou S. ; Sun L. ; Cheng J. ; Xu C. ; Lu Y. J. Phys. Chem. Lett. 2016, 7, 3603.
doi: 10.1021/acs.jpclett.6b01576.2 |
27 |
Shao Z. ; Meng H. ; Du X. ; Sun X. ; Lv P. ; Gao C. ; Rao Y. ; Chen C. ; Li Z. ; Wang X. ; Cui G. ; Pang S. Adv. Mater. 2020, e2001054.
doi: 10.1002/adma.202001054 |
28 |
Li Z. ; Wang L. ; Liu R. ; Fan Y. ; Meng H. ; Shao Z. ; Cui G. ; Pang S. Adv. Energy Mater 2019, 9, 1902142.
doi: 10.1002/aenm.201902142 |
[1] | Yajie Shu, Shimin Liang, Jiayong Xiao, Zhiling Tu, Haibao Huang. Phosphate- and Mn-Modified Mesoporous TiO2 for Efficient Catalytic Oxidation of Toluene in VUV-PCO System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010001-0. |
[2] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-0. |
[3] | Zihao Zang, Hansheng Li, Xianyuan Jiang, Zhijun Ning. Progress and Perspective of Tin Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007090-0. |
[4] | Yuan Yin, Zhendong Guo, Gaoyuan Chen, Huifeng Zhang, Wan-Jian Yin. Recent Progress in Defect Tolerance and Defect Passivation in Halide Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008048-0. |
[5] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-0. |
[6] | Haomiao Li, Hua Dong, Jingrui Li, Zhaoxin Wu. Recent Advances in Tin-Based Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007006-0. |
[7] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-0. |
[8] | Jun Ji, Xin Liu, Hao Huang, Haoran Jiang, Mingjun Duan, Benyu Liu, Peng Cui, Yingfeng Li, Meicheng Li. Recent Progress on Perovskite Homojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008095-0. |
[9] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-0. |
[10] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-0. |
[11] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-0. |
[12] | Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2009056-0. |
[13] | Yunfei Wang, Jianhua Liu, Mei Yu, Jinyan Zhong, Qisen Zhou, Junming Qiu, Xiaoliang Zhang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2006030-0. |
[14] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-0. |
[15] | Sidong Zhang, Yuan Liu, Muyao Qi, Anmin Cao. Localized Surface Doping for Improved Stability of High Energy Cathode Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011007-0. |
|