Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (8): 2009071.doi: 10.3866/PKU.WHXB202009071
• REVIEW • Previous Articles Next Articles
Tianjie Wang1, Yaowei Wang1,2, Yuhui Chen1,*(), Jianpeng Liu2, Huibing Shi2, Limin Guo3,*(
), Zhiwei Zhao4, Chuntai Liu5, Zhangquan Peng4,6,*(
)
Received:
2020-09-21
Accepted:
2020-10-16
Published:
2020-10-22
Contact:
Yuhui Chen,Limin Guo,Zhangquan Peng
E-mail:cheny@njtech.edu.cn;lmguo@ciac.ac.cn;zqpeng@dicp.ac.cn
About author:
Email: zqpeng@dicp.ac.cn (Z.P.)Supported by:
MSC2000:
Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2[J].Acta Phys. -Chim. Sin., 2022, 38(8): 2009071.
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Yang S. ; He P. ; Zhou H. Energy Storage Mater 2018, 13, 29.
doi: 10.1016/j.ensm.2017.12.020 |
3 |
Imanishi N. ; Yamamoto O. Mater. Today 2014, 17, 24.
doi: 10.1016/j.mattod.2013.12.004 |
4 |
Lu J. ; Amine K. Energies 2013, 6, 6016.
doi: 10.3390/en6116016 |
5 | Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062. |
杨泽; 张旺; 沈越; 袁利霞; 黄云辉; 物理化学学报, 2016, 32, 1062.
doi: 10.3866/PKU.WHXB201603231 |
|
6 |
Etacheri V. ; Marom R. ; Elazari R. ; Salitra G. ; Aurbach D. Energy Environ. Sci. 2011, 4, 3243.
doi: 10.1039/c1ee01598b |
7 |
Li H. ; Wang Z. ; Chen L. ; Huang X. Adv. Mater. 2009, 21, 4593.
doi: 10.1002/adma.200901710 |
8 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
9 |
Xu J. ; Liu Q. ; Yu Y. ; Wang J. ; Yan J. ; Zhang X. Adv. Mater. 2017, 29, 1606552.
doi: 10.1002/adma.201606552 |
10 |
Jian Z. ; Liu P. ; Li F. ; He P. ; Guo X. ; Chen M. ; Zhou H. Angew. Chem. Int. Ed. 2014, 53, 442.
doi: 10.1002/anie.201307976 |
11 |
Li C. ; Guo Z. ; Yang B. ; Liu Y. ; Wang Y. ; Xia Y. Angew. Chem. Int. Ed. 2017, 56, 9126.
doi: 10.1002/anie.201705017 |
12 |
Freunberger S. A. ; Chen Y. ; Peng Z. ; Griffin J. M. ; Hardwick L. J. ; Bardé F. ; Novák P. ; Bruce P. G. J. Am. Chem. Soc. 2011, 133, 8040.
doi: 10.1021/ja2021747 |
13 |
McCloskey B. D. ; Bethune D. S. ; Shelby R. M. ; Girishkumar G. ; Luntz A. C. J. Phys. Chem. Lett. 2011, 2, 1161.
doi: 10.1021/jz200352v |
14 |
Peng Z. ; Freunberger S. A. ; Hardwick L. J. ; Chen Y. ; Giordani V. ; Bardé F. ; Novák P. ; Graham D. ; Tarascon J. M. ; Bruce P. G. Angew. Chem. Int. Ed. 2011, 50, 6351.
doi: 10.1002/anie.201100879 |
15 |
Débart A. ; Bao J. ; Armstrong G. ; Bruce P. G. J. Power Sources 2007, 174, 1177.
doi: 10.1016/j.jpowsour.2007.06.180 |
16 |
Giordani V. ; Freunberger S. A. ; Bruce P. G. ; Tarascon J. M. ; Larcher D. Electrochem. Solid State Lett 2010, 13, A180.
doi: 10.1149/1.3494045 |
17 |
Lu Y. ; Gasteiger H. A. ; Parent M. C. ; Chiloyan V. ; Shao-Horn Y. Electrochem. Solid State Lett 2010, 13, A69.
doi: 10.1149/1.3363047 |
18 |
Aurbach D. J. Power Sources 2000, 89, 206.
doi: 10.1016/S0378-7753(00)00431-6 |
19 |
Cohen Y. S. ; Cohen Y. ; Aurbach D. J. Phys. Chem. B 2000, 104, 12282.
doi: 10.1021/jp002526b |
20 |
Choi N. S. ; Lee Y. M. ; Cho K. Y. ; Ko D. H. ; Park J. K. Electrochem. Commun. 2004, 6, 1238.
doi: 10.1016/j.elecom.2004.09.023 |
21 |
Read J. J. Electrochem. Soc. 2006, 153, A96.
doi: 10.1149/1.2131827 |
22 |
Qiao Y. ; Deng H. ; He P. ; Zhou H. Joule 2020, 4, 1445.
doi: 10.1016/j.joule.2020.05.012 |
23 |
Guo Z. ; Dong X. ; Yuan S. ; Wang Y. ; Xia Y. J. Power Sources 2014, 264, 1.
doi: 10.1016/j.jpowsour.2014.04.079 |
24 |
Meini S. ; Piana M. ; Tsiouvaras N. ; Garsuch A. ; Gasteiger H. A. Electrochem. Solid State Lett 2012, 15, A45.
doi: 10.1149/2.005204esl |
25 |
Li F. ; Wu S. ; Li D. ; Zhang T. ; He P. ; Yamada A. ; Zhou H. Nat. Commun. 2015, 6, 7.
doi: 10.1038/ncomms8843 |
26 |
Shui J. ; Okasinski J. S. ; Kenesei P. ; Dobbs H. A. ; Zhao D. ; Almer J. D. ; Liu D. Nat. Commun. 2013, 4, 2255.
doi: 10.1038/ncomms3255 |
27 |
Shen X. ; Liu H. ; Cheng X. ; Yan C. ; Huang J. Energy Storage Mater 2018, 12, 161.
doi: 10.1016/j.ensm.2017.12.002 |
28 |
Amici J. ; Francia C. ; Zeng J. ; Bodoardo S. ; Penazzi N. J. Appl. Electrochem. 2016, 46, 617.
doi: 10.1007/s10800-016-0951-3 |
29 |
Xie M. ; Huang Z. ; Lin X. ; Li Y. ; Huang Z. ; Yuan L. ; Shen Y. ; Huang Y. Energy Storage Mater 2019, 20, 307.
doi: 10.1016/j.ensm.2018.11.023 |
30 |
Xu S. ; Lau S. ; Archer L. A. Inorg. Chem. Front. 2015, 2, 1070.
doi: 10.1039/c5qi00169b |
31 |
Wadhawan J. D. ; Welford P. J. ; Maisonhaute E. ; Climent V. ; Lawrence N. S. ; Compton R. G. ; McPeak H. B. ; Hahn C. E. W. J. Phys. Chem. B 2001, 105, 10659.
doi: 10.1021/jp012160i |
32 |
Albertus P. ; Girishkumar G. ; McCloskey B. ; Sánchez-Carrera R. S. ; Kozinsky B. ; Christensen J. ; Luntz A. C. J. Electrochem. Soc. 2011, 158, A343.
doi: 10.1149/1.3527055 |
33 |
Yang S. ; He P. ; Zhou H. Energy Environ. Sci. 2016, 9, 1650.
doi: 10.1039/c6ee00004e |
34 |
Farooqui U. R. ; Ahmad A. L. ; Hamid N. A. Renew. Sust. Energ. Rev. 2017, 77, 1114.
doi: 10.1016/j.rser.2016.11.220 |
35 |
Dias A. M. A. ; Freire M. ; Coutinho J. A. P. ; Marrucho I. M. Fluid Phase Equilibr 2004, 222, 325.
doi: 10.1016/j.fluid.2004.06.037 |
36 |
Liu L. ; Guo H. ; Fu L. ; Chou S. ; Thiele S. ; Wu Y. ; Wang J. Small 2019, 15, 1903854.
doi: 10.1002/smll.201903854 |
37 |
Jiang X. ; Li S. W. ; He S. S. ; Bai Y. P. ; Shao L. J. Mater. Chem. A 2018, 6, 15064.
doi: 10.1039/c8ta03872d |
38 |
Guo X. Y. ; Qiao Z. H. ; Liu D. H. ; Zhong C. L. J. Mater. Chem. A 2019, 7, 24738.
doi: 10.1039/c9ta09012f |
39 | Gong J. H. ; Wang C. H. ; Bian Z. J. ; Yang L. ; Hu J. ; Liu H. L. Acta Phys. -Chim. Sin. 2015, 31, 1963. |
龚金华; 王臣辉; 卞子君; 阳立; 胡军; 刘洪来; 物理化学学报, 2015, 31, 1963.
doi: 10.3866/PKU.WHXB201508282 |
|
40 |
Ottakam Thotiyl M. M. ; Freunberger S. A. ; Peng Z. ; Bruce P. G. J. Am. Chem. Soc. 2013, 135, 494.
doi: 10.1021/ja310258x |
41 |
Zhang T. ; Zhou H. Nat. Commun. 2013, 4, 1817.
doi: 10.1038/ncomms2855 |
42 |
Dean J. A. Mater. Manuf. Process. 1990, 5, 687.
doi: 10.1080/10426919008953291 |
43 |
Takechi K. ; Shiga T. ; Asaoka T. Chem. Comm 2011, 47, 3463.
doi: 10.1039/c0cc05176d |
44 |
Gowda S. R. ; Brunet A. ; Wallraff G. M. ; McCloskey B. D. J. Phys. Chem. Lett 2013, 4, 276.
doi: 10.1021/jz301902h |
45 |
Mekonnen Y. S. ; Knudsen K. B. ; Mýrdal J. S. G. ; Younesi R. ; Højberg J. ; Hjelm J. ; Norby P. ; Vegge T. J. Chem. Phys. 2014, 140, 121101.
doi: 10.1063/1.4869212 |
46 |
Lim H. K. ; Lim H. D. ; Park K. Y. ; Seo D. H. ; Gwon H. ; Hong J. ; Goddard Ⅲ W. A. ; Kim H. ; Kang K. J. Am. Chem. Soc 2013, 135, 9733.
doi: 10.1021/ja4016765 |
47 |
Yin W. ; Grimaud A. ; Lepoivre F. ; Yang C. ; Tarascon J. M. J. Phys. Chem. Lett 2017, 8, 214.
doi: 10.1021/acs.jpclett.6b02610 |
48 |
Zhao Z. ; Su Y. ; Peng Z. J. Phys. Chem. Lett 2019, 10, 322.
doi: 10.1021/acs.jpclett.8b03272 |
49 | Albertus, P.; Viswanathan, V.; Christensen, J. F.; Kozinsky, B.; Sanchez-carrera, R.; Iohmann, T. High Specific-Energy Li/O2-CO2 Battery. US Patent, US12/907205, 2012. |
50 |
Yang S. ; Qiao Y. ; He P. ; Liu Y. ; Cheng Z. ; Zhu J. ; Zhou H. Energy Environ. Sci. 2017, 10, 972.
doi: 10.1039/c6ee03770d |
51 |
Qiao Y. ; Yi J. ; Wu S. ; Liu Y. ; Yang S. ; He P. ; Zhou H. Joule 2017, 1, 359.
doi: 10.1016/j.joule.2017.07.001 |
52 |
Mahne N. ; Renfrew S. E. ; McCloskey B. D. ; Freunberger S. A. Angew. Chem. Int. Ed. 2018, 57, 5529.
doi: 10.1002/anie.201802277 |
53 |
Baek K. ; Jeon W. C. ; Woo S. ; Kim J. C. ; Lee J. G. ; An K. ; Kwak S. K. ; Kang S. J. Nat. Commun 2020, 11, 456.
doi: 10.1038/s41467-019-14121-1 |
54 |
Li C. ; Guo Z. ; Yang B. ; Liu Y. ; Wang Y. ; Xia Y. Angew. Chem. Int. Ed. 2017, 56, 9126.
doi: 10.1002/anie.201705017 |
55 |
Qiao Y. ; Yi J. ; Guo S. ; Sun Y. ; Wu S. ; Liu X. ; Yang S. ; He P. ; Zhou H. Energy Environ. Sci 2018, 11, 1211.
doi: 10.1039/c7ee03341a |
56 |
Wang X. ; Wang C. ; Xie Z. ; Zhang X. ; Chen Y. ; Wu D. ; Zhou Z. Chem. Electro. Chem 2017, 4, 2145.
doi: 10.1002/celc.201700539 |
57 |
Liu Z. ; Zhang Y. ; Jia C. ; Wan H. ; Peng Z. ; Bi Y. ; Liu Y. ; Peng Z. ; Wang Q. ; Li H. ; Wang D. ; Zhang J. Nano Energy 2017, 36, 390.
doi: 10.1016/j.nanoen.2017.04.049 |
58 |
Hong M. ; Choi H. C. ; Byon H. R. Chem. Mater. 2015, 27, 2234.
doi: 10.1021/acs.chemmater.5b00488 |
59 |
Fan L. ; Tang D. ; Wang D. ; Wang Z. ; Chen L. Nano Res 2016, 9, 3903.
doi: 10.1007/s12274-016-1259-7 |
60 |
Song S. ; Xu W. ; Zheng J. ; Luo L. ; Engelhard M. H. ; Bowden M. E. ; Liu B. ; Wang C. M. ; Zhang J. G. Nano Lett 2017, 17, 1417.
doi: 10.1021/acs.nanolett.6b04371 |
61 |
Bie S. ; Du M. ; He W. ; Zhang H. ; Yu Z. ; Liu J. ; Liu M. ; Yan W. ; Zhou L. ; Zou Z. ACS Appl. Mater. Interfaces 2019, 11, 5146.
doi: 10.1021/acsami.8b20573 |
62 |
Zhang P. ; Zhang J. ; Sheng T. ; Lu Y. ; Yin Z. ; Li Y. ; Peng X. ; Zhou Y. ; Li J. ; Wu Y. ; et al ACS Catal. 2019, 10, 1640.
doi: 10.1021/acscatal.9b04138 |
63 |
Zhang J. ; Xu W. ; Li X. ; Liu W. J. Electrochem. Soc 2010, 157, A940.
doi: 10.1149/1.3430093 |
64 |
Zhao D. ; Timmons D. J. ; Yuan D. ; Zhou H. Acc. Chem. Res. 2011, 44, 123.
doi: 10.1021/ar100112y |
65 |
Liu J. ; Thallapally P. K. ; McGrail B. P. ; Brown D. R. ; Liu J. Chem. Soc. Rev. 2012, 41, 2308.
doi: 10.1039/c1cs15221a |
66 |
Ma X. J. ; Chai Y. T. ; Li P. ; Wang B. Acc. Chem. Res. 2019, 52, 1461.
doi: 10.1021/acs.accounts.9b00113 |
67 | Cheng L. ; Liu G. P. ; Jin W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090. |
程龙; 刘公平; 金万勤; 物理化学学报, 2019, 35, 1090.
doi: 10.3866/PKU.WHXB201810059 |
|
68 |
Cao L. ; Lv F. ; Liu Y. ; Wang W. ; Huo Y. ; Fu X. ; Sun R. ; Lu Z. Chem. Commun 2015, 51, 4364.
doi: 10.1039/c4cc09281c |
69 |
Heydari-Gorji A. ; Belmabkhout Y. ; Sayari A. Langmuir 2011, 27, 12411.
doi: 10.1021/la202972t |
70 |
Wang X. ; Chen L. ; Guo Q. Chem. Eng. J 2015, 260, 573.
doi: 10.1016/j.cej.2014.08.107 |
71 |
Khatri R. A. ; Chuang S. S. C. ; Soong Y. ; Gray M. Energy Fuels 2006, 20, 1514.
doi: 10.1021/ef050402y |
72 |
Wurzbacher J. A. ; Gebald C. ; Piatkowski N. ; Steinfeld A. Environ. Sci Technol 2012, 46, 9191.
doi: 10.1021/es301953k |
73 |
Chen Z. ; Deng S. ; Wei H. ; Wang B. ; Huang J. ; Yu G. ACS Appl. Mater. Interfaces 2013, 5, 6937.
doi: 10.1021/am400661b |
74 |
Sujan A. R. ; Pang S. H. ; Zhu G. ; Jones C. W. ; Lively R. P. ACS Sustain. Chem. Eng. 2019, 7, 5264.
doi: 10.1021/acssuschemeng.8b06203 |
75 |
Bacsik Z. ; Ahlsten N. ; Ziadi A. ; Zhao G. ; Garcia-Bennett A. E. ; Martín-Matute B. ; Hedin N. Langmuir 2011, 27, 11118.
doi: 10.1021/la202033p |
76 |
Babel S. ; Kurniawan T. A. J. Hazard. Mater 2003, 97, 219.
doi: 10.1016/S0304-3894(02)00263-7 |
77 |
Chue K. T. ; Kim J. N. ; Yoo Y. J. ; Cho S. H. ; Yang R. T. Ind. Eng. Chem. Res. 1995, 34, 591.
doi: 10.1021/ie00041a020 |
78 |
Merel J. ; Clausse M. ; Meunier F. Ind. Eng. Chem. Res. 2008, 47, 209.
doi: 10.1021/ie071012x |
79 |
Chou C. ; Chen C. Sep. Purif. Technol. 2004, 39, 51.
doi: 10.1016/j.seppur.2003.12.009 |
80 |
Mérel J. ; Clausse M. ; Meunier F. Environ. Prog 2006, 25, 327.
doi: 10.1002/ep.10166 |
81 |
Song Z. ; Dong Q. ; Xu W. L. ; Zhou F. ; Liang X. ; Yu M. ACS Appl. Mater. Interfaces 2018, 10, 769.
doi: 10.1021/acsami.7b16574 |
[1] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[2] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[3] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[4] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[5] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[6] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
[7] | Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958. |
[8] | Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162. |
[9] | Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420. |
[10] | Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410. |
[11] | Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4 [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107. |
[12] | Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282. |
[13] | Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445. |
[14] | Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403. |
[15] | Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241. |
|