Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009074.doi: 10.3866/PKU.WHXB202009074
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Bingyan Xu1, Ying Zhang1, Yecan Pi2, Qi Shao2, Xiaoqing Huang1,*()
Received:
2020-09-23
Accepted:
2020-10-26
Published:
2020-10-30
Contact:
Xiaoqing Huang
E-mail:hxq006@xmu.edu.cn
About author:
Xiaoqing Huang, Email:hxq006@xmu.edu.cnSupported by:
MSC2000:
Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J].Acta Phys. -Chim. Sin., 2021, 37(7): 2009074.
"
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec−1) | Ref. | |
Ni-MOFs | AB & Ni-MOF(1:1) | NF | 1 mol∙L−1 | 263 | 65 | |
AB & Ni-MOF(1:1) | GC | 1 mol∙L−1 | 379 | 77 | ||
AB & Ni-MOF(1:1) | FTO | 1 mol∙L−1 | 282 | 66 | ||
Ni-MOF (BTC) | CP | 1 mol∙L−1 | 346 | 64 | ||
Ni-MOF | NF | 1 mol∙L−1 | 320 | 123 | ||
Pt-NC/Ni-MOF | GC | 1 mol∙L−1 | 292 | |||
3D Graphene/Ni-MOF | GC | 0.1 mol∙L−1 | 370 | 91 | ||
Ni-MOF derived oxides/hydroxides/carbonaceous materials | Ni-BDC/Ni(OH)2 | GC | 1 mol∙L−1 | 320 | 41 | |
0.6% (w) Fe2O3@Ni-MOF-74 | CP | 1 mol∙L−1 | 264 | 48 | ||
2D Ni-MOF-250 | NF | 1 mol∙L−1 | 250 (at 50 mA∙cm–2) | 89 | ||
NiO/C@NiFe-LDH | GC | 1 mol∙L−1 | 299 | 45 | ||
NiO | GC | 1 mol∙L−1 | 430 | 81 | ||
Ni(OH)2 | GC | 1 mol∙L−1 | 360 | 111 | ||
Ni@NC | NF | 1 mol∙L−1 | 280 | 45 | ||
NF@Ni/C | NF | 1 mol∙L−1 | 265 | 54 | ||
CNH-D-Ni-MOF | CFP | 1 mol∙L−1 | 320 | 85 | ||
CNH-D-Ni-MOF-400 | CFP | 1 mol∙L−1 | 120 | 75 | ||
Ni@NiO/N-C | GC | 1 mol∙L−1 | 390 | 100 | ||
Ni-MOF derived phosphates/sulfides | Ni-P | GC | 1 mol∙L−1 | 300 | 64 | |
Ni2P/rGO | NF | 1 mol∙L−1 | 250 | 62 | ||
NGO/Ni7S6 | GC | 0.1 mol∙L−1 | 380 | 45 | ||
NiS@N/S-C | CFP | 1 mol∙L−1 | 417 | 48 | ||
Ni-BDC@NiS (12 h) | NF | 1 mol∙L−1 | 330 (at 20 mA∙cm–2) | 62 | ||
Ni-Ni3S2@carbon | GC | 1 mol∙L−1 | 285 | 56 |
"
Catalyst | Substrate | Electrolyte (KOH) | η at 10 mA∙cm−2 (mV) | Tafel slope/(mV∙dec− | Ref. | |
NiFe-MOF | NiFe-MOF-74 | NF | 1 mol∙L−1 | 223 | 72 | |
FeNi-DOBDC-(Fe/Ni 3:1) | GC | 1 mol∙L−1 | 270 (at 50 mA∙cm−2) | 49 | ||
MIL-100(FeNi) | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 30 | ||
FeNi3-BTC | NF | 1 mol∙L−1 | 236 | 49 | ||
Fe1Ni4-HHTP NWAs | CC | 1 mol∙L−1 | 213 | 96 | ||
Fe2Ni-MIL-88B | NF | 1 mol∙L−1 | 222 | 42 | ||
Fe0.1-Ni-MOF/NF | NF | 1 mol∙L−1 | 243 (at 50 mA∙cm−2) | 70 | ||
NiFe-MOF/FeCH-NF | NF | 1 mol∙L−1 | 200 | 51 | ||
NiFe-NFF | NF | 1 mol∙L−1 | 250 | 39 | ||
Fe0.38Ni0.62-MOF | CC | 1 mol∙L−1 | 190 | 58 | ||
N-Fe-MOF NSs | GC | 1 mol∙L−1 | 221 | 56 | ||
MFN-MOF (2:1)/NF | NF | 1 mol∙L−1 | 235 (at 50 mA∙cm−2) | 55 | ||
Fe2Ni-MIL-101 | NF | 1 mol∙L−1 | 237 (at 20 mA∙cm−2) | 44 | ||
FeNi@CNF | GC | 1 mol∙L−1 | 356 | 63 | ||
NiFe-MOF derived oxides/hydroxides/carbonaceous materials | Fe-Ni-Ox | GC | 0.1 mol∙L−1 | 584 | 72 | |
NiFe2O4 | NF | 1 mol∙L−1 | 293 | 98 | ||
FeNi3-Fe3O4 NPs/MOF-CNT | GC | 1 mol∙L−1 | 234 | 37 | ||
FeNi@N-CNT | GC | 1 mol∙L−1 | 300 | 48 | ||
Fe-Ni@NC-CNTs | NF | 1 mol∙L−1 | 274 | 45.5 | ||
NiFe-NCs | CFP | 1 mol∙L−1 | 271 | 48 | ||
Ni0.5Fe0.5-HP | NF | 1 mol∙L−1 | 280 | 79 | ||
FeNi/NiFe2O4@NC | GC | 1 mol∙L−1 | 316 | 60 | ||
NiFe@NC | GC | 1 mol∙L−1 | 360 | 60 | ||
NiFe-MOF derived phosphates/sulfides | Fe-Ni-P/rGO-400 | GC | 1 mol∙L−1 | 240 | 63 | |
(NixFe1−x)2P nanocubes | GC | 1 mol∙L−1 | 290 | 44 | ||
Ni-Fe-O-P | GC | 1 mol∙L−1 | 227 | 50 | ||
Ni-Fe-O-B | GC | 1 mol∙L−1 | 243 | 53 | ||
Ni-Fe-O-S | GC | 1 mol∙L−1 | 272 | 70 | ||
NiCo-MOF | NiCo-UMOFNs | GC | 1 mol∙L−1 | 250 | 42 | |
CTGU-10c2 | GC | 1 mol∙L−1 | 240 | 58 | ||
AuNPs@CoNi-MOF | GC | 1 mol∙L−1 | 283 | 83 | ||
M2-(BDC)2TED@CF | CF | 1 mol∙L−1 | 260 | 76 | ||
NiCo-MOF derived materials | NixCo3−xO4/NF | NF | 1 mol∙L−1 | 287 | 88 | |
NCMC | CFP | 1 mol∙L−1 | 290 | 73 | ||
NiCo alloy@C/NixCo1−xO/NF | NF | 1 mol∙L−1 | 300 (at 100 mA∙cm−2) | 106 | ||
CoxNi1−x@CoyNi1−yO@C | GC | 0.1 mol∙L−1 | 126 | |||
CoNi3C/Ni@C | GC | 1 mol∙L−1 | 325 | 68 | ||
NiCo-0.8@N-CNFs-800 | GC | 0.1 mol∙L−1 | 380 | 78 | ||
Co4Ni1P NTs | GC | 1 mol∙L−1 | 245 | 61 | ||
Ni1.4Co0.6P/NCNHMs | 1 mol∙L−1 | 320 | 54.5 | |||
NixCoy-P | NF | 1 mol∙L−1 | 300 (at 35 mA∙cm−2) | 71 | ||
Ni1Co4S@C-1000 | GC | 1 mol∙L−1 | 64 | |||
Ni-Co-S HPNA | CC | 1 mol∙L−1 | 270 | 56 | ||
Co/Ni@C | GC | 0.1 mol∙L−1 | 410 | 101 | ||
Ni-doped CoS2/CFP | CFP | 1 mol∙L−1 | 270 | 79 | ||
Other bimetallic Ni-MOFs and their derivatives | NiCu-MOFNs/NF | NF | 1 mol∙L−1 | 309 (at 100 mA∙cm−2) | 48 | |
Ni/Ni2P/Mo2C@C | GC | 1 mol∙L−1 | 368 | 75 | ||
Ni-Cu@Cu-Ni-MOF | CP | 1 mol∙L−1 | 640 | 98 | ||
Pt-Ni@PCN920 | NF | 1 mol∙L−1 | 59 | |||
UiO-66-NH2-Ni@G | GC | 1 mol∙L−1 | 370 | 45 | ||
Trimetal Ni-MOF and their derivatives | Fe/Ni2.4/Co0.4-MIL-53 | GC | 1 mol∙L−1 | 219 | ||
Co2.36Fe0.19Ni0.45-btca | NF | 1 mol∙L−1 | 292 | 73 | ||
NiCo/Fe3O4/MOF-74 | GC | 1 mol∙L−1 | 238 | 29 | ||
FeCo0.5Ni0.5-LDH | Cu foil | 1 mol∙L−1 | 248 | 38 | ||
NCF-MOF | NF | 0.1 mol∙L−1 | 480 (at 30 mA∙cm−2) | 49 | ||
Ni3S2@MIL-53(NiFeCo)/NF | NF | 1 mol∙L−1 | 236 (at 50 mA∙cm−2) | 15 |
1 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45 (9), 2603.
doi: 10.1039/C5CS00838G |
2 |
Dresselhaus M. S. ; Thomas I. L. Nature 2001, 414 (6861), 332.
doi: 10.1038/35104599 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488 (7411), 294.
doi: 10.1038/nature11475 |
4 |
Kibsgaard J. ; Chorkendorff I. Nat. Energy 2019, 4 (6), 430.
doi: 10.1038/s41560-019-0407-1 |
5 |
McCrory C. C. L. ; Jung S. ; Peters J. C. ; Jaramillo T. F. J. Am. Chem. Soc. 2013, 135 (45), 16977.
doi: 10.1021/ja407115p |
6 |
Dang S. ; Zhu Q. Nat. Rev. Mater. 2018, 3 (1), 17075.
doi: 10.1038/natrevmats.2017.75 |
7 | Chang J. ; Xiao Y. ; Luo Z. ; Ge J. ; Liu C. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556. |
常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556.
doi: 10.3866/PKU.WHXB201604291 |
|
8 |
Wang H. F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49 (5), 1414.
doi: 10.1039/c9cs00906j |
9 |
Zhu B. ; Liang Z. ; Xia D. ; Zou R. Energy Storage Mater. 2019, 23, 757.
doi: 10.1016/j.ensm.2019.05.022 |
10 |
Wang X. ; Li B. ; Wu Y. P. ; Tsamis A. ; Yu H. G. ; Liu S. ; Zhao J. ; Li Y. S. ; Li D. S. Inorg. Chem. 2020, 59 (7), 4764.
doi: 10.1021/acs.inorgchem.0c00024 |
11 |
Dong Y. ; Oloman C. W. ; Gyenge E. L. ; Su J. ; Chen L. Nanoscale 2020, 12 (18), 9924.
doi: 10.1039/d0nr02187c |
12 |
Han L. ; Dong S. ; Wang E. Adv. Mater. 2016, 28 (42), 9266.
doi: 10.1002/adma.201602270 |
13 |
Gao R. ; Yan D. Adv. Energy Mater. 2020, 10 (11), 1.
doi: 10.1002/aenm.201900954 |
14 | Wang L. ; Sun W. ; Liu C. Acta Phys. -Chim. Sin. 2019, 35 (7), 697. |
王露; 孙威; 刘超. 物理化学学报, 2019, 35 (7), 697.
doi: 10.3866/PKU.WHXB201807071 |
|
15 |
Tang H. ; Zheng M. ; Hu Q. ; Chi Y. ; Xu B. ; Zhang S. ; Xue H. ; Pang H. J. Mater. Chem. A 2018, 6 (29), 13999.
doi: 10.1039/c8ta03644f |
16 |
Xuan C. ; Zhang J. ; Wang J. ; Wang D. Chem. Asian J. 2020, 15 (7), 958.
doi: 10.1002/asia.20190172 |
17 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
18 |
Man I. C. ; Su H. ; Calle-vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
19 |
Bode H. ; Dehmelt K. ; Witte J. Electrochim. Acta 1966, 11 (8), 1079.
doi: 10.1016/0013-4686(66)80045-2 |
20 |
Huang J. ; Li Y. ; Zhang Y. ; Rao G. ; Wu C. ; Hu Y. ; Wang X. ; Lu R. ; Li Y. ; Xiong J. Angew. Chem. Int. Ed. 2019, 58 (48), 17458.
doi: 10.1002/anie.201910716 |
21 |
Wan Z. ; Yang D. ; Chen J. ; Tian J. ; Isimjan T. T. ; Yang X. ACS Appl. Nano Mater. 2019, 2 (10), 6334.
doi: 10.1021/acsanm.9b01330 |
22 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 1.
doi: 10.1038/ncomms15341 |
23 |
Li Y. -F. ; Selloni A. ACS Catal. 2014, 4 (4), 1148.
doi: 10.1021/cs401245q |
24 |
Diaz-Morales O. ; Ledezma-Yanez I. ; Koper M. T. M. ; Calle-Vallejo F. ACS Catal. 2015, 5 (9), 5380.
doi: 10.1021/acscatal.5b01638 |
25 |
Li W. H. ; Lv J. ; Li Q. ; Xie J. ; Ogiwara N. ; Huang Y. ; Jiang H. ; Kitagawa H. ; Xu G. ; Wang Y. J. Mater. Chem. A 2019, 7 (17), 10431.
doi: 10.1039/c9ta02169h |
26 |
Yeo B. S. ; Bell A. T. J. Phys. Chem. C 2012, 116 (15), 8394.
doi: 10.1021/jp3007415 |
27 |
Jiao Y. ; Zheng Y. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2015, 44 (8), 2060.
doi: 10.1039/C4CS00470A |
28 |
Suen N. ; Hung S. ; Quan Q. ; Zhang N. ; Xu Y. ; Chen H. Chem. Soc. Rev. 2017, 46 (2), 337.
doi: 10.1039/C6CS00328A |
29 |
Dietzel P. D. C. ; Panella B. ; Hirscher M. ; Blom R. ; Fjellvåg H. Chem. Commun. 2006, 1 (9), 959.
doi: 10.1039/b515434k |
30 |
Palomino Cabello C. ; Gómez-Pozuelo G. ; Opanasenko M. ; Nachtigall P. ; Čejka J. ChemPlusChem 2016, 81 (8), 828.
doi: 10.1002/cplu.201600168 |
31 |
Gao Z. ; Yu Z. W. ; Liu F. Q. ; Yu Y. ; Su X. M. ; Wang L. ; Xu Z. Z. ; Yang Y. L. ; Wu G. R. ; Feng X. F. ; et al Inorg. Chem. 2019, 58 (17), 11500.
doi: 10.1021/acs.inorgchem.9b01301 |
32 |
Janiak C. ; Vieth J. K. New J. Chem. 2010, 34 (11), 2366.
doi: 10.1039/c0nj00275e |
33 |
Tao Z. ; Wang T. ; Wang X. ; Zheng J. ; Li X. ACS Appl. Mater. Interfaces 2016, 8 (51), 35390.
doi: 10.1021/acsami.6b13411 |
34 |
Lin Y. ; Chen G. ; Wan H. ; Chen F. ; Liu X. ; Ma R. Small 2019, 15 (18), 1.
doi: 10.1002/smll.201900348 |
35 |
Yaghi O. M. ; Li H. J. Am. Chem. Soc. 1995, 117 (41), 10401.
doi: 10.1021/ja00146a033 |
36 |
Ping D. ; Feng X. ; Zhang J. ; Geng J. ; Dong X. ChemElectroChem 2017, 4 (12), 3037.
doi: 10.1002/celc.201700901 |
37 |
Zhao S. ; Wang Y. ; Dong J. ; He C. -T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ; et al Nat. Energy 2016, 1 (12), 16184.
doi: 10.1038/nenergy.2016.184 |
38 |
Shuai C. ; Mo Z. ; Niu X. ; Zhao P. ; Dong Q. ; Chen Y. ; Liu N. ; Guo R. J. Electrochem. Soc. 2020, 167 (2), 026512.
doi: 10.1149/1945-7111/ab6b10 |
39 |
Stock N. ; Biswas S. Chem. Rev. 2012, 112 (2), 933.
doi: 10.1021/cr200304e |
40 |
Braga D. ; Giaffreda S. L. ; Grepioni F. ; Pettersen A. ; Maini L. ; Curzi M. ; Polito M. Dalt. Trans. 2006, 10, 1249.
doi: 10.1039/b516165g |
41 |
Zhu D. ; Liu J. ; Wang L. ; Du Y. ; Zheng Y. ; Davey K. ; Qiao S. Z. Nanoscale 2019, 11 (8), 3599.
doi: 10.1039/c8nr09680e |
42 |
Xu Y. ; Tu W. ; Zhang B. ; Yin S. ; Huang Y. ; Kraft M. ; Xu R. Adv. Mater. 2017, 29 (11), 1.
doi: 10.1002/adma.201605957 |
43 |
He P. ; Xie Y. ; Dou Y. ; Zhou J. ; Zhou A. ; Wei X. ; Li J. R. ACS Appl. Mater. Interfaces 2019, 11 (44), 41595.
doi: 10.1021/acsami.9b16224 |
44 |
Yan L. ; Jiang H. ; Xing Y. ; Wang Y. ; Liu D. ; Gu X. ; Dai P. ; Li L. ; Zhao X. J. Mater. Chem. A 2018, 6 (4), 1682.
doi: 10.1039/c7ta10218f |
45 |
Zhang H. ; Su J. ; Zhao K. ; Chen L. ChemElectroChem 2020, 7 (8), 1805.
doi: 10.1002/celc.202000136 |
46 |
Maruthapandian V. ; Kumaraguru S. ; Mohan S. ; Saraswathy V. ; Muralidharan S. ChemElectroChem 2018, 5 (19), 2795.
doi: 10.1002/celc.201800802 |
47 |
Liu Q. ; Xie L. ; Shi X. ; Du G. ; Asiri A. M. ; Luo Y. ; Sun X. Inorg. Chem. Front. 2018, 5 (7), 1570.
doi: 10.1039/C7QI00808B |
48 |
Guo C. ; Jiao Y. ; Zheng Y. ; Luo J. ; Davey K. ; Qiao S. Z. Chem 2019, 5 (9), 2429.
doi: 10.1016/j.chempr.2019.06.016 |
49 |
Hu Q. ; Huang X. ; Wang Z. ; Li G. ; Han Z. ; Yang H. ; Ren X. ; Zhang Q. ; Liu J. ; He C. J. Mater. Chem. A 2020, 8 (4), 2140.
doi: 10.1039/c9ta12713e |
50 |
Li X. ; Fan M. ; Wei D. ; Wang X. ; Wang Y. J. Electrochem. Soc. 2020, 167 (2), 024501.
doi: 10.1149/1945-7111/ab61eb |
51 |
Sun H. ; Lian Y. ; Yang C. ; Xiong L. ; Qi P. ; Mu Q. ; Zhao X. ; Guo J. ; Deng Z. ; Peng Y. Energy Environ. Sci. 2018, 11 (9), 2363.
doi: 10.1039/c8ee00934a |
52 |
Guo Y. ; Zhou Y. ; Nan Y. ; Li B. ; Song X. ACS Appl. Mater. Interfaces 2020, 12 (11), 12743.
doi: 10.1021/acsami.9b20532 |
53 |
Yu X. Y. ; Feng Y. ; Guan B. ; Lou X. W. D. ; Paik U. Energy Environ. Sci. 2016, 9 (4), 1246.
doi: 10.1039/c6ee00100a |
54 |
Jayaramulu K. ; Masa J. ; Tomanec O. ; Peeters D. ; Ranc V. ; Schneemann A. ; Zboril R. ; Schuhmann W. ; Fischer R. A. Adv. Funct. Mater. 2017, 27 (33), 1.
doi: 10.1002/adfm.201700451 |
55 |
Yang L. ; Gao M. ; Dai B. ; Guo X. ; Liu Z. ; Peng B. Electrochim. Acta 2016, 191, 813.
doi: 10.1016/j.electacta.2016.01.160 |
56 |
Xing J. ; Guo K. ; Zou Z. ; Cai M. ; Du J. ; Xu C. Chem. Commun. 2018, 54 (51), 7046.
doi: 10.1039/c8cc03112f |
57 |
Zheng F. ; Xiang D. ; Li P. ; Zhang Z. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. ACS Sustain. Chem. Eng. 2019, 7 (11), 9743.
doi: 10.1021/acssuschemeng.9b01131 |
58 |
Abednatanzi S. ; Gohari Derakhshandeh P. ; Depauw H. ; Coudert F. -X. ; Vrielinck H. ; Van Der Voort P. ; Leus K. Chem. Soc. Rev. 2019, 48 (9), 2535.
doi: 10.1039/C8CS00337H |
59 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interface Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
60 |
Wang L. J. ; Deng H. ; Furukawa H. ; Gándara F. ; Cordova K. E. ; Peri D. ; Yaghi O. M. Inorg. Chem. 2014, 53 (12), 5881.
doi: 10.1021/ic500434a |
61 |
Ma J. ; Lu B. ; Wang S. ; He W. ; Bai X. ; Wang T. ; Zhang X. ; Li Y. ; Zhang L. ; Chen J. ; et al New J. Chem. 2020, 44 (6), 2459.
doi: 10.1039/c9nj05562b |
62 |
Mohammed-Ibrahim J. J. Power Sources 2020, 448, 227375.
doi: 10.1016/j.jpowsour.2019.227375 |
63 |
Zhang W. ; Li D. ; Zhang L. ; She X. ; Yang D. J. Energy Chem. 2019, 39, 39.
doi: 10.1016/j.jechem.2019.01.017 |
64 |
Li C. ; Liu Y. ; Wang G. ; Guan L. ; Lin Y. ACS Sustain. Chem. Eng. 2019, 7 (8), 7496.
doi: 10.1021/acssuschemeng.9b00264 |
65 |
Ling X. ; Du F. ; Zhang Y. ; Shen Y. ; Li T. ; Alsaedi A. ; Hayat T. ; Zhou Y. ; Zou Z. RSC Adv. 2019, 9 (57), 33558.
doi: 10.1039/c9ra07499f |
66 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29 (6), 1.
doi: 10.1002/adfm.201807418 |
67 |
Yang L. ; Zhu G. ; Wen H. ; Guan X. ; Sun X. ; Feng H. ; Tian W. ; Zheng D. ; Cheng X. ; Yao Y. J. Mater. Chem. A 2019, 7 (15), 8771.
doi: 10.1039/c9ta00819e |
68 |
Du J. ; Xu S. ; Sun L. ; Li F. Chem. Commun. 2019, 55 (98), 14773.
doi: 10.1039/c9cc07433c |
69 |
Huang J. ; Li Y. ; Huang R. -K. ; He C. -T. ; Gong L. ; Hu Q. ; Wang L. ; Xu Y. -T. ; Tian X. -Y. ; Liu S. -Y. ; et al Angew. Chem. 2018, 130 (17), 4722.
doi: 10.1002/ange.201801029 |
70 |
Li F. L. ; Wang P. ; Huang X. ; Young D. J. ; Wang H. F. ; Braunstein P. ; Lang J. P. Angew. Chem. Int. Ed. 2019, 58 (21), 7051.
doi: 10.1002/anie.201902588 |
71 |
Jiang J. ; Zhang C. ; Ai L. Electrochim. Acta 2016, 208, 17.
doi: 10.1016/j.electacta.2016.05.008 |
72 |
Fang Z. ; Hao Z. ; Dong Q. ; Cui Y. J. Nanopart. Res. 2018, 20 (4), 106.
doi: 10.1007/s11051-018-4209-3 |
73 |
Srinivas K. ; Lu Y. ; Chen Y. ; Zhang W. ; Yang D. ACS Sustain. Chem. Eng. 2020, 8 (9), 3820.
doi: 10.1021/acssuschemeng.9b07182 |
74 |
Flahaut E. ; Govindaraj A. ; Peigney A. ; Laurent C. ; Rousset A. ; Rao C. N. R. Chem. Phys. Lett. 1999, 300 (1), 236.
doi: 10.1016/S0009-2614(98)01304-9 |
75 |
Zhao X. ; Pachfule P. ; Li S. ; Simke J. R. J. ; Schmidt J. ; Thomas A. Angew. Chem. Int. Ed. 2018, 57 (29), 8921.
doi: 10.1002/anie.201803136 |
76 |
Zou H. H. ; Yuan C. Z. ; Zou H. Y. ; Cheang T. Y. ; Zhao S. J. ; Qazi U. Y. ; Zhong S. L. ; Wang L. ; Xu A. W. Catal. Sci. Technol. 2017, 7 (7), 1549.
doi: 10.1039/c7cy00035a |
77 |
Fang X. ; Jiao L. ; Zhang R. ; Jiang H. L. ACS Appl. Mater. Interfaces 2017, 9 (28), 23852.
doi: 10.1021/acsami.7b07142 |
78 |
Xuan C. ; Wang J. ; Xia W. ; Zhu J. ; Peng Z. ; Xia K. ; Xiao W. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2018, 6 (16), 7062.
doi: 10.1039/c8ta00410b |
79 |
Zhou W. ; Huang D. D. ; Wu Y. P. ; Zhao J. ; Wu T. ; Zhang J. ; Li D. S. ; Sun C. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2019, 58 (13), 4227.
doi: 10.1002/anie.201813634 |
80 |
Hu W. C. ; Shi Y. ; Zhou Y. ; Weng C. ; Younis M. R. ; Pang J. ; Wang C. ; Xia X. H. J. Mater. Chem. A 2019, 7 (17), 10601.
doi: 10.1039/c9ta00847k |
81 |
Li D. J. ; Li Q. H. ; Gu Z. G. ; Zhang J. J. Mater. Chem. A 2019, 7 (31), 18519.
doi: 10.1039/c9ta04554f |
82 |
Shen Y. ; Guo S. G. ; Du F. ; Yuan X. B. ; Zhang Y. ; Hu J. ; Shen Q. ; Luo W. ; Alsaedi A. ; Hayat T. ; et al Nanoscale 2019, 11 (24), 11765.
doi: 10.1039/c9nr01804b |
83 |
Wei X. ; Zhang Y. ; He H. ; Gao D. ; Hu J. ; Peng H. ; Peng L. ; Xiao S. ; Xiao P. Chem. Commun. 2019, 55 (46), 6515.
doi: 10.1039/c9cc02037c |
84 |
Sun D. ; Ye L. ; Sun F. ; García H. ; Li Z. Inorg. Chem. 2017, 56 (9), 5203.
doi: 10.1021/acs.inorgchem.7b00333 |
85 |
Jia X. ; Wang M. ; Liu G. ; Wang Y. ; Yang J. ; Li J. Int. J. Hydrog. Energy 2019, 44 (45), 24572.
doi: 10.1016/j.ijhydene.2019.07.144 |
86 |
Feng C. ; Guo Y. ; Xie Y. ; Cao X. ; Li S. ; Zhang L. ; Wang W. ; Wang J. Nanoscale 2020, 12 (10), 5942.
doi: 10.1039/c9nr10943a |
87 |
Yan L. ; Cao L. ; Dai P. ; Gu X. ; Liu D. ; Li L. ; Wang Y. ; Zhao X. Adv. Funct. Mater. 2017, 27 (40), 1.
doi: 10.1002/adfm.201703455 |
88 |
Fan S. ; Zhang J. ; Wu Q. ; Huang S. ; Zheng J. ; Kong D. ; Chen S. ; Wang Y. ; Ang L. K. ; Shi Y. ; et al J. Phys. Chem. Lett. 2020, 11 (10), 3911.
doi: 10.1021/acs.jpclett.0c00851 |
89 |
Chen B. ; Ma G. ; Zhu Y. ; Wang J. ; Xiong W. ; Xia Y. J. Power Sources 2016, 334, 112.
doi: 10.1016/j.jpowsour.2016.10.022 |
90 |
Chen W. ; Zhang Y. ; Chen G. ; Huang R. ; Wu Y. ; Zhou Y. ; Hu Y. ; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.
doi: 10.1016/j.jcis.2019.10.099 |
91 |
Ma X. ; Qi K. ; Wei S. ; Zhang L. ; Cui X. J. Alloys Compd. 2019, 770, 236.
doi: 10.1016/j.jallcom.2018.08.096 |
92 |
Zheng X. ; Song X. ; Wang X. ; Zhang Z. ; Sun Z. ; Guo Y. New J. Chem. 2018, 42 (11), 8346.
doi: 10.1039/c8nj01035h |
93 |
Li X. ; Wang X. ; Zhou J. ; Han L. ; Sun C. ; Wang Q. ; Su Z. J. Mater. Chem. A 2018, 6 (14), 5789.
doi: 10.1039/c7ta10558d |
94 |
Li F. L. ; Shao Q. ; Huang X. ; Lang J. P. Angew. Chem. Int. Ed. 2018, 57 (7), 1888.
doi: 10.1002/anie.201711376 |
95 |
Yuan J. T. ; Hou J. J. ; Liu X. L. ; Feng Y. R. ; Zhang X. M. Dalt. Trans. 2020, 49 (3), 750.
doi: 10.1039/c9dt04295d |
96 |
Wang X. ; Xiao H. ; Li A. ; Li Z. ; Liu S. ; Zhang Q. ; Gong Y. ; Zheng L. ; Zhu Y. ; Chen C. ; et al J. Am. Chem. Soc. 2018, 140 (45), 15336.
doi: 10.1021/jacs.8b08744 |
97 |
Zhang W. Da ; Yu H. ; Li T. ; Hu Q. T. ; Gong Y. ; Zhang D. Y. ; Liu Y. ; Fu Q. T. ; Zhu H. Y. ; et al Appl. Catal. B Environ. 2020, 264, 118532.
doi: 10.1016/j.apcatb.2019.118532 |
98 |
Ahn W. ; Park M. G. ; Lee D. U. ; Seo M. H. ; Jiang G. ; Cano Z. P. ; Hassan F. M. ; Chen Z. Adv. Funct. Mater. 2018, 28 (28), 1.
doi: 10.1002/adfm.201802129 |
99 |
Yuan B. ; Li C. ; Guan L. ; Li K. ; Lin Y. J. Power Sources 2020, 451, 227295.
doi: 10.1016/j.jpowsour.2019.227295 |
100 |
Xie A. ; Du J. ; Tao F. ; Tao Y. ; Xiong Z. ; Luo S. ; Li X. ; Yao C. Electrochim. Acta 2019, 305, 338.
doi: 10.1016/j.electacta.2019.03.073 |
101 |
Xie A. ; Zhang J. ; Tao X. ; Zhang J. ; Wei B. ; Peng W. ; Tao Y. ; Luo S. Electrochim. Acta 2019, 324, 134814.
doi: 10.1016/j.electacta.2019.134814 |
102 |
Senthil Raja D. ; Lin H. W. ; Lu S. Y. Nano Energy 2019, 57, 1.
doi: 10.1016/j.nanoen.2018.12.018 |
103 |
Wang Q. ; Wei C. ; Li D. ; Guo W. ; Zhong D. ; Zhao Q. Microporous Mesoporous Mater. 2019, 286, 92.
doi: 10.1016/j.micromeso.2019.05.040 |
104 |
Li Y. ; Lu M. ; He P. ; Wu Y. ; Wang J. ; Chen D. ; Xu H. ; Gao J. ; Yao J. Chem. Asian J. 2019, 14 (9), 1590.
doi: 10.1002/asia.201900328 |
105 |
Kumar A. ; Bhattacharyya S. ACS Appl. Mater. Interfaces 2017, 9 (48), 41906.
doi: 10.1021/acsami.7b14096 |
106 |
Qiao H. ; Yang Y. ; Dai X. ; Zhao H. ; Yong J. ; Yu L. ; Luan X. ; Cui M. ; Zhang X. ; Huang X. Electrochim. Acta 2019, 318, 430.
doi: 10.1016/j.electacta.2019.06.084 |
107 |
Ma Y. ; Dai X. ; Liu M. ; Yong J. ; Qiao H. ; Jin A. ; Li Z. ; Huang X. ; Wang H. ; Zhang X. ACS Appl. Mater. Interfaces 2016, 8 (50), 34396.
doi: 10.1021/acsami.6b11821 |
108 |
Du L. ; Luo L. ; Feng Z. ; Engelhard M. ; Xie X. ; Han B. ; Sun J. ; Zhang J. ; Yin G. ; Wang C. ; et al Nano Energy 2017, 39, 245.
doi: 10.1016/j.nanoen.2017.07.006 |
109 |
Abdelkader-Fernández V. K. ; Fernandes D. M. ; Balula S. S. ; Cunha-Silva L. ; Pérez-Mendoza M. J. ; López-Garzón F. J. ; Pereira M. F. ; Freire C. ACS Appl. Energy Mater. 2019, 2 (3), 1854.
doi: 10.1021/acsaem.8b02010 |
110 |
Xie Z. ; Tang H. ; Wang Y. ChemElectroChem 2019, 6 (4), 1206.
doi: 10.1002/celc.201801106 |
111 |
Nadeem M. ; Yasin G. ; Bhatti M. H. ; Mehmood M. ; Arif M. ; Dai L. J. Power Sources 2018, 402, 34.
doi: 10.1016/j.jpowsour.2018.09.006 |
112 |
Hassan M. H. ; Soliman A. B. ; Elmehelmey W. A. ; Abugable A. A. ; Karakalos S. G. ; Elbahri M. ; Hassanien A. ; Alkordi M. H. Chem. Commun. 2019, 55 (1), 31.
doi: 10.1039/c8cc07120a |
[1] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-0. |
[2] | . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-0. |
[3] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[4] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[5] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-0. |
[6] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-0. |
[7] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-0. |
[8] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-0. |
[9] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-0. |
[10] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-0. |
[11] | Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009077-0. |
[12] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[13] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-0. |
[14] | Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol [J]. Acta Phys. -Chim. Sin., 2020, 36(8): 1906026-0. |
[15] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
|