Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009077.doi: 10.3866/PKU.WHXB202009077
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Kangning Zhao, Xiao Li, Dong Su()
Received:
2020-09-25
Accepted:
2020-10-31
Published:
2020-11-10
Contact:
Dong Su
E-mail:dongsu@iphy.ac.cn
About author:
Dong Su, Email: dongsu@iphy.ac.cn; Tel: +86-10-82649555Supported by:
MSC2000:
Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis[J].Acta Phys. -Chim. Sin., 2021, 37(7): 2009077.
Fig 3
(a, b) Schematic illustration of intrinsic lattice distortion effect on Bragg diffraction: (a) perfect lattice with the same atoms and distorted lattice with solid-solution of different-sized atoms, (b) distortion effects on XRD intensity; (c) the PDFs obtained from X-ray diffraction and neutron diffraction, (d) the difference of the PDFs between the calculated PDF and measured ones 72, 73. Adapted from Mater. Chem. Phys. and Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., Elsevier and Springer publisher. "
Table 1
Summary of the synthetic method and electrocatalytic application of high-entropy alloy."
Composition | Synthetic method | Structure | Catalytic application | Ref. |
RuRhCoNi(Ir) | Carbothermal shock | FCC | NH3 decomposition | |
RuRhCoNiIr | Wet impregnation | Phase separation | NH3 decomposition | |
FeCoNiCuMo | Carbothermal shock | FCC | NH3 decomposition | |
PtPdRhRuCe | Carbothermal shock | FCC | NH3 oxidation | |
PtPdRhCoCe | Carbothermal shock | FCC | NH3 oxidation | 37 |
PtPdRhNi | Carbothermal shock | FCC | ORR a | |
PtPdFeCoNi | Carbothermal shock | FCC | ORR | |
PtRuCuOsIr | Mechanical alloying & dealloying | FCC | ORR, MOR b | |
PdAuAgTi | – | – | ORR | |
CrMnFeCoNi, | Combinatorial co-sputtering | – | ORR | |
AlNiCoIrMo | Arc-melting & dealloying | FCC | ORR | |
AlNiCuPtM (M = Ir, Pd, V, Co, Mn) | Arc-melting & dealloying | FCC | ORR | |
AlNiCuPtPdAu | Arc-melting & dealloying | FCC | HER c, OER d | |
CoCrFeMnNi | Kinetically-controlled laser-synthesis | FCC | HER | |
PtAuPd(RhRu) | Ultrasonication-assisted wet chemistry | FCC | HER | |
CoFeLaNiPt | Nanodroplet-mediated electrodeposition | Amorphous | HER, OER | |
FeNiMnCrCu | Arc-melting | FCC + BCC | OER | |
MnFeCoNi | Mechanical alloying | FCC | OER | |
AlNiCoFeM (M = Mo, Nb, Cr) | Arc-melting & dealloying | FCC | OER | |
MnFeCoNiCu | MOF-template method | FCC | OER | |
PtFeCoNiCuAg | Radio frequency sputter depositions | FCC | MOR | |
IrOsPtRhRu | Thermal decomposition | FCC/HCP | MOR | |
CuAgAuPtPd | Arc-melting & mechanical alloying | FCC | MOR | |
AgAuCuPdPt | Melting & cryogrinding | FCC | CO2RR e |
Fig 5
Carbothermal shock synthesis of high-entropy-alloy nanoparticles. (a) The precursor salt particles supported by carbon nanofiber before thermal shock and well-dispersed PtNi nanoparticles after CTS, (b) schematic illustration of the carbothermal shock method and the evolution of temperatures during the thermal shock, (c) STEM-EDS elemental mapping and HAADF-STEM image of octonary NPs 37. Reproduced with permission. Copyright 2017, American Association for the Advancement of Science. "
Fig 6
Electrochemical shock method for high-entropy metallic nanoparticles. (a) Current trace in response to the collision of a single nanodroplet onto a carbon fiber and the schematic illustration of nanodroplet-mediated electrodeposition, (b, c) elemental mapping images of low entropy and high entropy NPs, Scale bar, 500 nm 47."
Fig 7
(a) Schematic diagram of the FMBP experimental setup for synthesis of HEA-NPs, (b) schematic diagrams for synthesis of homogeneous and phase-separated HEA-NPs by FMBP and FBP strategies, (c) The simulation of the time required for precursors to reach 923 K in the FMBP process, (d, e) HAADF-STEM images for the denary MnCoNiCuRhPdSnIrPtAu HEA-NPs, (f) elemental mapping images of the denary HEA-NPs 83."
Fig 9
(a) The hybrid MC-MD simulation of a Ru-5 HEA nanoparticle after diffusion at 1500 K and quenching at 298 K, (b) the MD simulated diffusion coefficient of Ru and hybrid MC-MD simulated compositional partitions after annealing at 773 K, (c) the MC simulated compositional partitions of Co25Mo45Fe10Ni10Cu10 HEA nanoparticle at 573, 750 and 1000 K 35, 36."
Fig 10
(a) Comparison of predictive adsorption energies of *OH and DFT-calculated energies, (b) activity and distribution of adsorption energies of optimized IrPdPtRhRu HEA, (c, d) activity, selectivity and distribution of adsorption energies of optimized CoCuGaNiZn and AgAuCuPdPt HEA14, 46. Adapted from ACS Catal., American Chemical Society publisher."
Table 2
Summary of the electrocatalytic performance of high-entropy alloy catalysts."
Reaction | Composition | Structural feature | E1/2/VRHE | Tafel slope/(mV∙dec−1) | Electrolyte | Ref. |
ORR | PtPdRhNi | Nanoparticles | 0.86 | 32 | 1.0 mol∙L−1 KOH | |
PtPdFeCoNi | Nanoparticles | 0.85 | 31 | 1.0 mol∙L−1 KOH | ||
PtRuCuOsIr | Nanoporous | 0.864 | – | 0.1 mol∙L−1 HClO4 | ||
CrMnFeCoNi, | Nanoparticles | – | 82 ± 12 | 3 mol∙L−1 KCl | ||
AlNiCuPtPdAu | Nanoporous | 0.9 | – | 0.1 mol∙L−1 HClO4 | ||
AlNiCuPtMn | Nanoporous | 0.945 | 47 | 0.1 mol∙L−1 HClO4 | ||
Reaction | Composition | Structural feature | Overpotential/mV | Tafel slope/(mV·dec−1) | Electrolyte | Ref. |
HER | AlNiCuPtPdAu | Nanoporous | – | 28 | 0.1 mol∙L−1 HClO4 | |
AlNiCoIrMo | Nanoporous | 18.5 | 33.2 | 0.5 mol∙L−1 H2SO4 | ||
PtAuPd(RhRu) | Nanoparticles | 90 | 62 | 1.0 mol∙L−1 KOH | ||
CoFeLaNiPt | Nanoparticles | 555 | 0.1 mol∙L−1 KOH | |||
Reaction | Composition | Structural feature | Overpotential/mV | Tafel slope/(mV·dec−1) | Electrolyte | Ref. |
OER | CoFeLaNiPt | Nanoparticles | 377 | – | 0.1 mol∙L−1 KOH | |
FeNiMnCrCu | - | 342 | 58 | 1 mol∙L−1 NaOH | ||
MnFeCoNi | Nanoporous | 302 | 83.7 | 1 mol∙L−1 KOH | ||
AlNiCoFeMo | Nanoporous | 240 | 46 | 1 mol∙L−1 KOH | ||
MnFeCoNiCu | Nanoparticles | 263 | 43 | 1.0 mol∙L−1 KOH | ||
Reaction | Composition | Structural feature | If/Ib | Mass activity/(mA∙mgPt−1) | Electrolyte | Ref. |
MOR | PtFeCoNiCuAg | Nanoparticles | 1.09 | 0.504 | 0.5 mol∙L−1 H2SO4 1.0 mol∙L−1 CH3OH | |
IrOsPtRhRu | Nanoporous | 1.26 | 0.86 | 0.5 mol∙L−1 H2SO4 0.5 mol∙L−1 CH3OH |
Fig 12
(a) FESEM images of the FeCoNiCuMn NPs, (b) elemental analysis of HEA nanoparticles, (c) the bright-field TEM image of HEA, (d) high-resolution TEM image showing the atomic lattice of particle A and D, (e, f) electrocatalytic performance evaluation 52. Adapted from J. Mater. Chem. A, The Royal Society of Chemistry publisher."
1 |
Turner J. A. Science 2004, 305, 972.
doi: 10.1126/science.1103197 |
2 |
Lewis N. S. ; Nocera D. G. Proc. Natl. Acad. Sci. 2006, 103, 15729.
doi: 10.1073/pnas.0603395103 |
3 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
4 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Nørskov J. K. ; Jaramillo T. F. Science 2017, 355, eaad4998.
doi: 10.1126/science.aad4998 |
5 |
Nguyen D. L. T. ; Kim Y. ; Hwang Y. J. ; Won D. H. Carbon Energy 2020, 2, 72.
doi: 10.1002/cey2.27 |
6 |
Ali A. ; Shen P. K. Carbon Energy 2020, 2, 99.
doi: 10.1002/cey2.26 |
7 |
He Y. ; Liu J. -C. ; Luo L. ; Wang Y. -G. ; Zhu J. ; Du Y. ; Li J. ; Mao S. X. ; Wang C. Proc. Natl. Acad. Sci. 2018, 115, 7700.
doi: 10.1073/pnas.1800262115 |
8 |
Li C. ; Tan H. ; Lin J. ; Luo X. ; Wang S. ; You J. ; Kang Y. -M. ; Bando Y. ; Yamauchi Y. ; Kim J. Nano Today 2018, 21, 91.
doi: 10.1016/j.nantod.2018.06.005 |
9 |
Yu J. ; He Q. ; Yang G. ; Zhou W. ; Shao Z. ; Ni M. ACS Catal. 2019, 9, 9973.
doi: 10.1021/acscatal.9b02457 |
10 |
Singh K. ; Tetteh E. B. ; Lee H. -Y. ; Kang T. -H. ; Yu J. -S. ACS Catal. 2019, 9, 8622.
doi: 10.1021/acscatal.9b01420 |
11 | Zhang C. ; Chen Z. ; Lian Y. ; Chen Y. ; Li Q. ; Gu Y. ; Lu Y. ; Deng Z. ; Peng Y. Acta Phys. -Chim. Sin. 2019, 35, 1404. |
张楚风; 陈哲伟; 连跃彬; 陈宇杰; 李沁; 顾银冬; 陆永涛; 邓昭; 彭扬. 物理化学学报, 2019, 35, 1404.
doi: 10.3866/PKU.WHXB201905030 |
|
12 |
Luo M. ; Sun Y. ; Qin Y. ; Li Y. ; Li C. ; Yang Y. ; Xu N. ; Wang L. ; Guo S. Mater. Today Nano 2018, 1, 29.
doi: 10.1016/j.mtnano.2018.04.008 |
13 |
Halawa M. I. ; Lai J. ; Xu G. Mater. Today Nano 2018, 3, 9.
doi: 10.1016/j.mtnano.2018.11.001 |
14 |
Batchelor T. A. A. ; Pedersen J. K. ; Winther S. H. ; Castelli I. E. ; Jacobsen K. W. ; Rossmeisl J. Joule 2019, 3, 834.
doi: 10.1016/.joule.2018.12.015 |
15 |
Wang S. ; Xin H. Chem 2019, 5, 502.
doi: 10.1016/j.chempr.2019.02.015 |
16 |
Nellaiappan S. ; Katiyar N. K. ; Kumar R. ; Parui A. ; Malviya K. D. ; Pradeep K. G. ; Singh A. K. ; Sharma S. ; Tiwary C. S. ; Biswas K. ACS Catal. 2020, 10, 3658.
doi: 10.1021/acscatal.9b04302 |
17 |
Nørskov J. K. ; Bligaard T. ; Rossmeisl J. ; Christensen C. H. Nat. Chem. 2009, 1, 37.
doi: 10.1038/nchem.121 |
18 |
Mao Y. ; Chen J. ; Wang H. ; Hu P. Chin. J. Catal. 2015, 36, 1596.
doi: 10.1016/S1872-2067(15)60875-0 |
19 |
Sankar M. ; Dimitratos N. ; Miedziak P. J. ; Wells P. P. ; Kiely C. J. ; Hutchings G. J. Chem. Soc. Rev. 2012, 41, 8099.
doi: 10.1039/C2CS35296F |
20 |
Pickering H. W. ; Wagner C. J. Electrochem. Soc. 1967, 114, 698.
doi: 10.1149/1.2426709/meta |
21 |
Toshima N. ; Yonezawa T. New J. Chem. 1998, 22, 1179.
doi: 10.1039/A805753B |
22 |
Tao F. ; Grass M. E. ; Zhang Y. ; Butcher D. R. ; Renzas J. R. ; Liu Z. ; Chung J. Y. ; Mun B. S. ; Salmeron M. ; Somorjai G. A. Science 2008, 322, 932.
doi: 10.1126/science.1164170 |
23 |
Pendergast A. D. ; Glasscott M. W. ; Renault C. ; Dick J. E. Electrochem. Commun. 2019, 98, 1.
doi: 10.1016/j.elecom.2018.11.005 |
24 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. -Y. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
25 |
Li Q. ; Wu L. ; Wu G. ; Su D. ; Lv H. ; Zhang S. ; Zhu W. ; Casimir A. ; Zhu H. ; Mendoza-Garcia A. ; Sun S. Nano Lett. 2015, 15, 2468.
doi: 10.1021/acs.nanolett.5b00320 |
26 |
Zhang S. ; Metin Ö. ; Su D. ; Sun S. Angew. Chem. Int. Ed. 2013, 52, 3681.
doi: 10.1002/anie.201300276 |
27 |
Luo M. ; Zhao Z. ; Zhang Y. ; Sun Y. ; Xing Y. ; Lv F. ; Yang Y. ; Zhang X. ; Hwang S. ; Qin Y. ; et al Nature 2019, 574, 81.
doi: 10.1038/s41586-019-1603-7 |
28 |
Hansgen D. A. ; Vlachos D. G. ; Chen J. G. Nat. Chem. 2010, 2, 484.
doi: 10.1038/nchem.626 |
29 |
Boisen A. ; Dahl S. ; Jacobsen C. J. H. J. Catal. 2002, 208, 180.
doi: 10.1006/jcat.2002.3571 |
30 |
Tomboc G. M. ; Kwon T. ; Joo J. ; Lee K. J. Mater. Chem. A 2020, 8, 14844.
doi: 10.1039/D0TA05176D |
31 |
Koo W. -T. ; Millstone J. E. ; Weiss P. S. ; Kim I. -D. ACS Nano 2020, 14, 6407.
doi: 10.1021/acsnano.0c03993 |
32 | Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. ACS Catal. 2020, 11280. doi: 10.1021/acscatal.0c03617 |
33 | Li, H.; Zhu, H.; Zhang, S.; Zhang, N.; Du, M.; Chai, Y. Small Struct. 2020, doi: 10.1002/sstr.202000033 |
34 |
Dai S. ChemSusChem 2020, 13, 1915.
doi: 10.1002/cssc.202000448 |
35 |
Xie P. ; Yao Y. ; Huang Z. ; Liu Z. ; Zhang J. ; Li T. ; Wang G. ; Shahbazian-Yassar R. ; Hu L. ; Wang C. Nat. Commun. 2019, 10, 4011.
doi: 10.1073/pnas.1903721117 |
36 |
Yao Y. ; Liu Z. ; Xie P. ; Huang Z. ; Li T. ; Morris D. ; Finfrock Z. ; Zhou J. ; Jiao M. ; Gao J. ; et al Sci. Adv. 2020, 6, eaaz0510.
doi: 10.1126/sciadv.aaz0510 |
37 |
Yao Y. ; Huang Z. ; Xie P. ; Lacey S. D. ; Jacob R. J. ; Xie H. ; Chen F. ; Nie A. ; Pu T. ; Rehwoldt M. ; et al Science 2018, 359, 1489.
doi: 10.1126/science.aan5412 |
38 |
Chen X. ; Si C. ; Gao Y. ; Frenzel J. ; Sun J. ; Eggeler G. ; Zhang Z. J. Power Sources 2015, 273, 324.
doi: 10.1016/j.jpowsour.2014.09.076 |
39 |
Li J. ; Stein H. S. ; Sliozberg K. ; Liu J. ; Liu Y. ; Sertic G. ; Scanley E. ; Ludwig A. ; Schroers J. ; Schuhmann W. ; et al J. Mater. Chem. A 2016, 5, 67.
doi: 10.1016/S1872-2067(15)60875-0 |
40 |
Li S. ; Tang X. ; Jia H. ; Li H. ; Xie G. ; Liu X. ; Lin X. ; Qiu H. J. Catal. 2020, 383, 164.
doi: 10.1016/j.jcat.2020.01.024 |
41 |
Löffler T. ; Meyer H. ; Savan A. ; Wilde P. ; Garzón Manjón A. ; Chen Y. -T. ; Ventosa E. ; Scheu C. ; Ludwig A. ; Schuhmann W. Adv. Energy Mater. 2018, 8, 1802269.
doi: 10.1002/aenm.201802269 |
42 |
Löffler T. ; Savan A. ; Meyer H. ; Meischein M. ; Strotkötter V. ; Ludwig A. ; Schuhmann W. Angew. Chem. Int. Ed. 2020, 59, 5844.
doi: 10.1002/anie.201914666 |
43 |
Qiu H. ; Fang G. ; Wen Y. ; Liu P. ; Xie G. ; Liu X. ; Sun S. J. Mater. Chem. A 2019, 7, 6499.
doi: 10.1039/C9TA00505F |
44 |
Jin Z. ; Lv J. ; Jia H. ; Liu W. ; Li H. ; Chen Z. ; Lin X. ; Xie G. ; Liu X. ; Sun S. ; Qiu H. J. Small 2019, 15, 1904180.
doi: 10.1002/smll.201904180 |
45 |
Yao Y. ; Huang Z. ; Li T. ; Wang H. ; Liu Y. ; Stein H. S. ; Mao Y. ; Gao J. ; Jiao M. ; Dong Q. ; et al Proc. Natl. Acad. Sci. 2020, 117, 6316.
doi: 10.1073/pnas.1903721117 |
46 |
Pedersen J. K. ; Batchelor T. A. A. ; Bagger A. ; Rossmeisl J. ACS Catal. 2020, 10, 2169.
doi: 10.1021/acscatal.9b04343 |
47 |
Glasscott M. W. ; Pendergast A. D. ; Goines S. ; Bishop A. R. ; Hoang A. T. ; Renault C. ; Dick J. E. Nat. Commun. 2019, 10, 2650.
doi: 10.1038/s41467-019-10303-z |
48 |
Liu M. ; Zhang Z. ; Okejiri F. ; Yang S. ; Zhou S. ; Dai S. Adv. Mater. Interfaces 2019, 6, 1900015.
doi: 10.1002/admi.201900015 |
49 |
Waag F. ; Li Y. ; Ziefuß A. R. ; Bertin E. ; Kamp M. ; Duppel V. ; Marzun G. ; Kienle L. ; Barcikowski S. ; Gökce B. RSC Adv. 2019, 9, 18547.
doi: 10.1039/C9RA03254A |
50 |
Cui X. ; Zhang B. ; Zeng C. ; Guo S. MRS Commun. 2018, 8, 1230.
doi: 10.1557/mrc.2018.111 |
51 |
Dai W. ; Lu T. ; Pan Y. J. Power Sources 2019, 430, 104.
doi: 10.1016/j.jpowsour.2019.05.030 |
52 |
Huang K. ; Zhang B. ; Wu J. ; Zhang T. ; Peng D. ; Cao X. ; Zhang Z. ; Li Z. ; Huang Y. J. Mater. Chem. A 2020, 8, 11938.
doi: 10.1039/D0TA02125C |
53 |
Qiu H. ; Fang G. ; Gao J. ; Wen Y. ; Lv J. ; Li H. ; Xie G. ; Liu X. ; Sun S. ACS Mater. Lett. 2019, 1, 526.
doi: 10.1021/acsmaterialslett.9b00414 |
54 |
Feng J. ; Chen D. ; Pikhitsa P. V. ; Jung Y. -H. ; Yang J. ; Choi M. Matter 2020, 3, 1646.
doi: 10.1016/j.matt.2020.07.027 |
55 |
Tsai C. -F. ; Yeh K. -Y. ; Wu P. -W. ; Hsieh Y. -F. ; Lin P. J. Alloys Compd. 2009, 478, 868.
doi: 10.1016/j.jallcom.2008.12.055 |
56 |
Yusenko K. V. ; Riva S. ; Carvalho P. A. ; Yusenko M. V. ; Arnaboldi S. ; Sukhikh A. S. ; Hanfland M. ; Gromilov S. A. Scr. Mater. 2017, 138, 22.
doi: 10.1016/j.scriptamat.2017.05.022 |
57 |
Katiyar N. K. ; Nellaiappan S. ; Kumar R. ; Malviya K. D. ; Pradeep K. G. ; Singh A. K. ; Sharma S. ; Tiwary C. S. ; Biswas K. Mater. Today Energy 2020, 16, 100393.
doi: 10.1016/j.mtener.2020.100393 |
58 |
Yeh J. W. ; Chen S. K. ; Lin S. J. ; Gan J. Y. ; Chin T. S. ; Shun T. T. ; Tsau C. H. ; Chang S. Y. Adv. Eng. Mater. 2004, 6, 299.
doi: 10.1002/adem.200300567 |
59 | Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. Sci. Eng. A 2004, 375–377, 213. doi: 10.1016/j.msea.2003.10.257 |
60 |
Yeh J. -W. JOM 2013, 65, 1759.
doi: 10.1007/s11837-013-0761-6 |
61 |
Ruffa A. R. Phys. Rev. B 1982, 25, 5895.
doi: 10.1103/PhysRevB.25.5895 |
62 |
Zhang W. ; Liaw P. K. ; Zhang Y. Sci. China Mater. 2018, 61, 2.
doi: 10.1007/s40843-017-9195-8 |
63 |
Gludovatz B. ; Hohenwarter A. ; Thurston K. V. S. ; Bei H. ; Wu Z. ; George E. P. ; Ritchie R. O. Nat. Commun. 2016, 7, 10602.
doi: 10.1038/ncomms10602 |
64 |
Zhang Z. ; Sheng H. ; Wang Z. ; Gludovatz B. ; Zhang Z. ; George E. P. ; Yu Q. ; Mao S. X. ; Ritchie R. O. Nat. Commun. 2017, 8, 14390.
doi: 10.1038/ncomms14390 |
65 |
Ding J. ; Yu Q. ; Asta M. ; Ritchie R. O. Proc. Natl. Acad. Sci. 2018, 115, 8919.
doi: 10.1073/pnas.1808660115 |
66 |
Zhang R. ; Zhao S. ; Ding J. ; Chong Y. ; Jia T. ; Ophus C. ; Asta M. ; Ritchie R. O. ; Minor A. M. Nature 2020, 581, 283.
doi: 10.1038/s41586-020-2275-z |
67 |
George E. P. ; Raabe D. ; Ritchie R. O. Nat. Rev. Mater. 2019, 4, 515.
doi: 10.1038/s41578-019-0121-4 |
68 |
Ma D. ; Grabowski B. ; Körmann F. ; Neugebauer J. ; Raabe D. Acta Mater. 2015, 100, 90.
doi: 10.1016/j.actamat.2015.08.050 |
69 |
Miracle D. B. ; Senkov O. N. Acta Mater. 2017, 122, 448.
doi: 10.1016/j.actamat.2016.08.081 |
70 |
Zhang Y. ; Zuo T. T. ; Tang Z. ; Gao M. C. ; Dahmen K. A. ; Liaw P. K. ; Lu Z. P. Proc. Natl. Acad. Sci. 2014, 61, 1.
doi: 10.1016/j.pmatsci.2013.10.001 |
71 |
Gibbs J. W. Am. J. Sci. 1878, 16, 441.
doi: 10.2475/ajs.s3-16.96.441 |
72 |
Yeh J. -W. ; Chang S. -Y. ; Hong Y. -D. ; Chen S. -K. ; Lin S. -J. Mater. Chem. Phys. 2007, 103, 41.
doi: 10.1016/j.matchemphys.2007.01.003 |
73 |
Guo W. ; Dmowski W. ; Noh J. ; Rack P. D. ; Liaw P. K. ; Egami T. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013, 44, 1994.
doi: 10.1007/s11661-012-1474-0 |
74 |
Tsai K. Y. ; Tsai M. H. ; Yeh J. W. Acta Mater. 2013, 61, 4887.
doi: 10.1016/j.actamat.2013.04.058 |
75 | Ranganathan S. Curr. Sci. 2003, 85, 1404. |
76 |
Pickering E. J. ; Jones N. G. Int. Mater. Rev. 2016, 61, 183.
doi: 10.1080/09506608.2016.1180020 |
77 |
Pickering E. J. ; Muñoz-Moreno R. ; Stone H. J. ; Jones N. G. Scr. Mater. 2016, 113, 106.
doi: 10.1016/j.scriptamat.2015.10.025 |
78 |
Laplanche G. ; Berglund S. ; Reinhart C. ; Kostka A. ; Fox F. ; George E. P. Acta Mater. 2018, 161, 338.
doi: 10.1016/j.actamat.2018.09.040 |
79 |
Schuh B. ; Mendez-Martin F. ; Völker B. ; George E. P. ; Clemens H. ; Pippan R. ; Hohenwarter A. Acta Mater. 2015, 96, 258.
doi: 10.1016/j.actamat.2015.06.025 |
80 |
Otto F. ; Dlouhý A. ; Pradeep K. G. ; Kuběnová M. ; Raabe D. ; Eggeler G. ; George E. P. Acta Mater. 2016, 112, 40.
doi: 10.1016/j.actamat.2016.04.005 |
81 |
Sharma G. ; Kumar D. ; Kumar A. ; Al-Muhtaseb A. a. H. ; Pathania D. ; Naushad M. ; Mola G. T. Mater. Sci. Eng. C 2017, 71, 1216.
doi: 10.1016/j.msec.2016.11.002 |
82 |
Yang Y. ; Lin Z. ; Gao S. ; Su J. ; Lun Z. ; Xia G. ; Chen J. ; Zhang R. ; Chen Q. ACS Catal. 2017, 7, 469.
doi: 10.1021/acscatal.6b02573 |
83 |
Gao S. ; Hao S. ; Huang Z. ; Yuan Y. ; Han S. ; Lei L. ; Zhang X. ; Shahbazian-Yassar R. ; Lu J. Nat. Commun. 2020, 11, 2016.
doi: 10.1038/s41467-020-15934-1 |
84 |
Wu D. ; Kusada K. ; Yamamoto T. ; Toriyama T. ; Matsumura S. ; Kawaguchi S. ; Kubota Y. ; Kitagawa H. J. Am. Chem. Soc. 2020, 142, 13833.
doi: 10.1021/jacs.0c04807 |
85 |
Glasscott M. W. ; Pendergast A. D. ; Dick J. E. ACS Appl. Nano Mater. 2018, 1, 5702.
doi: 10.1021/acsanm.8b01308 |
86 |
Glasscott M. W. ; Dick J. E. ACS Nano 2019, 13, 4572.
doi: 10.1021/acsnano.9b00546 |
87 |
Glasscott M. W. ; Dick J. E. Anal. Chem. 2018, 90, 7804.
doi: 10.1021/acs.analchem.8b02219 |
88 |
LaMer V. K. ; Dinegar R. H. J. Am. Chem. Soc. 1950, 72, 4847.
doi: 10.1021/ja01167a001 |
89 |
Pound G. M. ; Mer V. K. L. J. Am. Chem. Soc. 1952, 74, 2323.
doi: 10.1021/ja01129a044 |
90 |
Jia Z. ; Yang T. ; Sun L. ; Zhao Y. ; Li W. ; Luan J. ; Lyu F. ; Zhang L. C. ; Kruzic J. J. ; Kai J. J. ; et al Adv. Mater. 2020, 32, 2000385.
doi: 10.1002/adma.202000385 |
91 |
Chen P. ; Liu X. ; Hedrick J. L. ; Xie Z. ; Wang S. ; Lin Q. -Y. ; Hersam M. C. ; Dravid V. P. ; Mirkin C. A. Science 2016, 352, 1565.
doi: 10.1126/science.aaf8402 |
92 |
Chen P. ; Liu M. ; Du J. S. ; Meckes B. ; Wang S. ; Lin H. ; Dravid V. P. ; Wolverton C. ; Mirkin C. A. Science 2019, 363, 959.
doi: 10.1126/science.aav4302 |
93 |
Chen P. ; Du J. S. ; Meckes B. ; Huang L. ; Xie Z. ; Hedrick J. L. ; Dravid V. P. ; Mirkin C. A. J. Am. Chem. Soc. 2017, 139, 9876.
doi: 10.1021/jacs.7b03163 |
94 |
Xu X. ; Du Y. ; Wang C. ; Guo Y. ; Zou J. ; Zhou K. ; Zeng Z. ; Liu Y. ; Li L. J. Alloys Compd. 2020, 822, 153642.
doi: 10.1016/j.jallcom.2020.153642 |
95 |
Calvo-Dahlborg M. ; Brown S. G. R. J. Alloys Compd. 2017, 724, 353.
doi: 10.1016/j.jallcom.2017.07.074 |
96 |
Otto F. ; Yang Y. ; Bei H. ; George E. P. Acta Mater. 2013, 61, 2628.
doi: 10.1016/j.actamat.2013.01.042 |
97 |
Masa J. ; Schuhmann W. J. Solid State Electrochem. 2020, 24, 2181.
doi: 10.1007/s10008-020-04757-1 |
98 |
Medford A. J. ; Vojvodic A. ; Hummelshøj J. S. ; Voss J. ; Abild-Pedersen F. ; Studt F. ; Bligaard T. ; Nilsson A. ; Nørskov J. K. J. Catal. 2015, 328, 36.
doi: 10.1016/j.jcat.2014.12.033 |
99 |
Torelli D. A. ; Francis S. A. ; Crompton J. C. ; Javier A. ; Thompson J. R. ; Brunschwig B. S. ; Soriaga M. P. ; Lewis N. S. ACS Catal. 2016, 6, 2100.
doi: 10.1021/acscatal.5b02888 |
100 |
Wang S. ; Jiang S. P. Natl. Sci. Rev. 2017, 4, 163.
doi: 10.1093/nsr/nww099 |
101 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L. Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
102 |
Wang T. ; Xie H. ; Chen M. ; D'Aloia A. ; Cho J. ; Wu G. ; Li Q. Nano Energy 2017, 42, 69.
doi: 10.1016/j.nanoen.2017.10.045 |
103 |
Zhao T. ; Hu Y. ; Gong M. ; Lin R. ; Deng S. ; Lu Y. ; Liu X. ; Chen Y. ; Shen T. ; Hu Y. ; et al Nano Energy 2020, 74, 104877.
doi: 10.1016/j.nanoen.2020.104877 |
104 |
Qiu H. J. ; Shen X. ; Wang J. Q. ; Hirata A. ; Fujita T. ; Wang Y. ; Chen M. W. ACS Catal. 2015, 5, 3779.
doi: 10.1021/acscatal.5b00073 |
105 |
Jia Q. ; Zhao Z. ; Cao L. ; Li J. ; Ghoshal S. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Liu Z. ; Li M. ; et al Nano Lett. 2018, 18, 798.
doi: 10.1021/acs.nanolett.7b04007 |
106 |
Shi Y. ; Yang B. ; Liaw P. Metals 2017, 2, 107.
doi: 10.3390/met7020043 |
107 |
Alaneme K. K. ; Bodunrin M. O. ; Oke S. R. J. Mater. Res. Technol. 2016, 5, 384.
doi: 10.1016/j.jmrt.2016.03.004 |
108 |
Chou Y. L. ; Yeh J. W. ; Shih H. C. Corros. Sci. 2010, 52, 2571.
doi: 10.1016/j.corsci.2010.04.004 |
109 |
Shi Y. ; Yang B. ; Xie X. ; Brechtl J. ; Dahmen K. A. ; Liaw P. K. Corros. Sci. 2017, 119, 33.
doi: 10.1016/j.corsci.2017.02.019 |
110 |
McNicol B. D. ; Rand D. A. J. ; Williams K. R. J. Power Sources 1999, 83, 15.
doi: 10.1016/S0378-7753(99)00244-X |
111 |
Kamarudin S. K. ; Achmad F. ; Daud W. R. W. Int. J. Hydrog. Energy 2009, 34, 6902.
doi: 10.1016/j.ijhydene.2009.06.013 |
112 |
Tiwari J. N. ; Tiwari R. N. ; Singh G. ; Kim K. S. Nano Energy 2013, 2, 553.
doi: 10.1016/j.nanoen.2013.06.009 |
113 |
Zhuang L. Carbon Energy 2018, 34, 115.
doi: 10.3866/pku.Whxb201707102 |
114 | Zhou Y. ; Han N. ; Li Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
115 |
Wang S. ; Kou T. ; Baker S. E. ; Duoss E. B. ; Li Y. Mater. Today Nano 2020, 12, 100096.
doi: 10.1016/j.mtnano.2020.100096 |
116 |
Kang Y. ; Yang P. ; Markovic N. M. ; Stamenkovic V. R. Nano Today 2016, 11, 587.
doi: 10.1016/j.nantod.2016.08.008 |
117 |
Chen Y. ; Lai Z. ; Zhang X. ; Fan Z. ; He Q. ; Tan C. ; Zhang H. Nat. Rev. Chem. 2020, 4, 243.
doi: 10.1038/s41570-020-0173-4 |
118 |
Fan Z. ; Zhang H. Chem. Soc. Rev. 2016, 45, 63.
doi: 10.1039/C5CS00467E |
119 |
Xia Y. ; Xiong Y. ; Lim B. ; Skrabalak S. E. Angew. Chem. Int. Ed. 2009, 48, 60.
doi: 10.1002/anie.200802248 |
120 |
Tan C. ; Chen J. ; Wu X. -J. ; Zhang H. Nat. Rev. Mater. 2018, 3, 17089.
doi: 10.1038/natrevmats.2017.89 |
121 |
Aslam U. ; Rao V. G. ; Chavez S. ; Linic S. Nat. Catal. 2018, 1, 656.
doi: 10.1038/s41929-018-0138-x |
122 |
Luo M. ; Guo S. Nat. Rev. Mater. 2017, 2, 17059.
doi: 10.1038/natrevmats.2017.59 |
123 |
Hwang S. ; Chen X. ; Zhou G. ; Su D. Adv. Energy Mater. 2020, 10, 1902105.
doi: 10.1002/aenm.201902105 |
124 |
Su D. Green Energy Environ. 2017, 2, 70.
doi: 10.1016/j.gee.2017.02.001 |
125 |
Gilroy K. D. ; Ruditskiy A. ; Peng H. -C. ; Qin D. ; Xia Y. Chem. Rev. 2016, 116, 10414.
doi: 10.1021/acs.chemrev.6b00211 |
126 |
Ge M. ; Su F. ; Zhao Z. ; Su D. Mater. Today Nano 2020, 11, 100087.
doi: 10.1016/j.mtnano.2020.100087 |
127 |
Jia Z. ; Yang T. ; Sun L. ; Zhao Y. ; Li W. ; Luan J. ; Lyu F. ; Zhang L. -C. ; Kruzic J. J. ; Kai J. -J. ; et al Adv. Mater. 2020, 32, 2000385.
doi: 10.1002/adma.202000385 |
128 |
Anandkumar M. ; Bhattacharya S. ; Deshpande A. S. RSC Adv. 2019, 9, 26825.
doi: 10.1039/C9RA04636D |
129 |
Chen H. ; Lin W. ; Zhang Z. ; Jie K. ; Mullins D. R. ; Sang X. ; Yang S. -Z. ; Jafta C. J. ; Bridges C. A. ; Hu X. ; et al ACS Mater. Lett. 2019, 1, 83.
doi: 10.1021/acsmaterialslett.9b00064 |
130 |
Chen H. ; Jie K. ; Jafta C. J. ; Yang Z. ; Yao S. ; Liu M. ; Zhang Z. ; Liu J. ; Chi M. ; Fu J. ; et al Appl. Catal. B 2020, 276, 119155.
doi: 10.1016/j.apcatb.2020.119155 |
131 |
Deng C. ; Wu P. ; Zhu L. ; He J. ; Tao D. ; Lu L. ; He M. ; Hua M. ; Li H. ; Zhu W. Appl. Mater. Today 2020, 20, 100680.
doi: 10.1016/j.apmt.2020.100680 |
132 |
Okejiri F. ; Zhang Z. ; Liu J. ; Liu M. ; Yang S. ; Dai S. ChemSusChem 2020, 13, 111.
doi: 10.1002/cssc.201902705 |
133 |
Oses C. ; Toher C. ; Curtarolo S. Nat. Rev. Mater. 2020, 5, 295.
doi: 10.1038/s41578-019-0170-8 |
134 |
Wang T. ; Chen H. ; Yang Z. ; Liang J. ; Dai S. J. Am. Chem. Soc. 2020, 142, 4550.
doi: 10.1021/jacs.9b12377 |
[1] | . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-0. |
[2] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-0. |
[3] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[4] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[5] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-0. |
[6] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-0. |
[7] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-0. |
[8] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-0. |
[9] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-0. |
[10] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-0. |
[11] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[12] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-0. |
[13] | Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol [J]. Acta Phys. -Chim. Sin., 2020, 36(8): 1906026-0. |
[14] | Yu Guiyun,Hu Fengxian,Cheng Weiwei,Han Zitong,Liu Chao,Dai Yong. ZnCuAl-LDH/Bi2MoO6 Nanocomposites with Improved Visible Light-Driven Photocatalytic Degradation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1911016-0. |
[15] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
|