Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (6): 2009080.doi: 10.3866/PKU.WHXB202009080
Special Issue: Design and Fabrication of Advanced Photocatalyst
• ARTICLE • Previous Articles Next Articles
Yiwen Chen1, Lingling Li2, Quanlong Xu3,*(), Düren Tina4, Jiajie Fan1,4,*(
), Dekun Ma5,*(
)
Received:
2020-09-25
Accepted:
2020-10-16
Published:
2020-10-22
Contact:
Quanlong Xu,Jiajie Fan,Dekun Ma
E-mail:xuql@wzu.edu.cn;fanjiajie@zzu.edu.cn;dkma@wzu.edu.cn
About author:
Dekun Ma, Email: dkma@wzu.edu.cnSupported by:
MSC2000:
Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution[J].Acta Phys. -Chim. Sin., 2021, 37(6): 2009080.
1 |
Meng A. ; Zhang L. ; Cheng B. ; Yu J. Adv. Mater. 2019, 31, 1807660.
doi: 10.1002/adma.201807660 |
2 |
Xu Q. ; Zhang L. ; Yu J. ; Wageh S. ; Al-Ghamdi A.A. ; Jaroniec M. Mater. Today 2018, 21, 1042.
doi: 10.1016/j.mattod.2018.04.008 |
3 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
4 |
Cui L. ; Song J. ; McGuire A.F. ; Kang S. ; Fang X. ; Wang J. ; Yin C. ; Li X. ; Wang Y. ; Cui B. ACS Nano 2018, 12, 5551.
doi: 10.1021/acsnano.8b01271 |
5 |
Li J. ; Wu D. ; Iocozzia J. ; Du H. ; Liu X. ; Yuan Y. ; Zhou W. ; Li Z. ; Xue Z. ; Lin Z. Angew. Chem. Int. Ed. 2019, 58, 1985.
doi: 10.1002/anie.201813117 |
6 |
Zhu B. ; Zhang L. ; Cheng B. ; Yu Y. ; Yu J. Chin. J. Catal. 2021, 42, 115.
doi: 10.1016/S1872-2067(20)63598-7 |
7 |
Zhu B. ; Cheng B. ; Zhang L. ; Yu J. Carbon Energy 2019, 1, 32.
doi: 10.1002/cey2.1 |
8 |
Xia P. ; Liu M. ; Cheng B. ; Yu J. ; Zhang L. ACS Sustain. Chem. Eng. 2018, 6, 8945.
doi: 10.1021/acssuschemeng.8b01300 |
9 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
10 |
Xiang Q. ; Li F. ; Zhang D. ; Liao Y. ; Zhou H. Appl. Surf. Sci. 2019, 495, 143520.
doi: 10.1016/j.apsusc.2019.07.262 |
11 |
Li Y. ; Zhou M. ; Cheng B. ; Shao Y. J. Mater. Sci. Technol. 2020, 56, 1.
doi: 10.1016/j.jmst.2020.04.028 |
12 |
Wen J. ; Xie J. ; Chen X. ; Li X. Appl. Surf. Sci. 2017, 391, 72.
doi: 10.1016/j.apsusc.2016.07.030 |
13 |
Li Y. ; Jin Z. ; Zhang L. Chin. J. Catal. 2019, 40, 90.
doi: 10.1016/S1872-2067(18)63173-0 |
14 |
Tian B. ; Wu Y. ; Lu G. Appl. Catal. B. 2021, 280, 119410.
doi: 10.1016/j.apcatb.2020.119410 |
15 |
Gao Y. ; Chen F. ; Chen Z. J. Mater. Sci. Technol. 2020, 56, 227.
doi: 10.1016/j.jmst.2020.02.050 |
16 |
Li Y. ; Li X. ; Zhang H. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
17 | Wang Y. ; Shen S. Acta Phys. -Chim. Sin. 2020, 36, 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36, 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
18 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36, 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
19 |
Man L. ; Xu Q. ; Li W. ; Chen W. ; Zheng W. ; Ma D. Appl. Surf. Sci. 2020, 512, 145647.
doi: 10.1016/j.apsusc.2020.145647 |
20 |
Sun K. ; Shen J. ; Liu Q. Chin. J. Catal. 2020, 41, 72.
doi: 10.1016/S1872-2067(19)63430-3 |
21 |
Xiao N. ; Li S. ; Liu S. Chin. J. Catal. 2019, 40, 352.
doi: 10.1016/S1872-2067(18)63180-8 |
22 |
Liu M. ; Xia P. ; Zhang L. ; Cheng B. ; Yu J. ACS Sustain. Chem. Eng. 2018, 6, 10472.
doi: 10.1021/acssuschemeng.8b01835 |
23 |
Luo J. ; Lin Z. ; Zhao Y. Chin. J. Catal. 2020, 41, 122.
doi: 10.1016/S1872-2067(19)63490-X |
24 |
Li Y. ; Zhou M. ; Cheng B. J. Mater. Sci. Technol. 2020, 56, 1.
doi: 10.1016/j.jmst.2020.04.028 |
25 | Wang L. ; Zhu C. ; Yin L. ; Huang W. Acta Phys. -Chim. Sin. 2020, 36, 1907001. |
王梁; 朱澄鹭; 殷丽莎; 黄维; 物理化学学报, 2020, 36, 1907001.
doi: 10.3866/PKU.WHXB201907001 |
|
26 |
Chang W. ; Xue W. ; Liu E. ; Fan J. ; Zhao B. Chem. Eng. J. 2019, 362, 392.
doi: 10.1016/j.cej.2019.01.021 |
27 |
Li Y. ; Zhang D. ; Feng X. Chin. J. Catal. 2020, 41, 21.
doi: 10.1016/S1872-2067(19)63427-3 |
28 |
Liu M. ; Wageh S. ; Al-Ghamdi A. ; Xia P. ; Cheng B. ; Zhang L. ; Yu J. Chem. Commun. 2019, 55, 14023.
doi: 10.1039/c9cc07647f |
29 |
Yang Y. ; Wang S. ; Li Y. ; Wang J. ; Wang L. Chem. Asian J. 2017, 12, 1421.
doi: 10.1002/asia.201700540 |
30 |
Li Y. ; Li X. ; Zhang H. ; Fan J. ; Xiang Q. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
31 |
Curti M. ; Schneider J. ; Bahnemann D. W. ; Mendive C. B. J. Phys. Chem. Lett. 2015, 6, 3903.
doi: 10.1021/acs.jpclett.5b01353 |
32 |
Chen B. ; Zhou L. ; Tian Y. ; Yu J. ; Lei J. ; Wang L. ; Liu Y. ; Zhang J. Phys. Chem. Chem. Phys. 2019, 21, 12818.
doi: 10.1039/c9cp01495k |
33 |
Armstrong E. ; O'Dwyer C. J. Mater. Chem. C 2015, 3, 6109.
doi: 10.1039/c5tc01083g |
34 |
Low J. ; Zhang L. ; Zhu B. ; Liu Z. ; Yu J. ACS Sustain. Chem. Eng. 2018, 6, 15653.
doi: 10.1021/acssuschemeng.8b04150 |
35 |
Jiao J. ; Wei Y. ; Zhao Z. ; Liu J. ; Li J. ; Duan A. ; Jiang G. Ind. Eng. Chem. Res. 2014, 53, 17345.
doi: 10.1021/ie503333b |
36 |
Xiao M. ; Wang Z. ; Lyu M. ; Luo B. ; Wang S. ; Liu G. ; Cheng H. ; Wang L. Adv. Mater. 2019, 31, 1801369.
doi: 10.1002/adma.201801369 |
37 |
Hwang S. ; Lee S. ; Yu J. Appl. Surf. Sci. 2007, 253, 5656.
doi: 10.1016/j.apsusc.2006.12.032 |
38 |
Lin B. ; Li J. ; Xu B. ; Yan X. ; Yang B. ; Wei J. ; Yang G. Appl. Catal. B 2019, 243, 94.
doi: 10.1016/j.apcatb.2018.10.029 |
39 |
Lin B. ; Yang G. ; Wang L. Angew. Chem. Int. Ed. 2019, 58, 4587.
doi: 10.1002/anie.201814360 |
40 |
Sun L. ; Yang M. ; Huang J. ; Yu D. ; Hong W. ; Chen X. Adv. Funct. Mater. 2016, 26, 4943.
doi: 10.1002/adfm.201600894 |
41 |
Lei J. ; Chen B. ; Lv W. ; Zhou L. ; Wang L. ; Liu Y. ; Zhang J. ACS Sustain. Chem. Eng. 2019, 7, 16467.
doi: 10.1021/acssuschemeng.9b03678 |
42 |
Xu Q. ; Zhu B. ; Cheng B. ; Yu J. ; Zhou M. ; Ho W. Appl. Catal. B 2019, 255, 117770.
doi: 10.1016/j.apcatb.2019.117770 |
43 |
Xu Q. ; Ma D. ; Yang S. ; Tian Z. ; Cheng B. ; Fan J. Appl. Surf. Sci. 2019, 495, 143555.
doi: 10.1016/j.apsusc.2019.143555 |
44 |
Tian N. ; Huang H. ; Liu C. ; Dong F. ; Zhang T. ; Du X. ; Yu S. ; Zhang Y. J. Mater. Chem. A 2015, 3, 17120.
doi: 10.1039/c5ta03669k |
45 |
Zhao H. ; Hu Z. ; Liu J. ; Li Y. ; Wu M. ; Van Tendeloo G. ; Su B. Nano Energy 2018, 47, 266.
doi: 10.1016/j.nanoen.2018.02.052 |
46 |
Wang H. ; Sun X. ; Li D. ; Zhang X. ; Chen S. ; Shao W. ; Tian Y. ; Xie Y. J. Am. Chem. Soc. 2017, 139, 2468.
doi: 10.1021/jacs.6b12878 |
47 | Li X. ; Wang B. ; Yin W. ; Di J. ; Xia J. ; Zhu W. ; Li H. Acta Phys. -Chim. Sin. 2020, 36, 1902001. |
李小为; 王彬; 尹文轩; 狄俊; 夏杰祥; 朱文帅; 李华明; 物理化学学报, 2020, 36, 1902001.
doi: 10.3866/PKU.WHXB201902001 |
|
48 |
Niu P. ; Liu G. ; Cheng H. J. Phys. Chem. C 2012, 116, 11013.
doi: 10.1021/jp301026y |
49 |
Xiong T. ; Cen W. ; Zhang Y. ; Dong F. ACS Catal. 2016, 6, 2462.
doi: 10.1021/acscatal.5b02922 |
50 |
Cho Y. ; Kim S. ; Park B. ; Lee C. L. ; Kim J. K. ; Lee K. S. ; Choi I. Y. ; Kim J. K. ; Zhang K. ; Oh S. H. ; et al Nano Lett. 2018, 18, 4257.
doi: 10.1021/acs.nanolett.8b01245 |
51 |
Zhong Y. ; Djurisic A. B. ; Hsu Y. ; Wong K. ; Brauer G. ; Ling C. ; Chan W. J. Phys. Chem. C 2008, 112, 16286.
doi: 10.1021/jp804132u |
52 |
Yu Y. ; Tang Y. ; Yuan J. ; Wu Q. ; Zheng W. ; Cao Y. J. Phys. Chem. C 2014, 118, 13545.
doi: 10.1021/jp412375z |
53 |
Zheng Y. ; Lin L. ; Ye X. ; Guo F. ; Wang X. Angew. Chem. Int. Ed. 2014, 53, 11926.
doi: 10.1002/anie.201407319 |
54 |
Xia P. ; Cheng B. ; Jiang J. ; Tang H. Appl. Surf. Sci. 2019, 487, 335.
doi: 10.1016/j.apsusc.2019.05.064 |
55 |
Li Y. ; Jin R. ; Xing Y. ; Li J. ; Song S. ; Liu X. ; Li M. ; Jin R. Adv. Energy Mater. 2016, 6, 1601273.
doi: 10.1002/aenm.201601273 |
56 |
Tu W. ; Xu Y. ; Wang J. ; Zhang B. ; Zhou T. ; Yin S. ; Wu S. ; Li C. ; Huang Y. ; Zhou Y. ; et al ACS Sustain. Chem. Eng. 2017, 5, 7260.
doi: 10.1021/acssuschemeng.7b01477 |
57 |
Yu L. ; Li G. ; Zhang X. ; Ba X. ; Shi G. ; Li Y. ; Wong P. ; Yu J. ; Yu Y. ACS Catal. 2016, 6, 6444.
doi: 10.1021/acscatal.6b01455 |
[1] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[2] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[3] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[4] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[5] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[6] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[7] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[8] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[9] | Xiaoqing Jia, Xiaoyu Bai, Zhezhe Ji, Yi Li, Yan Sun, Xueyue Mi, Sihui Zhan. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010042-. |
[10] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[11] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[12] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[13] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[14] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[15] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
|