Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2009098.doi: 10.3866/PKU.WHXB202009098
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Kaimin Hua1,2, Xiaofang Liu1, Baiyin Wei1,3, Shunan Zhang1,2, Hui Wang1,*(), Yuhan Sun1,3,4,*(
)
Received:
2020-09-29
Accepted:
2020-10-20
Published:
2020-10-23
Contact:
Hui Wang,Yuhan Sun
E-mail:wanghh@sari.ac.cn;sunyh@sari.ac.cn
About author:
Email: sunyh@sari.ac.cn (S.Y.); Tel.: +86-21-20325009 (S.Y.)Supported by:
MSC2000:
Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2009098.
Table 1
Performance comparison for hydroformylation of ethylene with CO2/H2 catalyzed by Au-based heterogeneous catalysts."
Entry | Catalyst | P (MPa)/T (℃) | Promoter (w, %) | X(CO2) (%) | S(CO) (%) | Y(propanol) (%) |
1 | Au/TiO2 | 2/200 | 0 | 3.6 | 83 | 0.7 |
2 | K-Au/TiO2-a | 2/200 | 2.1 | 1.2 | 0 | 2.4 |
3 | K–Au/TiO2-r | 2/250 | 2.8 | 4.6 | 35 | 3.1 |
4 | Cs–Au/TiO2 | 2/250 | 4 | 5.3 | 42 | 2.9 |
5 | K−Au/SiO2 | 2/200 | 1 | 3.3 | 0 | 2.0 |
1 |
Aresta M. ; Dibenedetto A. Dalton Trans. 2007, 2975.
doi: 10.1039/b700658f |
2 |
Doney S. C. ; Fabry V. J. ; Feely R. A. ; Kleypas J. A. Ann. Rev. Mar. Sci. 2009, 1, 169.
doi: 10.1146/annurev.marine.010908.163834 |
3 |
Alberico E. ; Nielsen M. Chem. Commun. 2015, 51, 6714.
doi: 10.1039/c4cc09471a |
4 |
Porosoff M. D. ; Yan B. ; Chen J. G. Energy Environ. Sci. 2016, 9, 62.
doi: 10.1039/c5ee02657a |
5 |
Abanades J. C. ; Rubin E. S. ; Mazzotti M. ; Herzog H. J. Energy Environ. Sci. 2017, 10, 2491.
doi: 10.1039/C7EE02819A |
6 |
Klankermayer J. ; Wesselbaum S. ; Beydoun K. ; Leitner W. Angew. Chem. Int. Ed. 2016, 55, 7296.
doi: 10.1002/anie.201507458 |
7 |
Jessop P. G. ; Ikariya T. ; Noyor R. Chem. Rev. 1995, 95, 259.
doi: 10.1021/cr00034a001 |
8 |
Leitner W. Coord. Chem. Rev. 1996, 153, 257.
doi: 10.1016/0010-8545(95)01226-5 |
9 |
Song Q. -W. ; Zhou Z. -H. ; He L. -N. Green Chem. 2017, 19, 3707.
doi: 10.1039/c7gc00199a |
10 | Zhou W. ; Guo J. -K. ; Shen S. ; Pan J. ; Tang J. ; Chen L. ; Au C. -T. ; Yin S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1906048. |
周威; 郭君康; 申升; 潘金波; 唐杰; 陈浪; 区泽堂; 尹双凤. 物理化学学报, 2020, 36, 1906048.
doi: 10.3866/PKU.WHXB201906048 |
|
11 | Bai X. -F. ; Chen W. ; Wang B. -Y. ; Feng G. -H. ; Wei W. ; Jiao Z. ; Sun Y. Acta Phys.-Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
12 |
Wang X. ; Xia C. ; Wu L. Green Chem. 2018, 20, 5415.
doi: 10.1039/c8gc03022g |
13 |
Alvarez A. ; Bansode A. ; Urakawa A. ; Bavykina A. V. ; Wezendonk T. A. ; Makkee M. ; Gascon J. ; Kapteijn F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 |
14 |
Li X. ; He X. ; Liu X. ; He L. -N. Sci. China Chem. 2017, 60, 841.
doi: 10.1007/s11426-016-0473-5 |
15 |
Gao P. ; Dang S. ; Li S. ; Bu X. ; Liu Z. ; Qiu M. ; Yang C. ; Wang H. ; Zhong L. ; Han Y. ; et al ACS Catal. 2017, 8, 571.
doi: 10.1021/acscatal.7b02649 |
16 |
Gao P. ; Li S. ; Bu X. ; Dang S. ; Liu Z. ; Wang H. ; Zhong L. ; Qiu M. ; Yang C. ; Cai J. ; et al Nat. Chem. 2017, 9, 1019.
doi: 10.1038/nchem.2794 |
17 |
Liao P. ; Zhang C. ; Zhang L. ; Yang Y. ; Zhong L. ; Wang H. ; Sun Y. Catal. Today 2018, 311, 56.
doi: 10.1016/j.cattod.2017.09.022 |
18 |
Yang H. ; Zhang C. ; Gao P. ; Wang H. ; Li X. ; Zhong L. ; Wei W. ; Sun Y. Catal. Sci. Technol. 2017, 7, 4580.
doi: 10.1039/c7cy01403a |
19 | Cui X. ; Shi F. Acta Phys. -Chim. Sin. 2021, 37, 2006080. |
崔新江; 石峰. 物理化学学报, 2021, 37, 2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
20 |
Zhong L. ; Yu F. ; An Y. ; Zhao Y. ; Sun Y. ; Li Z. ; Lin T. ; Lin Y. ; Qi X. ; Dai Y. ; et al Nature 2016, 538, 84.
doi: 10.1038/nature19786 |
21 |
Kar S. ; Goeppert A. ; Prakash G. K. S. Acc. Chem. Res. 2019, 52, 2892.
doi: 10.1021/acs.accounts.9b00324 |
22 |
Beller M. ; Cornils B. ; Frohning C. D. ; Kohlpaintner C. W. J. Mol. Catal. A: Chem. 1995, 104, 17.
doi: 10.1016/1381-1169(95)00130-1 |
23 | Zhang X. ; Cao Y. ; Chen Q. ; Shen C. ; He L. Acta Phys. -Chim. Sin. 2021, 37, 2007052. |
张雪华; 曹彦伟; 陈琼遥; 沈超仁; 何林. 物理化学学报, 2021, 37, 2007052.
doi: 10.3866/PKU.WHXB202007052 |
|
24 |
Klankermayer J. ; Leitner W. Science 2015, 350, 629.
doi: 10.1126/science.aac7997 |
25 |
Morimoto T. ; Kakiuchi K. Angew. Chem. Int. Ed. 2004, 43, 5580.
doi: 10.1002/anie.200301736 |
26 |
Gual A. ; Godard C. ; Castillón S. ; Claver C. Tetra. Asymm. 2010, 21, 1135.
doi: 10.1016/j.tetasy.2010.05.037 |
27 |
Wang L. ; Sun W. ; Liu C. Chin. J. Chem. 2018, 36, 353.
doi: 10.1002/cjoc.201700746 |
28 |
Wu L. ; Liu Q. ; Jackstell R. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 6310.
doi: 10.1002/anie.201400793 |
29 |
Tominaga K. ; Sasaki Y. ; Kawai M. ; Watanabe T. ; Saito M. J. Chem. Soc. Chem. Commun. 1993, 7, 629.
doi: 10.1039/c39930000629 |
30 |
Tominaga K. ; Sasaki Y. ; Hagihara K. ; Watanabe T. ; Saito M. Chem. Lett. 1994, 23, 1391.
doi: 10.1246/cl.1994.1391 |
31 |
Tominaga K. ; Sasaki Y. Catal. Commun. 2000, 1, 1.
doi: 10.1016/S1566-7367(00)00006-6 |
32 |
Jööskelöinen S. ; Haukka M. Appl. Catal. A: Gen. 2003, 247, 95.
doi: 10.1016/s0926-860x(03)00063-2 |
33 |
Kontkanen M. -L. ; Oresmaa L. ; Moreno M. A. ; Jönis J. ; Laurila E. ; Haukka M. Appl. Catal. A: Gen. 2009, 365, 130.
doi: 10.1016/j.apcata.2009.06.006 |
34 |
Tominaga K. ; Sasaki Y. J. Mol. Catal. A: Chem. 2004, 220, 159.
doi: 10.1016/j.molcata.2004.06.009 |
35 |
Tominaga K. Catal. Today 2006, 115, 70.
doi: 10.1016/j.cattod.2006.02.019 |
36 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemCatChem 2014, 6, 2224.
doi: 10.1002/cctc.201402226 |
37 |
Liu Q. ; Wu L. ; Fleischer I. ; Selent D. ; Franke R. ; Jackstell R. ; Beller M. Chem 2014, 20, 6888.
doi: 10.1002/chem.201400358 |
38 |
Zhang X. ; Tian X. ; Shen C. ; Xia C. ; He L. ChemCatChem 2019, 11, 1986.
doi: 10.1002/cctc.201802091 |
39 |
Ahlers S. J. ; Bentrup U. ; Linke D. ; Kondratenko E. V. ChemSusChem 2014, 7, 2631.
doi: 10.1002/cssc.201402212 |
40 |
Ahlers S. J. ; Kraehnert R. ; Kreyenschulte C. ; Pohl M. -M. ; Linke D. ; Kondratenko E. V. Catal. Today 2015, 258, 684.
doi: 10.1016/j.cattod.2015.04.006 |
41 |
Ahlers S. J. ; Pohl M. -M. ; Radnik J. ; Linke D. ; Kondratenko E. V. Appl. Catal. B: Environ. 2015, 176-177, 570.
doi: 10.1016/j.apcatb.2015.04.034 |
42 |
Mavlyankariev S. A. ; Ahlers S. J. ; Kondratenko V. A. ; Linke D. ; Kondratenko E. V. ACS Catal. 2016, 6, 3317.
doi: 10.1021/acscatal.6b00590 |
43 |
Heyl D. ; Kreyenschulte C. ; Kondratenko V. A. ; Bentrup U. ; Kondratenko E. V. ; Bruckner A. ChemSusChem 2019, 12, 651.
doi: 10.1002/cssc.201801937 |
44 |
Greenhalgh M. D. ; Thomas S. P. J. Am. Chem. Soc. 2012, 134, 11900.
doi: 10.1021/ja3045053 |
45 |
Gaydou M. ; Moragas T. ; Julia-Hernandez F. ; Martin R. J. Am. Chem. Soc. 2017, 139, 12161.
doi: 10.1021/jacs.7b07637 |
46 |
Gui Y. Y. ; Hu N. ; Chen X. W. ; Liao L. L. ; Ju T. ; Ye J. H. ; Zhang Z. ; Li J. ; Yu D. G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149 |
47 |
Wu X. F. ; Zheng F. Top Curr. Chem. 2017, 375, 4.
doi: 10.1007/s41061-016-0091-6 |
48 |
Ostapowicz T. G. ; Schmitz M. ; Krystof M. ; Klankermayer J. ; Leitner W. Angew. Chem. Int. Ed. 2013, 52, 12119.
doi: 10.1002/anie.201304529 |
49 |
Wang Y. ; Qian Q. ; Zhang J. ; Bediako B. B. A. ; Wang Z. ; Liu H. ; Han B. Nat. Commun. 2019, 10, 5395.
doi: 10.1038/s41467-019-13463-0 |
50 |
Pugh R. I. ; Pringle P. G. ; Drent E. Chem. Commun. 2001, 1476.
doi: 10.1039/b103754b |
51 |
Jimenez Rodriguez C. ; Foster D. F. ; Eastham G. R. ; Cole-Hamilton D. J. Chem. Commun. 2004, 1720.
doi: 10.1039/b404783d |
52 |
Konrad T. M. ; Fuentes J. A. ; Slawin A. M. Z. ; Clarke M. L. Angew. Chem. Int. Ed. 2010, 49, 9197.
doi: 10.1002/anie.201004415 |
53 |
Wu L. ; Liu Q. ; Fleischer I. ; Jackstell R. ; Beller M. Nat. Commun. 2014, 5, 3091.
doi: 10.1038/ncomms4091 |
54 |
Zhang X. ; Shen C. ; Xia C. ; Tian X. ; He L. Green Chem. 2018, 20, 5533.
doi: 10.1039/c8gc02289e |
55 | Zhang Y. ; Dai X. ; Wang H. ; Shi F. Acta Phys. -Chim. Sin. 2018, 34, 845. |
张玉景; 代兴超; 王红利; 石峰. 物理化学学报, 2018, 34, 845.
doi: 10.3866/PKU.WHXB201701081 |
|
56 |
Li R. ; Zhao Y. ; Wang H. ; Xiang J. ; Wu Y. ; Yu B. ; Han B. ; Liu Z. Chem. Sci. 2019, 10, 9822.
doi: 10.1039/c9sc03242h |
57 |
Srivastava V. K. ; Eilbracht P. Catal. Commun. 2009, 10, 1791.
doi: 10.1016/j.catcom.2009.05.019 |
58 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemSusChem. 2016, 9, 2129.
doi: 10.1002/cssc.201600385 |
59 |
Ren X. ; Zheng Z. ; Zhang L. ; Wang Z. ; Xia C. ; Ding K. Angew. Chem. Int. Ed. 2017, 56, 310.
doi: 10.1002/anie.201608628 |
60 |
Xie Z. ; Xu Y. ; Xie M. ; Chen X. ; Lee J. H. ; Stavitski E. ; Kattel S. ; Chen J. G. Nat. Commun. 2020, 11, 1887.
doi: 10.1038/s41467-020-15849-x |
61 |
Kantlehner W. Eur. J. Org. Chem. 2003, 2003, 2530.
doi: 10.1002/ejoc.200200653 |
62 | Crawford, L. P.; Richardson, S. K. General and Synthetic Methods; Royal Society of Chemistry Publ: London, UK, 1994; p. 37. doi: 10.1039/9781847556288-00037 |
63 |
Sergeev A. G. ; Spannenberg A. ; Beller M. J. Am. Chem. Soc. 2008, 130, 15549.
doi: 10.1021/ja804997z |
64 |
Natte K. ; Dumrath A. ; Neumann H. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 10090.
doi: 10.1002/anie.201404833 |
65 |
Sun G. ; Lv X. ; Zhang Y. ; Lei M. ; Hu L. Org. Lett. 2017, 19, 4235.
doi: 10.1021/acs.orglett.7b01882 |
66 |
Yu B. ; Zhao Y. ; Zhang H. ; Xu J. ; Hao L. ; Gao X. ; Liu Z. Chem. Commun. 2014, 50, 2330.
doi: 10.1039/c3cc49365b |
67 |
Yu B. ; Yang Z. ; Zhao Y. ; Hao L. ; Zhang H. ; Gao X. ; Han B. ; Liu Z. Chem 2016, 22, 1097.
doi: 10.1002/chem.201504320 |
68 |
Liu Z. ; Yang Z. ; Yu B. ; Yu X. ; Zhang H. ; Zhao Y. ; Yang P. ; Liu Z. Org. Lett. 2018, 20, 5130.
doi: 10.1021/acs.orglett.8b02027 |
69 | Shao Z. ; Liu X. ; Zhang S. ; Wang H. ; Sun Y. Acta Phys. -Chim. Sin. 2021, 37, 1911053. |
邵自龙; 刘晓放; 张书南; 王慧; 孙予罕. 物理化学学报, 2021, 37, 1911053.
doi: 10.3866/PKU.WHXB201911053 |
|
70 |
Maitlis P. ; Haynes A. ; Sunley G. J. ; Howard M. J. J. Chem. Soc. Dalton. 1996, 11, 2187.
doi: 10.1039/dt9960002187 |
71 |
Budiman A. W. ; Nam J. S. ; Park J. H. ; Mukti R. I. ; Chang T. S. ; Bae J. W. ; Choi M. J. Catal. Surv. Asia 2016, 20, 173.
doi: 10.1007/s10563-016-9215-9 |
72 |
Peng J. -B. ; Wu F. -P. ; Wu X. -F. Chem. Rev. 2018, 119, 2090.
doi: 10.1021/acs.chemrev.8b00068 |
73 |
Li J. ; Wang L. ; Cao Y. ; Zhang C. ; He P. ; Li H. Chin. J. Chem. Eng. 2018, 26, 2266.
doi: 10.1016/j.cjche.2018.07.008 |
74 |
Chen C. ; Yan X. ; Liu S. ; Wu Y. ; Wan Q. ; Sun X. ; Zhu Q. ; Liu H. ; Ma J. ; Zheng L. ;et al Angew. Chem. Int. Ed. 2020, 59, 16459.
doi: 10.1002/anie.202006847 |
75 |
Prieto G. ChemSusChem 2016, 10, 1056.
doi: 10.1002/cssc.v10.6 |
76 |
Luk H. T. ; Mondelli C. ; Ferre D. C. ; Stewart J. A. ; Perez-Ramirez J. Chem. Soc. Rev. 2017, 46, 1358.
doi: 10.1039/c6cs00324a |
77 |
Wu J. F. ; Yu S. M. ; Wang W. D. ; Fan Y. X. ; Bai S. ; Zhang C. W. ; Gao Q. ; Huang J. ; Wang W. J. Am. Chem. Soc. 2013, 135, 13567.
doi: 10.1021/ja406978q |
78 |
Fukuoka A. ; Gotoh N. ; Kobayashi N. ; Hirano M. ; Komiya S. Chem. Lett. 1995, 24, 567.
doi: 10.1246/cl.1995.567 |
79 |
Qian Q. ; Zhang J. ; Cui M. ; Han B. Nat. Commun. 2016, 7, 11481.
doi: 10.1038/ncomms11481 |
80 |
Cui M. ; Qian Q. ; Zhang J. ; Chen C. ; Han B. Green Chem. 2017, 19, 3558.
doi: 10.1039/c7gc01391d |
81 |
Wang H. ; Zhao Y. ; Ke Z. ; Yu B. ; Li R. ; Wu Y. ; Wang Z. ; Han J. ; Liu Z. Chem. Commun. 2019, 55, 3069.
doi: 10.1039/c9cc00819e |
82 |
Shen X. ; Meng Q. ; Dong M. ; Xiang J. ; Li S. ; Liu H. ; Han B. ChemSusChem 2019, 12, 5149.
doi: 10.1002/cssc.201902404 |
83 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
84 |
Schmitz M. ; Erken C. ; Ohligschlöger A. ; Schnoor J. K. ; Westhues N. F. ; Klankermayer J. ; Leitner W. ; Liauw M. A. Chem. Ing. Tech. 2018, 90, 1476.
doi: 10.1002/cite.201800053 |
85 |
Wang H. ; Zhao Y. ; Wu Y. ; Li R. ; Zhang H. ; Yu B. ; Zhang F. ; Xiang J. ; Wang Z. ; Liu Z. ChemSusChem. 2019, 12, 4390.
doi: 10.1002/cssc.201901820 |
86 |
Zhang S. ; Liu X. ; Shao Z. ; Wang H. ; Sun Y. J. Catal. 2020, 382, 86.
doi: 10.1016/j.jcat.2019.11.038 |
87 | Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Advances in Chemical Conversions for Mitigating Carbon Dioxide. In Studies in Surface Science and Catalysis; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T. Eds.; Elsevier Science Publ: Amsterdam, Japan, 1998; Vol. 114, pp. 495–498. |
88 |
Zhang J. ; Qian Q. ; Cui M. ; Chen C. ; Liu S. ; Han B. Green Chem. 2017, 19, 4396.
doi: 10.1039/c7gc01887h |
89 |
Qian Q. ; Cui M. ; Zhang J. ; Xiang J. ; Song J. ; Yang G. ; Han B. Green Chem. 2018, 20, 206.
doi: 10.1039/c7gc02807e |
90 |
Asare Bediako B. B. ; Qian Q. ; Zhang J. ; Wang Y. ; Shen X. ; Shi J. ; Cui M. ; Yang G. ; Wang Z. ; Tong S. ;et al Green Chem. 2019, 21, 4152.
doi: 10.1039/c9gc01185d |
91 |
Wang Y. ; Zhang J. ; Qian Q. ; Asare Bediako B. B. ; Cui M. ; Yang G. ; Yan J. ; Han B. Green Chem. 2019, 21, 589.
doi: 10.1039/c8gc03320j |
92 |
Zhang J. ; Qian Q. ; Wang Y. ; Asare Bediako B. B. ; Yan J. ; Han B. Chem Sci. 2019, 10, 10640.
doi: 10.1039/c9sc03386f |
[1] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[2] | Lin Lv, Liyang Zhang, Xuebing He, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007079-. |
[3] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
[4] | Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007052-. |
[5] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-. |
[6] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[7] | Zilong Shao, Xiaofang Liu, Shunan Zhang, Hui Wang, Yuhan Sun. CO Hydrogenation to Ethanol over Supported Rh-Based Catalyst: Effect of the Support [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911053-. |
[8] | Menggang Li, Zhonghong Xia, Yarong Huang, Lu Tao, Yuguang Chao, Kun Yin, Wenxiu Yang, Weiwei Yang, Yongsheng Yu, Shaojun Guo. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912049-. |
[9] | Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol [J]. Acta Phys. -Chim. Sin., 2020, 36(8): 1906026-. |
[10] | Bo Fang,Ligang Feng. PtCo-NC Catalyst Derived from the Pyrolysis of Pt-Incorporated ZIF-67 for Alcohols Fuel Electrooxidation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905023-. |
[11] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-. |
[12] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-. |
[13] | Shuyi ZHANG,Jingxian BAO,Bo WU,Liangshu ZHONG,Yuhan SUN. Research Progress on the Photocatalytic Conversion of Methane and Methanol [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 923-939. |
[14] | Jincheng GUO,Yanfen LIN,Na TIAN,Shigang SUN. Modification of Tetrahexahedral Pd Nanocrystals with Ru and Their Performance for Methanol Electro-oxidation [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 749-754. |
[15] | Yazhi YIN,Bing HU,Guoliang LIU,Xiaohai ZHOU,Xinlin HONG. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 327-336. |
|