Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2009099.doi: 10.3866/PKU.WHXB202009099
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Rui Qin1,2, Pengyan Wang1, Can Lin1, Fei Cao1, Jinyong Zhang1, Lei Chen1,*(), Shichun Mu1,2,*(
)
Received:
2020-09-29
Accepted:
2020-10-31
Published:
2020-11-09
Contact:
Lei Chen,Shichun Mu
E-mail:CHL0588@163.com;msc@whut.edu.cn
About author:
Email: msc@whut.edu.cn (S.M.), Tel.: +86-13720130760 (S.M.)Supported by:
MSC2000:
Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications[J].Acta Phys. -Chim. Sin., 2021, 37(7): 2009099.
Fig 1
(a) Schematic illustration of the synthetic strategy of mesoporous nitrides. The TEM images of (b) Co3O4, (c) WO3, (d) Cr2O3, (e) Ni3FeOx and (f) CoN, (g) WN, (h) CrN, (i) Ni3FeN. Adapted with permission from Ref. 45. Copyright 2020, Elsevier. (j) Synthesis process of δ-MoN, (k) The XRD patterns of δ-MoN, wherein (A) represents the XRD pattern of as-prepared amorphous MoO2 precursor (B) represents the XRD pattern of crystallization in argon atmosphere at 400 ℃ for 4 h and (C) represents the XRD pattern of nitridation at 600 ℃ for 5 h. Adapted with permission from Ref. 46. Copyright 2012, Elsevier. (l) Schematic illustration of the synthesis of 2D-layered TMNs. Adapted with permission from Ref. 57. Copyright 2020, Elsevier."
Fig 2
(a, b) Schematic illustration of synthesis of porous Co3FeNx/NC LACC, (c–e) SEM images of Co3FeNx-10/NC LACC, (f) Polarization curves of Co3FeNx/NC LACC, Co4N/NC LACC, Fe/ZIF-67 LACC, CC and RuO2/CC, (g) Tafel slopes of Co3FeNx/NC LACC, Co4N/NC LACC, Fe/ZIF-67 LACC and RuO2/CC. Adapted with permission from Ref. 52. Copyright 2020, Elsevier."
Fig 4
Characterization of Ni3N bulk and sheet: (a, b) the calculation models, (c) free energy diagram of HER, (d) polariation curves, (e) Tafel slopes, (f) Nyquist plots, (g) the capacitivecurrent density as a function of scan rate, (h) stability test, (i) potentiostatic measurements with the overpotential of 100 mV. Adapted with permission from Ref. 69. Copyright 2016, The Royal Society of Chemistry."
Fig 5
LSV curves of Mo5N6, MoN, Ni0.2Mo0.8N, Ni3N, and commerical Pt/C electrodes measured in (a) 1 mol·L−1 KOH, (b) 0.5 mol·L−1 H2SO4 and (c) 1 mol·L−1 PBS, (d) LSV curves of Mo5N6, MoN, Ni0.2Mo0.8N, Ni3N, and commerical Pt/C electrodes in natural seawater, (e) overpotentials of different kinds of Mo5N6 catalysts at a current density of 10 mA·cm−2, (f) chronoamperometric curve of Mo5N6 over 100 h under an applied potential of 310 mV. Adapted with permission from Ref. 70. Copyright 2018, American Chemical Society. (g) AFM images of Cu-Mo3N2. HER performance of various Mo3N2 films in (h) 0.5 mol·L−1 Na2SO4, (i) 1.8 mol·L−1 buffer of pH 5. Adapted with permission from Ref. 37. Copyright 2018, Elsevier."
Fig 6
(a) Schematic illustration of the synthesis of CeO2/Co4N, (b) TEM image of CeO2, (c) HRTEM image of CeO2-Co4N heterogeneous interface, (d) LSV curves of CeO2−x/Co4N (x = 0, 0.1, 0.2, 0.3, 0.4) in 1 mol·L−1 KOH solution, (e) the Gibbs adsorption free energy of H2O on Co4N and CeO2/Co4N (111) surface, (f) the calculated water dissociation barriers on CeO2/Co4N and Co4N, respectively, (g) the calculated density of states (DOS) of Co4N and CeO2/Co4N, (h) free energy diagram of HER on Co4N and Vo-CeO2/Co4N. Adapted with permission from Ref. 71. Copyright 2020, Elsevier."
Fig 7
(a) Low and (b) High-magnification SEM images of Co4N NW/CC, (c) IR-corrected polarization curves, (d) Tafel plots in 1 mol·L−1 KOH solution. Adapted with permission from Ref. 76. Copyright 2015, WILEY-VCH. (e) Schematic illustration of the synthesis of Co2N0.67 NFWs, (f) SEM image, (g) iR-corrected LSV polarization curves of different electrocatalysts. Adapted with permission from Ref. 77. Copyright 2019, Elsevier. (h) iR-corrected LSV polarization curves of different electrocatalysts, (i–l) SEM image and EDX elemental mapping images of Co, Fe, and N elements, (m) EDX spectrum, (n) XRD pattern, (o) SEM image of CoFe(3:1)-precursor, (p) schematic reaction pathway of oxygen evolution on Co atom of CoFe(3:1)-N edges in alkaline environment. Adapted with permission from Ref. 60. Copyright 2018, American Chemical Society."
Fig 8
STEM-EELS analysis of the nitride-core and oxide-shell of Co4N/C. (a) HAADF-STEM image of one Co4N nanoparticle, (b–f) The corresponding EELS elemental maps of (d) Co in blue, (e) N in red, (f) O in green. Composite maps of (b) Co vs. N (c) O vs. N, respectively. (g) ORR polarization profiles of Co2N/C, Co3N/C, Co4N/C, Co3O4/C, and Pt/C. Adapted with permission from Ref. 82. Copyright 2019, Elsevier. Characterization of NixN thin films (h) Cross-sectional and (i) top-down SEM micrographs and (j) XRD pattern (k) ORR polarization curves and H2O2 current density for nickel nitride. Adapted with permission from Ref. 84. Copyright 2019, American Chemical Society. (l) Schematic illustration for the preparation of Ni-CoN@NC; (m) LSV curves of Ni-CoN@NC. Adapted with permission from Ref. 90. Copyright 2019, American Chemical Society."
Fig 9
(a) Schematic illustration of the synthesis routes of the FeOOH/Ni3N hybrid catalysts, (b) HER performance, (c) OER performance. Adapted with permission from Ref. 94. Copyright 2020, Elsevier. (d) Schematic of preparation process of Ni3Fe, Ni3FeN, and NiFeOx grown on carbon cloth. SEM images of (e, f) Ni3FeN/CC, (g, h) Ni3Fe/CC, and (i, j) NiFeOx/CC. (k) HER performance, (l) OER performance. Adapted with permission from Ref. 98. Copyright 2018, American Chemical Society. (m) OER performance of NF-NH3, Ni3Fe LDHs, Ni3Fe LDHs-Ar, and Ni3FeN (n) HER performance. Adapted with permission from Ref. 49. Copyright 2016, American Chemical Society."
Fig 10
(a) Schematic illustration for the synthesis procedure of Co4N@NC, (b) RRDE curves of Co4N@NC-1, Co4N@NC-2, Co4N@NC-3, Co4N@NC-4, Co@NC-2 and Pt/C (c) LSV curves of OER. Adapted with permission from Ref. 101. Copyright 2020, Elsevier. (d) Schematic illustration of synthetic process for Co@Co4N/MnO-NC (e) LSV curves of Co@Co4N-NC, Co@Co4N/MnO-NC, Co@Co4N/H-MnO-NC and Pt/C catalyst for ORR catalytic performance (f) OER polarization profiles. Adapted with permission from Ref. 54. Copyright 2020, Elsevier. (g, h) SEM images of the NC-Co/CoNx nanoarrays; (i) oxygen evolution and (j) oxygen reduction polarization curves. Adapted with permission from Ref. 58. Copyright 2019, Elsevier."
1 |
Benck J. D. ; Hellstern T. R. ; Kibsgaard J. ; Chakthranont P. ; Jaramillo T. F. ACS Catal. 2014, 4 (11), 3957.
doi: 10.1021/cs500923c |
2 |
Wang P. Y. ; Pu Z. H. ; Li Y. H. ; Tu Z. K. ; Jiang M. ; Kou Z. K. ; Amiinu I. S. ; Mu S. C. ACS Appl. Mater. Interfaces 2017, 9 (31), 26001.
doi: 10.1021/acsami.7b06305 |
3 |
Stamenkovic V. ; Mun B. S. ; Mayrhofer K. J. J. ; Ross P. N. ; Markovic N. M. ; Rossmeisl J. ; Greeley J. ; Nørskov J. K. Angew. Chem. 2006, 118, 2963.
doi: 10.1002/ange.200504386 |
4 |
Gasteiger H. A. ; Kocha S. S. ; Sompalli B. ; Wagner F. T. Appl. Catal. B 2005, 56, 9.
doi: 10.1016/j.apcatb.2004.06.021 |
5 |
Gasteiger H. A. ; Marković N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
6 |
Jia Y. ; Zhang L. Z. ; Zhuang L. Z. ; Liu H. L. ; Yan X. C. ; Wang X. ; Liu J. D. ; Wang J. C. ; Zheng Y. R. ; Xiao Z. H. ; et al Nat. Catal. 2019, 2, 688.
doi: 10.1038/s41929-019-0297-4 |
7 |
Jin H. H. ; Zhou H. ; He D. P. ; Wang Z. H. ; Wu Q. L. ; Liang Q. R. ; Liu S. L. ; Mu S. C. Appl. Catal. B: Environ. 2019, 250, 143.
doi: 10.1016/j.apcatb.2019.03.013 |
8 |
Hu Q. ; Li G. M. ; Han Z. ; Wang Z. Y. ; Haung X. W. ; Chai X. Y. ; Zhang Q. L. ; Liu J. H. ; He C. X. Adv. Energy Mater. 2019, 9, 1901130.
doi: 10.1002/aenm.201901130 |
9 |
Mahmood N. ; Yao Y. D. ; Zhang J. W. ; Pan L. ; Zhang X. W. ; Zou J. -J. Adv. Sci. 2017, 1700464
doi: 10.1002/advs.201700464 |
10 |
Pu Z. H. ; Amiinu I. S. ; Kou Z. K. ; Li W. Q. ; Mu S. C. Angew. Chem. Int. Ed. 2017, 56, 11559.
doi: 10.1002/anie.201704911 |
11 |
Ouyang T. ; Wang X. T. ; Mai X. Q. ; Chen A.-N. ; Tang Z. Y. Angew. Chem. Int. Ed. 2020, 59, 11948.
doi: 10.1002/anie.202004533 |
12 |
Wang C. ; Qi L. M. Angew. Chem. Int. Ed. 2020, 59, 17219.
doi: 10.1002/anie.202005436 |
13 |
Gao Q. S. ; Zhang W. B. ; Shi Z. P. ; Yang L. C. ; Tang Y. Adv. Mater. 2019, 31, 1802880.
doi: 10.1002/adma.201802880 |
14 |
Yu Y. D. ; Zhou J. ; Sun Z. M. Adv. Funct. Mater. 2020, 2000570.
doi: 10.1002/adfm.202000570 |
15 |
Zhang H. J. ; Hagen D. J. ; Li X. P. ; Graff A. ; Heyroth F. ; Fuhrmann B. ; Kostanovskiy I. ; Schweizer S. L. ; Caddeo F. ; et al Angew. Chem. Int. Ed. 2020, 59, 17172.
doi: 10.1002/anie.202002280 |
16 |
Hou C. C. ; Zou L. L. ; Wang Y. ; Xu Q. Angew. Chem. Int. Ed. 1002.
doi: 10.1002/anie.202011347 |
17 |
Guo Y. N. ; Park T. ; Yi J. W. ; Henzie J. ; Kim J. ; Wang Z. L. ; Jiang B. ; Bando Y. ; Sugahara Y. ; Tang J. ; et al Adv. Mater. 2019, 31, 1807134.
doi: 10.1002/adma.201807134 |
18 |
Guo M. R. ; Qayum A. ; Dong S. ; Jiao X. L. ; Chen D. R. ; Wang T. J. Mater. Chem. A 2020, 8, 9239.
doi: 10.1039/D0TA02337J |
19 |
Yang Y. S. ; Zhuang L. Z. ; Rufford T. E. ; Wang S. B. ; Zhu Z. H. RSC Adv. 2017, 7, 32923.
doi: 10.1039/C7RA02558K |
20 |
Chen X. C. ; Yu Z. X. ; Wei L. ; Zhou Z. ; Zhai S. L. ; Chen J. S. ; Wang Y. Q. ; Huang Q. W. ; Karahan H. E. ; Liao X. Z. ; et al J. Mater. Chem. A 2019, 7, 764.
doi: 10.1039/C8TA09130G |
21 |
Gao X. R. ; Liu X. M. ; Zang W. J. ; Dong H. L. ; Pang Y. J. ; Kou Z. K. ; Wang P. Y. ; Pan Z. H. ; Wei S. R. ; Mu S. C. ; et al Nano Energy 2020, 78, 105355.
doi: 10.1016/j.nanoen.2020.105355 |
22 |
Yu X. X. ; Zhou T. P. ; Ge J. K. ; Wu C. Z. ACS Mater. Lett. 2020.
doi: 10.1021/acsmaterialslett.0c00339 |
23 |
Ham D. J. ; Lee J. S. Energies 2009, 2, 873.
doi: 10.3390/en20400873 |
24 |
Chen J. G. Chem. Rev. 1996, 96, 4.
doi: 10.1021/cr950232u |
25 |
Lee J. S. ; Ham D. J. Encyclo. Catal. 2010.
doi: 10.1002/0471227617.eoc138.pub2 |
26 |
Wu R. ; Zhang J. F. ; Shi Y. M. ; Liu D. L. ; Zhang B. J. Am. Chem. Soc. 2015, 137 (22), 6983.
doi: 10.1021/jacs.5b01330 |
27 |
Hammer B. ; Nørskov J. K. Nature 1995, 376, 20.
doi: 10.1038/376238a0 |
28 |
Wei C. ; Sun Y. M. ; Scherer G. G. ; Fisher A. C. ; Sherburne M. ; Ager J. W. ; Xu Z. C. J. J. Am. Chem. Soc. 2020, 142, 7765.
doi: 10.1021/jacs.9b12005 |
29 |
Gao B. F. ; Veith G. M. ; Diaz R. E. ; Lui J. ; Stach E. A. ; Adzic R. R. ; Khalifah P. G. Angew. Chem. Int. Ed. 2013, 52, 10753.
doi: 10.1002/anie.201303197 |
30 |
Schwarz K. Crit. Rev. Solid State Mater. Sci. 1987, 13, 211.
doi: 10.1080/10408438708242178 |
31 |
Liu Y. ; Liu T. G. ; Chen J. G. ; Mustain W. E. ACS Catal. 2013, 3, 1184.
doi: 10.1021/cs4001249 |
32 |
Nørskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152, J23.
doi: 10.1149/1.1856988 |
33 |
Ignaszak A. ; Song C. ; Zhu W. ; Zhang J. ; Bauer A. ; Baker R. ; Neburchilov V. ; Ye S. ; Campbell S. Electrochim. Acta 2012, 69, 397.
doi: 10.1016/j.electacta.2012.03.039 |
34 |
Peng X. ; Pi C. R. ; Zhang X. M. ; Li S. ; Huo K. F. ; Paul K. C. Sustainable Energy Fuels 2019, 3, 366.
doi: 10.1039/C8SE00525G |
35 |
Kang J. S. ; Park M.-A. ; Kim J. -Y. ; Park S. H. ; Chung D. Y. ; Yu S. H. ; Kim J. ; Park J. ; Choil J. -W. ; Lee1 K. J. Sci. Rep. 2015, 5, 10450.
doi: 10.1038/srep10450 |
36 |
Dorman G. J. W. R. ; Sikkens M. Thin Solid Films 1983, 105 (3), 251.
doi: 10.1016/0040-6090(83)90290-0 |
37 |
Murthy A. P. ; Govindarajan D. ; Theerthagiri J. ; Madhavan J. ; Parasuraman K. Electrochim. Acta 2018, 283, 1525.
doi: 10.1016/j.electacta.2018.07.094 |
38 |
Wei B. B. ; Tang G. S. ; Liang H. F. ; Qi Z. B. ; Zhang D. F. ; Hu W. S. ; Shen H. ; Wang Z. C. Electrochem. Commun. 2018, 93, 166.
doi: 10.1016/j.elecom.2018.07.012 |
39 |
Peng X. ; Huo K. F. ; Fu J. J. ; Gao B. ; Wang L. ; Hu L. S. ; Zhang X. M. ; Chu P. K. ChemElectroChem 2015, 2, 512.
doi: 10.1002/celc.201402349 |
40 |
Liu C. ; Zhang H. ; Shi W. ; Lei A. Chem. Rev. 2011, 111, 1780.
doi: 10.1021/cr100379j |
41 |
Peng X. ; Huo K. ; Fu J. ; Zhang X. ; Gao B. ; Chu P. K. Chem. Commun. 2013, 49, 10172.
doi: 10.1039/C3CC41249K |
42 | Yu C. P. ; Wang Y. ; Cui J. W. ; Liu J. Q. ; Wu Y. C. Acta Phys. -Chim. Sin. 2017, 33 (10), 1944. |
余翠平; 王岩; 崔接武; 刘家琴; 吴玉程. 物理化学学报, 2017, 33 (10), 1944.
doi: 10.3866/PKU.WHXB201705177 |
|
43 |
Nagai M. Appl. Catal. A: Gen. 2007, 322, 178.
doi: 10.1016/j.apcata.2007.01.006 |
44 | Liu Z. L. ; Meng M. ; Fu Y. L. ; Jiang M. ; Hu T. D. ; Xie Y. N. ; Liu T. Acta Phys. -Chim. Sin. 2001, 17 (7), 631. |
刘振林; 孟明; 伏义路; 姜明; 胡天斗; 谢亚宁; 刘涛. 物理化学学报, 2001, 17 (7), 631.
doi: 10.3866/PKU.WHXB20010712 |
|
45 |
Cheng Z. X. ; Saad A. ; Guo H. C. ; Wang C. H. ; Liu S. Q. ; Thomas T. J. ; Yang M. H. J. Alloy. Compd. 2020, 838, 155375.
doi: 10.1016/j.jallcom.2020.155375 |
46 |
Wang H. M. ; Wu Z. J. ; Kong J. ; Wang Z. Q. ; Zhang M. H. J. Solid State Chem. 2012, 194, 238.
doi: 10.1016/j.jssc.2012.05.028 |
47 |
Fan G. L. ; Li F. ; Evans D. G. ; Duan X. Chem. Soc. Rev. 2014, 43, 7040.
doi: 10.1039/c4cs00160e |
48 |
Jia X. D. ; Zhao Y. F. ; Chen G. B. ; Shang L. ; Shi R. ; Kang X. F. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C.-H. ; Zhang T. R. Adv. Energy Mater. 2016, 6, 1502585.
doi: 10.1002/aenm.201502585 |
49 |
Wang Y. Y. ; Xie C. ; Liu D. D. ; Huang X. B. ; Huo J. ; Wang S. Y. ACS Appl. Mater. Interfaces 2016, 8 (29), 18652.
doi: 10.1021/acsami.6b05811 |
50 |
Yao N. ; Li P. ; Zhou Z. R. ; Zhao Y. M. ; Cheng G. Z. ; Chen S. L. ; Luo W. Adv. Energy Mater. 2019, 1902449.
doi: 10.1002/aenm.201902449 |
51 |
Rachuri Y. ; Bisht K. K. ; Parmar B. ; Suresh E. Solid State Chem. 2015, 223, 23.
doi: 10.1016/j.jssc.2014.05.012 |
52 |
Zhu J. J. ; Liu C. C. ; Sun J. ; Xing Y. Y. ; Quan B. ; Li D. ; Jiang D. L. Electrochim. Acta 2020, 354, 136629.
doi: 10.1016/j.electacta.2020.136629 |
53 |
Xu Q. C. ; Jiang H. ; Li Y. H. ; Liang D. ; Hu Y. J. ; Li C. Z. Appl. Catal. B: Environ. 2019, 256, 117893.
doi: 10.1016/j.apcatb.2019.117893 |
54 |
Wang F. M. ; Zhao H. M. ; Ma Y. R. ; Yang Y. ; Li B. ; Cui Y. Y. ; Guo Z. Y. ; Wang L. J. Energy Chem. 2020, 50, 52.
doi: 10.1016/j.jechem.2020.03.006 |
55 |
Feng X. G. ; Wang H. X. ; Bo X. J. ; Guo L. P. ACS Appl. Mater. Interfaces 2019, 11 (8), 8018.
doi: 10.1021/acsami.8b21369 |
56 |
Theerthagiri J. ; Dalavi S. B. ; Raja M. M. ; Panda R. N. Mater. Res. Bull. 2013, 48 (11), 4444.
doi: 10.1016/j.materresbull.2013.07.043 |
57 |
Jin H. Y. ; Gu Q. F. ; Chen B. ; Tang C. ; Zheng Y. ; Zhang H. ; Jaroniec M. ; Qiao S. Z. Chem 2020, 6, 2382.
doi: 10.1016/j.chempr.2020.06.037 |
58 |
Guan C. ; Sumboja A. ; Zang W. J. ; Qian Y. H. ; Zhang H. ; Liu X. M. ; Liu Z. L. ; Zhao D. ; Pennycook S. J. ; Wang J. Energy Storage Mater. 2019, 16, 243.
doi: 10.1016/j.ensm.2018.06.001 |
59 |
Gao X. R. ; Yu Y. ; Liang Q. R. ; Pang Y. J. ; Miao L. Q. ; Liu X. M. ; Kou Z. K. ; Hed J. ; Pennycookb S. J. ; Mu S. C. ; et al Appl. Catal. B: Environ. 2020, 270, 118889.
doi: 10.1016/j.apcatb.2020.118889 |
60 |
Liu T. T. ; Li M. ; Bo X. J. ; Zhou M. ACS Sustain. Chem. Eng. 2018, 6 (9), 11457.
doi: 10.1021/acssuschemeng.8b01510 |
61 |
Hu Y. W. ; Xiong T. Z. ; Balogun M. S. J. T. ; Huang Y. C. ; Adekoya D. ; Zhang S. Q. ; Tong Y. X. Mater. Today Phys. 2020, 100267.
doi: 10.1016/j.mtphys.2020.100267 |
62 |
Kou Z. K. ; Wang T. T. ; Hu H. J. ; Zheng L. R. ; Mu S. C. ; Pan Z. H. ; Lyu Z. Y. ; Zang W. J. ; Pennycook S. J. ; Wang J. Small 2019, 15, 1900248.
doi: 10.1002/smll.201900248 |
63 |
Kou Z. K. ; Wang T. T. ; Gu Q. L. ; Xiong M. ; Zheng L. R. ; Li X. ; Pan Z. H. ; Chen H. ; Verpoort F. ; Cheetham A. K. ; et al Adv. Energy Mater. 2019, 1803768.
doi: 10.1002/aenm.201803768 |
64 |
Varga T. ; Ballai G. ; Vásárhelyi L. ; Haspel H. ; Kukovecz A. ; Konya Z. Appl. Catal. B: Environ. 2018, 237, 826.
doi: 10.1016/j.apcatb.2018.06.054 |
65 |
Qi W. L. ; Zhou Y. ; Liu S. Q. ; Liu H. H. ; Hui L. S. ; Turak A. ; Wang J. ; Yang M. H. Appl. Mater. Today 2020, 18, 100476.
doi: 10.1016/j.apmt.2019.100476 |
66 |
Theerthagiri J. ; Leea S. J. ; Murthyb A. P. ; Madhavanb J. ; Choia M. Y. Curr. Opin. Solid State Mater. Sci. 2020, 24 (1), 100805.
doi: 10.1016/j.cossms.2020.100805 |
67 |
Cheng R. L. ; He H. L. ; Pu Z. H. ; Amiinu I. S. ; Chen L. ; Wang Z. ; Li G. Q. ; Mu S. C. Electrochim. Acta 2019, 298, 799.
doi: 10.1016/j.electacta.2018.12.128 |
68 |
Liang J. ; Zhang B. ; Shen H. Q. ; Yin Y. ; Liu L. Q. ; Ma Y. M. ; Wang X. ; Xiao C. H. ; Kong J. ; Ding S. J. Appl. Surf. Sci. 2020, 503, 144143.
doi: 10.1016/j.apsusc.2019.144143 |
69 |
Gao D. Q. ; Zhang J. Y. ; Wang T. T. ; Xiao W. ; Tao K. ; Xue D. S. ; Ding J. J. Mater. Chem. A 2016, 4, 17363.
doi: 10.1039/C6TA07883D |
70 |
Jin H. Y. ; Liu X. ; Vasileff A. ; Jiao Y. ; Zhao Y. Q. ; Zheng Y. ; Qiao S. Z. ACS Nano 2018, 12 (12), 12761.
doi: 10.1021/acsnano.8b07841 |
71 |
Yao N. ; Meng R. ; Wu F. ; Fan Z.Y. ; Cheng G. Z. ; Luo W. Appl. Catal. B: Environ. 2020, 277, 119282.
doi: 10.1016/j.apcatb.2020.119282 |
72 |
Xiang M. Q. ; Song M. ; Zhu Q. S. ; Yang Y. F. ; Hu C. Q. ; Liu Z. W. ; Zhao H. D. ; Ge Y. Chem. Eng. J. 2021, 404, 126451.
doi: 10.1016/j.cej.2020.126451 |
73 |
Gao B. F. ; Veith G. M. ; Neuefeind J. C. ; Adzic R. R. ; Khalifah P. G. J. Am. Chem. Soc. 2013, 135 (51), 19186.
doi: 10.1021/ja4081056 |
74 |
Chen P. Z. ; Xu K. ; Tong Y. ; Li X. L. ; Tao S. T. ; Fang Z. W. ; Chu W. S. ; Wu X. J. ; Wu C. Z. Inorg. Chem. Front. 2016, 3, 236.
doi: 10.1039/C5QI00197H |
75 |
Zhang Y. Q. ; Ouyang B. ; Xu J. ; Jia G. C. ; Chen S. ; Rawat R. S. ; Fan H. J. Angew. Chem. 2016, 55 (30), 8670.
doi: 10.1002/anie.201604372 |
76 |
Chen P. Z. ; Xu K. ; Fang Z. W. ; Tong Y. ; Wu J. C. ; Lu X. L. ; Peng X. ; Ding H. ; Wu C. Z. ; Xie Y. Angew. Chem. 2015, 54 (49), 14710.
doi: 10.1002/anie.201506480 |
77 |
Liu T. T. ; Tian Y. ; Li M. ; Su Z. M. ; Bai J. ; Ma C. B. ; Bo X. J. ; Guan W. ; Zhou M. Electrochim. Acta 2019, 323, 134684.
doi: 10.1016/j.electacta.2019.134684 |
78 |
Li X. R. ; Wang C. L. ; Xue H. G. ; Pang H. ; Xu Q. Coord. Chem. Rev. 2020, 422, 213468.
doi: 10.1016/j.ccr.2020.213468 |
79 |
Tareen A. K. ; Priyanga G. S. ; Khan K. ; Pervaiz E. ChemSusChem 2019, 12, 3941.
doi: 10.1002/cssc.201900553 |
80 |
Shao Z. Y. ; Sun J. ; Yan Z. ; Huang K. K. ; Tian F. L. ; Xue H. ; Wang Q. Appl. Surf. Sci. 2020, 529, 147172.
doi: 10.1016/j.apsusc.2020.147172 |
81 |
Fu X. G. ; Zhu J. S. ; Ao B. ; Lyu X. Y. ; Chen J. Inorg. Chem. Commun. 2020, 113, 107802.
doi: 10.1016/j.inoche.2020.107802 |
82 |
Yang Y. ; Zeng R. ; Xiong Y. ; DiSalvo F. J. ; Abruña H. D. J. Am. Chem. Soc. 2019, 141 (49), 19241.
doi: 10.1021/jacs.9b10809 |
83 |
Qi J. ; Jiang L. H. ; Jiang Q. ; Wang S. L. ; Sun G. Q. J. Phys. Chem. C 2010, 114 (42), 18159.
doi: 10.1021/jp102284s |
84 |
Kreider M. E. ; Kreider A. ; Back S. ; Liu Y. Z. ; Siahrostami S. ; Nordlund D. ; Sinclair R. ; Nørskov J. K. ; King L. A. ; Jaramillo T. F. ACS Appl. Mater. Interfaces 2019, 11 (30), 26863.
doi: 10.1021/acsami.9b07116 |
85 |
Zheng Y. Y. ; Zhang J. ; Zhan H. T. ; Sun D. L. ; Dang D. ; Tian X. L. Electrochem. Commun. 2018, 91, 31.
doi: 10.1016/j.elecom.2018.04.021 |
86 |
Chen J. W. ; Wei X. Y. ; Zhang J. ; Lou Y. ; Chen Y. H. ; Wang G. ; Wang R. L. Ind. Eng. Chem. Res. 2019, 58, 8.
doi: 10.1021/acs.iecr.8b05719 |
87 |
Wang M. ; Yang Y. S. ; Liu X. B. ; Pu Z. H. ; Kou Z. K. ; Zhu P. P. ; Mu S. C. Nanoscale 2017, 9, 7641.
doi: 10.1039/C7NR01925D |
88 |
Radwan A. ; Jin H. H. ; Liu B. S. ; Chen Z. B. ; Wu Q. ; Zhao X. ; He D. P. ; Mu S. C. Carbon 2020.
doi: 10.1016/j.carbon.2020.09.024 |
89 |
Zhang J. ; Chen J. W. ; Luo Y. ; Chen Y. H. ; Li Z. J. ; Shi J. J. ; Wang G. Carbon 2020, 159, 16.
doi: 10.1016/j.carbon.2019.12.027 |
90 |
Zhang J. ; Chen J. W. ; Luo Y. ; Chen Y. H. ; Li Z. J. ; Shi J. J. ; Wang G. ; Wang R. L. ACS Sustain. Chem. Eng. 2020, 8 (1), 382.
doi: 10.1021/acssuschemeng.9b05655 |
91 |
Varga T. ; Vásárhelyi L. ; Ballai G. ; Haspel H. ; Oszkó A. ; Kukovecz Á. ; Kónya Z. ACS Omega 2019, 4 (1), 130.
doi: 10.1021/acsomega.8b02646 |
92 |
Norskov J. K. Rep. Prog. Phys. 1990, 53 (10), 1253.
doi: 10.1088/0034-4885/53/10/001 |
93 |
Norskov J. K. Prog. Surf. Sci. 1991, 38 (2), 103.
doi: 10.1016/0079-6816(91)90007-Q |
94 |
Guan J. L. ; Li C. F. ; Zhao J. W. ; Yang Y. Z. ; Zhou W. ; Wang Y. ; Li G. R. Appl. Catal. B: Environ. 2020, 269, 118600.
doi: 10.1016/j.apcatb.2020.118600 |
95 |
Hu Y. W. ; Yang H. ; Chen J. J. ; Xiong T. Z. ; Balogun M.-S. ; Tong Y. X. ACS Appl. Mater. Interfaces 2019, 11 (5), 5152.
doi: 10.1021/acsami.8b20717 |
96 |
Liu X. L. ; Lv X. S. ; Wang P. ; Zhang Q. Q. ; Huang B. B. ; Wang Z. Y. ; Liu Y. Y. ; Zheng Z. K. ; Dai Y. Electrochim. Acta 2020, 333, 135488.
doi: 10.1016/j.electacta.2019.135488 |
97 |
Chen Q. ; Wang R. ; Yu M. H. ; Zeng Y. X. ; Lu F. Q. ; Kuang X. J. ; Lu X. H. Electrochim. Acta 2017, 247, 666.
doi: 10.1016/j.electacta.2017.07.025 |
98 |
Liu Z. H. ; Tan H. ; Xin J. P. ; Duan J. Z. ; Su X. W. ; Hao P. ; Xie J. F. ; Zhan J. ; Zhang J. ; Wang J. J. ACS Appl. Mater. Interfaces 2018, 10 (4), 3699.
doi: 10.1021/acsami.7b18671 |
99 |
Jia J. R. ; Zhai M. K. ; Lv J. J. ; Zhao B. X. ; Du H. B. ; Zhu J. J. ACS Appl. Mater. Interfaces 2018, 10 (36), 30400.
doi: 10.1021/acsami.8b09854 |
100 |
Guo H. P. ; Ruan B. Y. ; Luo W. B. ; Deng J. Q. ; Wang J. Z. ; Liu H. K. ; Dou S. X. ACS Catal. 2018, 8 (10), 9686.
doi: 10.1021/acscatal.8b01821 |
101 |
Ge H. Y. ; Li G. D. ; Shen J. X. ; Ma W. Q. ; Meng X. G. ; Xu L. Q. Appl. Catal. B: Environ. 2020, 275, 119104.
doi: 10.1016/j.apcatb.2020.119104 |
102 |
Chen L. L. ; Zhang Y. L. ; Liu X. J. ; Long L. ; Wang S. Y. ; Xu X. L. ; Liu M. C. ; Yang W. X. ; Jia J. B. Carbon 2019, 151, 10.
doi: 10.1016/j.carbon.2019.05.063 |
103 |
Wang Q. ; Shang L. ; Shi R. ; Zhang X. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. Nano Energy 2017, 40, 382.
doi: 10.1016/j.nanoen.2017.08.040 |
104 | Xuan C. J. ; Wang J. ; Zhu J. ; Wang D. L. Acta Phys. -Chim. Sin. 2017, 33 (1), 149. |
玄翠娟; 王杰; 朱静; 王得丽. 物理化学学报, 2017, 33 (1), 149.
doi: 10.3866/PKU.WHXB201609143 |
|
105 |
Zhang X. L. ; Yang Z. X. ; Lu Z. S. ; Wang W. C. Carbon 2018, 130, 112.
doi: 10.1016/j.carbon.2017.12.121 |
106 |
Liu J. M. ; Wang C. B. ; Sun H. M. ; Wang H. ; Rong F. L. ; He L. H. ; Lou Y. F. ; Zhang S. ; Zhang Z. H. ; Du M. Appl. Catal. B: Environ. 2020, 279, 119407.
doi: 10.1016/j.apcatb.2020.119407 |
107 |
Zou H. Y. ; Li G. ; Duan L. L. ; Kou Z. K. ; Wang J. Appl. Catal. B: Environ. 2019, 259, 118100.
doi: 10.1016/j.apcatb.2019.118100 |
108 |
Guo Y. Y. ; Yuan P. F. ; Zhang J. N. ; Xia H. C. ; Cheng F. Y. ; Zhou M. F. ; Li J. ; Qiao Y. Y. ; Mu S. C. ; Xu Q. Adv. Funct. Mater. 2018, 28, 51.
doi: 10.1002/adfm.201805641 |
109 |
Amiinu I. S. ; Pu Z. H. ; Liu X. B. ; Owusu K. A. ; Monestel H. G. R. ; Boakye F. O. ; Zhang H. N. ; Mu S. C. Adv. Funct. Mater. 2017, 27, 1702300.
doi: 10.1002/adfm.201702300 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[4] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[5] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[6] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[7] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[8] | Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106010-. |
[9] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[10] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[11] | Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004054-. |
[12] | Xinmei Ding, Yanli Liang, Hailong Zhang, Ming Zhao, Jianli Wang, Yaoqiang Chen. Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005009-. |
[13] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[14] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[15] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
|