Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2010029.doi: 10.3866/PKU.WHXB202010029

Special Issue: Fuel Cells

• REVIEW • Previous Articles     Next Articles

Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application

Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang()   

  • Received:2020-10-14 Accepted:2020-12-02 Published:2020-12-10
  • Contact: Deli Wang E-mail:wangdl81125@hust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(91963109)

Abstract:

Proton exchange membrane fuel cells (PEMFCs) are considered as one of the most promising energy conversion devices owing to their high power density, high energy conversion efficiency, environment-friendly merit, and low operating temperature. In the cathodic oxygen reduction reaction and anodic small-molecule oxidation reactions, Pt shows excellent catalytic activity. However, several factors limit the practical application of Pt nanoparticles in fuel cells, such as the high price of Pt, easy agglomeration during long-term cycling, and limited electrocatalytic performance. Alloying Pt with 3d-transition metal produces ligand and strain effects, which reduces the center of Pt-d band and weakens the binding strength of oxygen species, thereby improving the catalytic activity and reducing the cost. However, the performance of fuel cells degrades seriously because the transition metals tend to dissolve in acidic electrolytes. The disordered alloy transformed into ordered intermetallic nanoparticles can prevent the dissolution of transition metals. Ordered intermetallics have highly ordered atomic arrangements and strong Pt(5d)-M(3d) orbital interactions, which result in excellent stability in both acidic and alkaline electrolytes. Ordered intermetallic nanoparticles have attracted significant attention owing to their excellent electrocatalytic activity and stability, which can be attributed to controllable composition and structure. Pd has a similar electronic structure and lattice parameters to Pt, and has thus attracted significant attention. Several Pd-based ordered intermetallics have been synthesized, and they exhibit sufficient catalytic performance. This review discusses the recent progress in noble metal-based ordered intermetallic electrocatalysts based on the research status of our group over the years. First, the structural characteristics and characterization methods of ordered intermetallic nanoparticles are introduced, exhibiting approaches to distinguish ordered and disordered phases. Then, the controllable preparation of ordered nanoparticles is highlighted, including thermal annealing and direct liquid phase synthesis. The migration and interdiffusion of atoms in the ordering process is very difficult. High-temperature thermal annealing is the most commonly used method for preparing intermetallics, which can precisely control the composition and atomic ordered arrangement. However, thermal annealing can only produce thermodynamically stable spherical nanoparticles. Supports and coating layers are usually employed to prevent agglomeration of nanoparticles at high temperatures. Finally, the applications of ordered intermetallic nanoparticles in fuel cell electrocatalysts are reviewed, including the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), formic acid oxidation reaction (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). In addition, the current challenges and future development directions of the catalysts are discussed and discussed to provide new ideas for the development of fuel cell electrocatalysts.

Key words: Fuel cell, Electrocatalysis, Intermetallics, Oxygen reduction reaction, Small-molecule oxidation

MSC2000: 

  • O643