Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2010029.doi: 10.3866/PKU.WHXB202010029
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang()
Received:
2020-10-14
Accepted:
2020-12-02
Published:
2020-12-10
Contact:
Deli Wang
E-mail:wangdl81125@hust.edu.cn
Supported by:
MSC2000:
Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2010029.
Fig 3
(a) XRD patterns for Pt, fcc-PtFe and fct-PtFe 47; (b) SAED patterns for fct-PtFe 56; (c, d, e) the HRTEM images of fct-PtFe 57; enlarged image (f) and simulated image (g) of fct-PtFe 55. (a) Adapted from Royal Society of Chemistry Publisher. (b) Adapted from Wiley Publisher. (c–g) Adapted from American Chemical Society Publisher."
Table 1
Summary of Pt and Pd-based ordered intermetallic nanocatalysts with corresponding synthetic approaches and applications hightlighted in this report."
Synthetic method | Composition | Reaction temperature/℃ | Application | Particle size/nm | Ref. |
Annealing with support | Pt3Co | 700 | ORR | 7.2 | |
PtPb | 700 | FAOR | 42.4 | ||
PtBi | 600 | FAOR | 2–3.5 | ||
Pd3Fe | 750 | FAOR | 11 | ||
PtFe | 650 | ORR | 6 | ||
Pt3Co | 900 | ORR | 3 | ||
Fe3Pt | 900 | ORR | 1–4 | ||
CePt5 | 900 | – | 8 | ||
Annealing with coating | PtFe | 700 | ORR | 6.5 | |
PtFe | 800 | ORR | 3.8 | ||
PdFe | 800 | ORR | – | ||
PtZn | 600 | MOR | 2.1 | ||
Pd2FeCo | 500 | ORR | 6.5 | ||
FePt | 800 | – | 7 | ||
Pt3Fe | 600 | – | 2 | ||
Pd3Pb | 400 | ORR | 5.2 | ||
Annealing with defects | FePd | 500 | – | 6 | |
PtNi0.8Co0.2 | 600 | ORR | 6 | ||
FePtAu | 600 | FAOR | 4 | ||
AuPdCo | 800 | ORR | 6.7 | ||
Solution phase synthesis | Pt3Sn | 180 | – | 12.8/22.8/18.3 | |
PtPb | – | – | 16 (edge length) | ||
PtBi | 160 | – | 2.5 (thickness) |
Fig 4
(a) Synthesis schematic of PtPb-x-OMCS catalysts 64; (b) synthesis schematic of OMC-PtBi catalysts 51; (c) synthesis schematic of ordered Pd3Fe/C catalysts 66; (d) the HRTEM images of Pt nanoparticles supported on CeO2 (d1), decoration of the Pt nanoparticles by CeO2 (d2), the CePt5 intermetallic nanoparticles after annealing in H2 at 500 ℃ (d3) 76. (a) Adapted from American Chemical Society Publisher. (b, c) Adapted from Springer Nature publisher. (d) Adapted from Elsevier Publisher."
Fig 6
(a) Synthesis schematic, HAADF-STEM images (a1, a3) and model structure(a2) of ordered fct-PtFe/C nanoparticles 14; (b) synthesis schematic of O-Pt-Fe@NC/C nanoparticles and the overview TEM image (b1) 78; (c) synthesis schematic and TEM images of PtZn/MWNT@mSiO2 80. (a, c) Adapted from American Chemical Society Publisher. (b) Adapted from Elsevier Publisher."
Fig 7
(a) Synthesis schematic of FePd nanoparticles(NPs) self-aggregate into FePd superparticles(SPs) and the formation of urchin-like FePd-Fe3O4, (a1, a2) TEM images of the urchin-like FePd-Fe3O4 89; (b) schematic diagram of the structural change of the FePtAu NPs; STEM-EDS line scans crossing fcc-FePtAu (b1) and fct-FePtAu (b3); TEM images of fcc-FePtAu (b2) and fct-FePtAu (b4) 91. Adapted from American Chemical Society Publisher."
Fig 8
TEM images of defect-rich Pt3Sn nanoparticles obtained at different reaction time: (a) 1 h, (b) 1.5 h, (c) 2 h, (d) 6 h; (e) the formation schematic of defect-rich Pt3Sn 96; (f) the model and HAADF-STEM images of PtPb/Pt nanoplate 99. (a–e) Adapted from American Chemical Society Publisher. (f) Adapted from The American Association for the Advancement of Science Publisher."
Fig 9
(a) HAADF-STEM image of Pt3Co/C-700; (b) the ideal structure of Pt3Co core–shell nanoparticle 17; (c) DFT calculated the oxygen adsorption energy (△E0)for AuCu(111)with different thickness of Pt shell; (d) SA and MA of PtSAuCu and Pt nanoparticles at 0.9 V 106; (e) the MA of Pt/C, Pt3Co/C-400 and Pt3Co/C-700 at 0.85 and 0.9 V; (f) ORR polarization curves of Pt3Co/C-400 and Pt3Co/C-700 before and after 5000 potential cycles 17; (g) ORR polarization curves of Pd3V@Pt/C 103; (h) schematic diagram of the transformation from O-PdFe to O-PdFe@Pt 31. (a–f) Adapted from Springer Nature publisher. (g) Adapted from Royal Society of Chemistry Publisher. (h) Adapted from Elsevier Publisher."
Fig 10
(a) Free energy pathways for acidic four-electron ORR based on the systems of PtBi-Pt interface, PtBi-Pt-edge, PtBi(211) surface, PtBi(110) surface, and Pt(111) surface; (b) the local structural configurations for the simulated ORR process from the PtBi-Pt interface model system; (c) comparison of the SA and MA; (d) comparison of ECSA and MA before and after 5000 cycles 100. Adapted from American Chemical Society Publisher."
Fig 11
(a) Preserved Fe after stability tests for four materials; (b) the conversion efficiency of CO2 and methyl formate respectively; cyclic voltammograms; (c) CO2 partial current density; (d) methyl formate partial current density 144; (e) the reaction mechanism of MOR on PtZn(111), stepped PtZn(211), Pt24Zn24 cluster and Pt(111) 80. Adapted from American Chemical Society Publisher."
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Bing Y. ; Liu H. ; Zhang L. ; Ghosh D. ; Zhang J. Chem. Soc. Rev. 2010, 39, 2184.
doi: 10.1039/b912552c |
3 |
Rößner L. ; Armbrüster M. ACS Catal. 2019, 9, 2018.
doi: 10.1021/acscatal.8b04566 |
4 | Luo M. C. ; Sun Y. J. ; Qin Y. N. ; Yang Y. ; Wu D. ; Guo S. J. Acta Phys. -Chim. Sin. 2018, 34, 361. |
骆明川; 孙英俊; 秦英楠; 杨勇; 吴冬; 郭少军. 物理化学学报, 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312 |
|
5 |
Ma Z. ; Cano Z. P. ; Yu A. ; Chen Z. ; Jiang G. ; Fu X. ; Yang L. ; Wu T. ; Bai Z. ; Lu J. Angew. Chem. Int. Ed. 2020, 59, 18334.
doi: 10.1002/anie.202003654 |
6 |
Wang X. X. ; Sokolowski J. ; Liu H. ; Wu G. Chin. J. Catal. 2020, 41, 739.
doi: 10.1016/s1872-2067(19)63407-8 |
7 |
Bashyam R. ; Zelenay P. Nature 2006, 443, 63.
doi: 10.1038/nature05118 |
8 |
Shao M. ; Chang Q. ; Dodelet J. P. ; Chenitz R. Chem. Rev. 2016, 116, 3594.
doi: 10.1021/acs.chemrev.5b00462 |
9 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2012, 134, 13934.
doi: 10.1021/ja3051662 |
10 |
Hodnik N. ; Jeyabharathi C. ; Meier J. C. ; Kostka A. ; Phani K. L. ; Recnik A. ; Bele M. ; Hocevar S. ; Gaberscek M. ; Mayrhofer K. J. Phys. Chem. Chem. Phys. 2014, 16, 13610.
doi: 10.1039/c4cp00585f |
11 |
Zhang Z. ; Luo Z. ; Chen B. ; Wei C. ; Zhao J. ; Chen J. ; Zhang X. ; Lai Z. ; Fan Z. ; Tan C. ; et al Adv. Mater. 2016, 28, 8712.
doi: 10.1002/adma.201603075 |
12 |
Sun S. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000,
doi: 10.1002/chin.200027244 |
13 |
Liu Z. ; Jackson G. S. ; Eichhorn B. W. Energy Environ. Sci. 2011, 4, 1900.
doi: 10.1039/c1ee01125a |
14 |
Chung D. Y. ; Jun S. W. ; Yoon G. ; Kwon S. G. ; Shin D. Y. ; Seo P. ; Yoo J. M. ; Shin H. ; Chung Y. H. ; Kim H. ; et al J. Am. Chem. Soc. 2015, 137, 15478.
doi: 10.1021/jacs.5b09653 |
15 |
Leonard B. M. ; Zhou Q. ; Wu D. ; DiSalvo F. J. Chem. Mater. 2011, 23, 1136.
doi: 10.1021/cm1024876 |
16 |
Wang Y. ; Zou L. ; Huang Q. ; Zou Z. ; Yang H. Int. J. Hydrogen Energy 2017, 42, 26695.
doi: 10.1016/j.ijhydene.2017.09.008 |
17 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/nmat3458 |
18 |
Stamenkovic V. R. ; Mun B. S. ; Arenz M. ; Mayrhofer K. J. ; Lucas C. A. ; Wang G. ; Ross P. N. ; Markovic N. M. Nat. Mater. 2007, 6, 241.
doi: 10.1038/nmat1840 |
19 |
Cui C. ; Gan L. ; Heggen M. ; Rudi S. ; Strasser P. Nat. Mater. 2013, 12, 765.
doi: 10.1038/nmat3668 |
20 |
Zhang X. ; Lu G. J. Phys. Chem. Lett. 2014, 5, 292.
doi: 10.1021/jz4024699 |
21 |
Bligaard T. ; Nørskov J. K. Electrochim. Acta 2007, 52, 5512.
doi: 10.1016/j.electacta.2007.02.041 |
22 |
Mavrikakis M. ; Hammer B. ; Nørskov J. Phys. Rev. Lett. 1998, 81, 2819.
doi: 10.1103/PhysRevLett.81.2819 |
23 |
Karamad M. ; Tripkovic V. ; Rossmeisl J. ACS Catal. 2014, 4, 2268.
doi: 10.1021/cs500328c |
24 |
Wang K. ; Gasteiger H. A. ; Markovic N. M. Electrochim. Acta 1996, 41, 2587.
doi: 10.1016/0013-4686(96)00079-5 |
25 |
Jaksic M. M. ; Botton G. A. ; Papakonstantinou G. D. ; Nan F. ; Jaksic J. M. J. Phys. Chem. C 2014, 118, 8723.
doi: 10.1021/jp412292w |
26 |
Jaksic J. M. ; Nan F. ; Papakonstantinou G. D. ; Botton G. A. ; Jaksic M. M. J. Phys. Chem. C 2015, 119, 11267.
doi: 10.1021/jp510234f |
27 |
Abe H. ; Matsumoto F. ; Alden L. R. J. Am. Chem. Soc. 2008, 130, 5452.
doi: 10.1021/ja075061c |
28 |
DeSario D. Y. ; DiSalvo F. J. Chem. Mater. 2014, 26, 2750.
doi: 10.1021/cm5007197 |
29 |
Wang D. ; Yu Y. ; Xin H. L. ; Hovden R. ; Ercius P. ; Mundy J. A. ; Chen H. ; Richard J. H. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nano Lett. 2012, 12, 5230.
doi: 10.1021/nl302404g |
30 |
Liu S. ; Xiao W. ; Wang J. ; Zhu J. ; Wu Z. ; Xin H. ; Wang D. Nano Energy 2016, 27, 475.
doi: 10.1016/j.nanoen.2016.07.038 |
31 |
Xiao W. ; Cordeiro M. A. L. ; Gao G. ; Zheng A. ; Wang J. ; Lei W. ; Gong M. ; Lin R. ; Stavitski E. ; Xin H. L. ; Wang D. Nano Energy 2018, 50, 70.
doi: 10.1016/j.nanoen.2018.05.032 |
32 |
Galeano C. ; Meier J. C. ; Peinecke V. ; Bongard H. ; Katsounaros I. ; Topalov A. A. ; Lu A. ; Mayrhofer K. J. ; Schuth F. J. Am. Chem. Soc. 2012, 134, 20457.
doi: 10.1021/ja308570c |
33 |
Iihama S. ; Furukawa S. ; Komatsu T. ACS Catal. 2015, 6, 742.
doi: 10.1021/acscatal.5b02464 |
34 |
Najafishirtari S. ; Brescia R. ; Guardia P. ; Marras S. ; Manna L. ; Colombo M. ACS Catal. 2015, 5, 2154.
doi: 10.1021/cs501923x |
35 |
Kim J. ; Lee Y. ; Sun S. J. Am. Chem. Soc. 2010, 132, 4996.
doi: 10.1021/ja1009629 |
36 |
Zou L. ; Li J. ; Yuan T. ; Zhou Y. ; Li X. ; Yang H. Nanoscale 2014, 6, 10686.
doi: 10.1039/c4nr02799j |
37 |
Cui Y. ; Wu Y. ; Wang Z. ; Yao X. ; Wei Y. ; Kang Y. ; Du H. ; Li J. ; Gan L. J. Electrochem. Soc. 2020, 167, 064520.
doi: 10.1149/1945-7111/ab8407 |
38 |
Hu Y. ; Lu Y. ; Zhao X. ; Shen T. ; Zhao T. ; Gong M. ; Chen K. ; Lai C. ; Zhang J. ; Xin H. L. ; Wang D. Nano Res. 2020, 13, 2365.
doi: 10.1007/s12274-020-2856-z |
39 |
Yang Y. ; Chen G. ; Zeng R. ; Villarino A. M. ; DiSalvo F. J. ; van Dover R. B. ; Abruna H. D. J. Am. Chem. Soc. 2020, 142, 3980.
doi: 10.1021/jacs.9b13400 |
40 |
Shao M. J. Power Sources 2011, 196, 2433.
doi: 10.1016/j.jpowsour.2010.10.093 |
41 |
Xiao W. ; Lei W. ; Wang J. ; Gao G. ; Zhao T. ; Cordeiro M. A. L. ; Lin R. ; Gong M. ; Guo X. ; Stavitski E. ; et al J. Mater. Chem. A 2018, 6, 11346.
doi: 10.1039/c8ta03250e |
42 |
Shen T. ; Chen S. ; Zeng R. ; Gong M. ; Zhao T. ; Lu Y. ; Liu X. ; Xiao D. ; Yang Y. ; Hu J. ; et al ACS Catal. 2020, 10, 9977.
doi: 10.1021/acscatal.0c01537 |
43 |
Meku E. ; Du C. ; Sun Y. ; Du L. ; Wang Y. ; Yin G. J. Electrochem. Soc. 2015, 163, F132.
doi: 10.1149/2.0031603jes |
44 |
Takao G. ; Noh S. H. ; Fuma A. ; Toyokazu T. ; Byungchan H. ; Takeo O. J. Mater. Chem. A 2018, 6, 14828.
doi: 10.1039/C8TA03233E |
45 |
Casado-Rivera E. ; Volpe D. J. ; Alden L. ; Lind C. ; Downie C. ; Vazquez-Alvarez T. J. Am. Chem. Soc. 2004, 126, 4043.
doi: 10.1021/ja038497a |
46 |
Wang D. ; Yu Y. ; Zhu J. ; Liu S. ; Muller D. A. ; Abruna H. D. Nano Lett. 2015, 15, 1343.
doi: 10.1021/nl504597j |
47 |
Gong M. ; Zhu J. ; Liu M. ; Liu P. ; Deng Z. ; Shen T. ; Zhao T. ; Lin R. ; Lu Y. ; Yang S. ; et al Nanoscale 2019, 11, 20301.
doi: 10.1039/c9nr04975d |
48 |
Li J. ; Sun S. Acc. Chem. Res. 2019, 52, 2015.
doi: 10.1021/acs.accounts.9b00172 |
49 |
Koh S. ; Toney M. F. ; Strasser P. Electrochim. Acta 2007, 52, 2765.
doi: 10.1016/j.electacta.2006.08.039 |
50 |
Liu Z. ; Jackson G. S. ; Eichhorn B. W. Angew. Chem. Int. Ed. 2010, 49, 3173.
doi: 10.1002/anie.200907019 |
51 |
Ji X. ; Lee K. T. ; Holden R. ; Zhang L. ; Zhang J. ; Botton G. A. ; Couillard M. ; Nazar L. F. Nat. Chem. 2010, 2, 286.
doi: 10.1038/nchem.553 |
52 |
Ghosh T. ; Vukmirovic M. ; DiSalvoF. ; Adzic R. J. Am. Chem. Soc. 2010, 132, 906.
doi: 10.1021/ja905850c |
53 |
Xiao W. ; Lei W. ; Gong M. ; Xin H. L. ; Wang D. ACS Catal. 2018, 8, 3237.
doi: 10.1021/acscatal.7b04420 |
54 |
Furukawa S. ; Komatsu T. ACS Catal. 2016, 7, 735.
doi: 10.1021/acscatal.6b02603 |
55 |
Yoo T. Y. ; Yoo J. M. ; Sinha A. K. ; Bootharaju M. S. ; Jung E. ; Lee H. S. ; Lee B. H. ; Kim J. ; Antink W. H. ; Kim Y. M. ; et al J. Am. Chem. Soc. 2020, 142, 14190.
doi: 10.1021/jacs.0c05140 |
56 |
Lee J. ; Yoo J. M. ; Ye Y. ; Mun Y. ; Lee S. ; Kim O. H. ; Rhee H. W. ; Lee H. I. ; Sung Y. E. ; Lee J. Adv. Energy Mater. 2015, 5, 1402093.
doi: 10.1002/aenm.201402093 |
57 |
Li J. ; Xi Z. ; Pan Y. T. ; Spendelow J. S. ; Duchesne P. N. ; Su D. ; Li Q. ; Yu C. ; Yin Z. ; Shen B. ; Kim Y. S. ; Zhang P. ; Sun S. J. Am. Chem. Soc. 2018, 140, 2926.
doi: 10.1021/jacs.7b12829 |
58 |
Li J. ; Sharma S. ; Liu X. ; Pan Y. T. ; Spendelow J. S. ; Chi M. ; Jia Y. ; Zhang P. ; Cullen D. A. ; Xi Z. ; et al Joule 2019, 3, 124.
doi: 10.1016/j.joule.2018.09.016 |
59 |
Wang H. ; Shang P. ; Zhang J. ; Guo M. ; Mu Y. ; Li Q. ; Wang H. Chem. Mater. 2013, 25, 2450.
doi: 10.1021/cm4004678 |
60 |
Lei W. ; Xu J. ; Yu Y. ; Yang W. ; Hou Y. ; Chen D. Nano Lett. 2018, 18, 7839.
doi: 10.1021/acs.nanolett.8b03603 |
61 |
Wang C. ; Chen D. P. ; Sang X. ; Unocic R. R. ; Skrabalak S. E. ACS Nano 2016, 10, 6345.
doi: 10.1021/acsnano.6b02669 |
62 |
Pacchioni G. ; Freund H. J. Chem. Soc. Rev. 2018, 47, 8474.
doi: 10.1039/c8cs00152a |
63 |
van Deelen T. W. ; Hernández Mejía C. ; de Jong K. P. Nat. Catal. 2019, 2, 955.
doi: 10.1038/s41929-019-0364-x |
64 |
Shim J. ; Lee J. ; Ye Y. ; Hwang J. ; Kim S. K. ; Lim T. H. ACS Nano 2012, 6, 6870.
doi: 10.1021/nn301692y |
65 |
Kang E. ; Jung H. ; Park J. G. ; Kwon S. ; Shim J. ; Sai H. ACS Nano 2011, 5, 1018.
doi: 10.1021/nn102451y |
66 |
Liu Z. ; Fu G. ; Li J. ; Liu Z. ; Xu L. ; Sun D. ; Tang Y. Nano Res. 2018, 11, 4686.
doi: 10.1007/s12274-018-2051-7 |
67 |
Liu H. ; Dou M. ; Wang F. ; Liu J. ; Ji J. ; Li Z. RSC Adv. 2015, 5, 66471.
doi: 10.1039/c5ra12291k |
68 |
Kumar V. B. ; Sanetuntikul J. ; Ganesan P. ; Porat Z. E. ; Shanmugam S. ; Gedanken A. Electrochim. Acta 2016, 190, 659.
doi: 10.1016/j.electacta.2015.12.193 |
69 |
Zhu W. ; Yuan H. ; Liao F. ; Shen Y. ; Shi H. ; Shi Y. ; Xu L. ; Ma M. ; Shao M. Chem. Eng. J. 2020, 389, 124240.
doi: 10.1016/j.cej.2020.124240 |
70 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. ; Karakalos S. ; Zhang H. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
71 |
Chen D. ; Li Z. ; Zhou Y. ; Ma X. ; Lin H. ; Ying W. ; Peng X. Chem. Comm. 2020, 56, 4898.
doi: 10.1039/d0cc00895h |
72 |
Qi Z. ; Pei Y. ; Goh T. W. ; Wang Z. ; Li X. ; Lowe M. ; Maligal-Ganesh R. V. ; Huang W. Nano Res. 2018, 11, 3469.
doi: 10.1007/s12274-018-2016-x |
73 |
Hu M. ; Zhao S. ; Liu S. ; Chen C. ; Chen W. ; Zhu W. ; Liang C. ; Cheong W. C. ; Wang Y. ; Yu Y. ; et al Adv. Mater. 2018, 30, 1801878.
doi: 10.1002/adma.201801878 |
74 |
Kwon T. ; Lim S. ; Jun M. ; Kang M. ; Joo J. ; Oh A. ; Baik H. ; Hong C. S. ; Lee K. Nanoscale 2020, 12, 1118.
doi: 10.1039/c9nr09318d |
75 |
Yan Y. ; Du J. S. ; Gilroy K. D. ; Yang D. ; Xia Y. ; Zhang H. Adv. Mater. 2017, 29, 1605997.
doi: 10.1002/adma.201605997 |
76 |
Bernal S. ; Calvino J. J. ; Gatica J. M. ; Larese C. ; López-Cartes C. ; Pérez-Omil J. A. J. Catal. 1997, 169, 510.
doi: 10.1006/jcat.1997.1707 |
77 |
Maligal-Ganesh R. V. ; Xiao C. ; Goh T. W. ; Wang L. L. ; Gustafson J. ; Pei Y. ; Qi Z. ; Johnson D. D. ; Zhang S. ; Tao F. ; Huang W. ACS Catal. 2016, 6, 1754.
doi: 10.1021/acscatal.5b02281 |
78 |
Hu Y. ; Shen T. ; Zhao X. ; Zhang J. ; Lu Y. ; Shen J. ; Lu S. ; Tu Z. ; Xin H. L. ; Wang D. Appl. Catal. B 2020, 279, 119370.
doi: 10.1016/j.apcatb.2020.119370 |
79 |
Takahashi Y. ; Kadono T. ; Yamamoto S. ; Singh V. R. ; Verma V. K. ; Ishigami K. ; Shibata G. ; Harano T. ; Takeda Y. ; Okane T. ; et al Phys. Rev. B 2014, 90, 024423.
doi: 10.1103/PhysRevB.90.024423 |
80 |
Qi Z. ; Xiao C. ; Liu C. ; Goh T. W. ; Zhou L. ; Maligal-Ganesh R. ; Pei Y. ; Li X. ; Curtiss L. A. ; Huang W. J. Am. Chem. Soc. 2017, 139, 4762.
doi: 10.1021/jacs.6b12780 |
81 |
Xiao W. ; Liutheviciene Cordeiro M. A. ; Gong M. ; Han L. ; Wang J. ; Bian C. ; Zhu J. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2017, 5, 9867.
doi: 10.1039/c7ta02479g |
82 |
Kim J. ; Rong C. ; Liu J. P. ; Sun S. Adv. Mater. 2009, 21, 906.
doi: 10.1002/adma.200801620 |
83 |
Chen H. ; Wang D. ; Yu Y. ; Newton K. A. ; Muller D. A. ; Abruna H. ; DiSalvo F. J. J. Am. Chem. Soc. 2012, 134, 18453.
doi: 10.1021/ja308674b |
84 |
Chen H. ; Yu Y. ; Xin H. L. ; Newton K. A. ; Holtz M. E. ; Wang D. ; Muller D. A. ; Abruña H. D. ; DiSalvo F. J. Chem. Mater. 2013, 25, 1436.
doi: 10.1021/cm303489z |
85 |
Cui Z. ; Chen H. ; Zhao M. ; DiSalvo F. J. Nano Lett. 2016, 16, 2560.
doi: 10.1021/acs.nanolett.6b00121 |
86 |
Nguyen M. T. ; Wakabayashi R. H. ; Yang M. ; Abruña H. D. ; DiSalvo F. J. J. Power Sources 2015, 280, 459.
doi: 10.1016/j.jpowsour.2015.01.076 |
87 |
Li D. ; Poudyal N. ; Nandwana V. ; Jin Z. ; Elkins K. ; Liu J. P. J. Appl. Phys. 2006, 99, 08E.
doi: 10.1063/1.2166597 |
88 |
Kim J. ; Rong C. ; Lee Y. ; Liu J. P. ; Sun S. Chem. Mater. 2015, 20, 7242.
doi: 10.1021/cm8024878 |
89 |
Yu Y. ; Sun K. ; Tian Y. ; Li X. Z. ; Kramer M. J. ; Sellmyer D. J. ; Shield J. E. ; Sun S. Nano Lett. 2013, 13, 4975.
doi: 10.1021/nl403043d |
90 |
Wang T. ; Liang J. ; Zhao Z. ; Li S. ; Lu G. ; Xia Z. ; Wang C. ; Luo J. ; Han J. ; Ma C. ; Huang Y. ; Li Q. Adv. Energy Mater. 2019, 9, 1803771.
doi: 10.1002/aenm.201803771 |
91 |
Zhang S. ; Guo S. ; Zhu H. ; Su D. ; Sun S. J. Am. Chem. Soc. 2012, 134, 5060.
doi: 10.1021/ja300708j |
92 |
Kuttiyiel K. A. ; Sasaki K. ; Su D. ; Wu L. ; Zhu Y. ; Adzic R. R. Nat. Commun. 2014, 5, 5185.
doi: 10.1038/ncomms6185 |
93 |
Yan Q. ; Kim T. ; Purkayastha A. ; Ganesan P. G. ; Shima M. ; Ramanath G. Phys. Inorg. Chem. 2005, 17, 2233.
doi: 10.1002/chin.200546012 |
94 |
Takahashi Y. K. ; Ohnuma M. ; Hono K. J. Magn. Magn. Mater. 2002, 246, 259.
doi: 10.1016/S0304-8853(02)00065-3 |
95 |
Kang S. ; Harrell J. W. ; Nikles D. E. Nano Lett. 2002, 2, 1033.
doi: 10.1021/nl025614b |
96 |
Rong H. ; Mao J. ; Xin P. ; He D. ; Chen Y. ; Wang D. ; Niu Z. ; Wu Y. ; Li Y. Adv. Mater. 2016, 28, 2540.
doi: 10.1002/adma.201504831 |
97 |
Cheong S. ; Watt J. ; Ingham B. ; Toney M. F. ; Tilley R. D. J. Am. Chem. Soc. 2009, 131, 14590.
doi: 10.1021/ja9065688 |
98 |
Chen W. ; Yu R. ; Li L. ; Wang A. ; Peng Q. ; Li Y. Angew. Chem. Int. Ed. 2010, 49, 2917.
doi: 10.1002/anie.200906835 |
99 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
100 |
Qin Y. ; Luo M. ; Sun Y. ; Li C. ; Huang B. ; Yang Y. ; Li Y. ; Wang L. ; Guo S. ACS Catal. 2018, 8, 5581.
doi: 10.1021/acscatal.7b04406 |
101 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
102 |
Zhang X. ; Tian S. ; Yu W. ; Lu B. ; Shen T. ; Xu L. ; Sun D. ; Zhang S. ; Tang Y. CrystEngComm 2018, 20, 4277.
doi: 10.1039/c8ce00601f |
103 |
Liu S. ; Han L. ; Zhu J. ; Xiao W. ; Wang J. ; Liu H. ; Xin H. ; Wang D. J. Mater. Chem. A 2015, 3, 20966.
doi: 10.1039/c5ta05202e |
104 |
Bu L. ; Shao Q. ; E ; B.; Guo J. ; Yao J. ; Huang X. J. Am. Chem. Soc. 2017, 139, 9576.
doi: 10.1021/jacs.7b03510 |
105 |
Wang C. ; Sang X. ; Gamler J. T. L. ; Chen D. P. ; Unocic R. R. ; Skrabalak S. E. Nano Lett. 2017, 17, 5526.
doi: 10.1021/acs.nanolett.7b02239 |
106 |
Wang G. ; Huang B. ; Xiao L. ; Ren Z. ; Chen H. ; Wang D. ; Abruna H. D. ; Lu J. ; Zhuang L. J. Am. Chem. Soc. 2014, 136, 9643.
doi: 10.1021/ja503315s |
107 |
Guo S. ; Zhang X. ; Zhu W. ; He K. ; Su D. ; Mendoza-Garcia A. ; Ho S. F. ; Lu G. ; Sun S. J. Am. Chem. Soc. 2014, 136, 15026.
doi: 10.1021/ja508256g |
108 |
Jiang G.; Zhu H.; Zhang X.; Shen B.; Wu L.; Zhang S.; Lu G.; Wu Z.; Sun S. ACS Nano 2015, 9, 11014.
doi: 10.1021/acsnano.5b04361 |
109 |
Zhao X. ; Xi C. ; Zhang R. ; Song L. ; Wang C. ; Spendelow J. S. ; Frenkel A. I. ; Yang J. ; Xin H. L. ; Sasaki K. ACS Catal. 2020, 10637.
doi: 10.1021/acscatal.0c03036 |
110 |
Wang D. ; Yu Y. ; Zhu J. ; Liu S. ; Muller D. A. ; Abruna H. D. Nano Lett. 2015, 15, 1343.
doi: 10.1021/nl504597j |
111 |
Li L. ; Larsen A. H. ; Romero N. A. ; Morozov V. A. ; Glinsvad C. ; Abild-Pedersen F. ; Greeley J. ; Jacobsen K. W. ; Norskov J. K. J. Phys. Chem. Lett. 2013, 4, 222.
doi: 10.1021/jz3018286 |
112 |
Yang Y. ; Xiao W. ; Feng X. ; Xiong Y. ; Gong M. ; Shen T. ; Lu Y. ; Abruna H. D. ; Wang D. ACS Nano 2019, 13, 5968.
doi: 10.1021/acsnano.9b01961 |
113 |
Kuttiyiel K. A. ; Kattel S. ; Cheng S. ; Lee J. H. ; Wu L. ; Zhu Y. ; Park G. G. ; Liu P. ; Sasaki K. ; Chen J. G. ; Adzic R. R. ACS Appl. Energy Mater. 2018, 1, 3771.
doi: 10.1021/acsaem.8b00555 |
114 |
He Y. ; Wu Y. L. ; Zhu X. X. ; Wang J. N. ACS Appl. Mater. Interfaces 2019, 11, 11527.
doi: 10.1021/acsami.9b01810 |
115 |
Liang J. ; Li N. ; Zhao Z. ; Ma L. ; Wang X. ; Li S. ; Liu X. ; Wang T. ; Du Y. ; Lu G. ; Han J. ; Huang Y. ; Su D. ; Li Q. Angew. Chem. Int. Ed. 2019, 58, 15471.
doi: 10.1002/anie.201908824 |
116 |
Dhavale V. M. ; Kurungot S. ACS Catal. 2015, 5, 1445.
doi: 10.1021/cs501571e |
117 |
Gong M. ; Xiao D. ; Deng Z. ; Zhang R. ; Xia W. ; Zhao T. ; Liu X. ; Shen T. ; Hu Y. ; Lu Y. ; et al Appl. Catal. B 2021, (282), 119617.
doi: 10.1016/j.apcatb.2020.119617 |
118 |
A o ; X ; Zhang ; W ; Zhao B. ; Ding Y. ; Liu M. Energy Environ. Sci. 2020, 13, 3032.
doi: 10.1039/D0EE00832J |
119 |
Zhao X. ; Yin M. ; Ma L. ; Liang L. ; Liu C. ; Liao J. ; Lu T. ; Xing W. Energy Environ. Sci. 2011, 4, 2736.
doi: 10.1039/c1ee01307f |
120 |
Rossmeisl J. ; Ferrin P. ; Tritsaris G. A. ; Nilekar A. U. ; Koh S. ; Bae S. E. ; Brankovic S. R. ; Strasser P. ; Mavrikakis M. Energy Environ. Sci. 2012, 5, 8335.
doi: 10.1039/c2ee21455e |
121 |
Scofield M. E. ; Zhou Y. ; Yue S. ; Wang L. ; Su D. ; Tong X. ; Vukmirovic M. B. ; Adzic R. R. ; Wong S. S. ACS Catal. 2016, 6, 3895.
doi: 10.1021/acscatal.6b00350 |
122 |
Wang Y. ; Wang G. ; Li G. ; Huang B. ; Pan J. ; Liu Q. ; Han J. ; Xiao L. ; Lu J. ; Zhuang L. Energy Environ. Sci. 2015, 8, 177.
doi: 10.1039/c4ee02564d |
123 |
Innocente A. F. ; Ângelo A. C. D. J. Power Sources 2006, 162, 151.
doi: 10.1016/j.jpowsour.2006.06.057 |
124 |
Santos E. ; Pinto L. M. C. ; Soldano G. ; Innocente A. F. ; Ângelo A. C. D. ; Schmickler W. Catal. Today 2013, 202, 191.
doi: 10.1016/j.cattod.2012.07.044 |
125 |
Bortoloti F. ; Garcia A. C. ; Angelo A. C. D. Int. J. Hydrogen Energy 2015, 40, 10816.
doi: 10.1016/j.ijhydene.2015.06.145 |
126 |
Zhao T. ; Hu Y. ; Gong M. ; Lin R. ; Deng S. ; Lu Y. ; Liu X. ; Chen Y. ; Shen T. ; Hu Y. ; et al Nano Energy 2020, 74, 104877.
doi: 10.1016/j.nanoen.2020.104877 |
127 |
Kang Y. ; Qi L. ; Li M. ; Diaz R. E. ; Su D. ; Adzic R. R. ACS Nano 2012, 6, 2818.
doi: 10.1016/j.ijhydene.2015.06.145 |
128 |
Vidal-Iglesias F. J. ; Lopez-Cudero A. ; Solla-Gullon J. ; Feliu J. M. Angew. Chem. Int. Ed. 2013, 52, 964.
doi: 10.1002/anie.201207517 |
129 |
Alden L. R. ; Han D. K. ; Matsumoto F. ; Héctor D. Abruña. ; Disalvo F. ; Disalvo F. J. Chem. Mater. 2006, 18, 5591.
doi: 10.1021/cm060927j |
130 |
Luo S. ; Chen W. ; Cheng Y. ; Song X. ; Wu Q. ; Li L. ; Wu X. ; Wu T. ; Li M. ; Yang Q. ; Deng K. ; Quan Z. Adv. Mater. 2019, 31, e1903683.
doi: 10.1002/adma.201903683 |
131 |
Shen T. ; Zhang J. ; Chen K. ; Deng S. ; Wang D. Energy Fuels 2020, 34, 9137.
doi: 10.1021/acs.energyfuels.0c01820 |
132 |
Roychowdhury C. ; Matsumoto F. ; Zeldovich V. B. ; Warren S. C. ; Mutolo P. F. ; Ballesteros M. J. Chem. Mater. 2006, 18, 3365.
doi: 10.1021/cm060480e |
133 |
Liu Y. ; Lowe M. A. ; Finkelstein K. D. ; Dale D. S. ; DiSalvo F. J. ; Abruna H. D. Chem 2010, 16, 13689.
doi: 10.1002/chem.201001211 |
134 |
Wang C. Y. ; Yu Z. Y. ; Li G. ; Song Q. T. ; Li G. ; Luo C. X. ; Yin S. H. ; Lu B. A. ; Xiao C. ; Xu B. B. ; et al ChemElectroChem 2020, 7, 239.
doi: 10.1002/celc.201901818 |
135 |
Zhu J. ; Zheng X. ; Wang J. ; Wu Z. ; Han L. ; Lin R. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2015, 3, 22129.
doi: 10.1039/c5ta05699c |
136 |
Chen L. ; Zhu J. ; Xuan C. ; Xiao W. ; Xia K. ; Xia W. ; Lai C. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2018, 6, 5848.
doi: 10.1039/c7ta11051k |
137 |
Wang J. Y. ; Zhang H. X. ; Jiang K. ; Cai W. B. J. Am. Chem. Soc. 2011, 133, 14876.
doi: 10.1021/ja205747j |
138 |
Sun D. ; Si L. ; Fu G. ; Liu C. ; Sun D. ; Chen Y. ; Tang Y. ; Lu T. J. Power Sources 2015, 280, 141.
doi: 10.1016/j.jpowsour.2015.01.100 |
139 |
Shen T. ; Lu Y. ; Gong M. ; Zhao T. ; Hu Y. ; Wang D. ACS Sustain. Chem. Eng. 2020, 8, 12239.
doi: 10.1021/acssuschemeng.0c03881 |
140 |
Jana R. ; Subbarao U. ; Peter S. C. J. Power Sources 2016, 301, 160.
doi: 10.1016/j.jpowsour.2015.09.114 |
141 |
Kang Y. ; Qi L. ; Li M. ; Diaz R. E. ; Su D. ; Adzic ; Stach R. R. ; E.; Li J. ; Murray C. B. ACS Nano 2012, 6, 2818.
doi: 10.1016/j.ijhydene.2015.06.145 |
142 |
Mun Y. ; Shim J. ; Kim K. ; Han J. W. ; Kim S. K. ; Ye Y. ; Hwang J. ; Lee S. ; Jang J. ; Kim Y. T. ; Lee J. RSC Adv. 2016, 6, 88255.
doi: 10.1039/c6ra14861a |
143 |
An L. ; Yan H. ; Li B. ; Ma J. ; Wei H. ; Xia D. Nano Energy 2015, 15, 24.
doi: 10.1016/j.nanoen.2015.03.031 |
144 |
Zhu J. ; Yang Y. ; Chen L. ; Xiao W. ; Liu H. ; Abruña H. D. ; Wang D. Chem. Mater. 2018, 30, 5987.
doi: 10.1021/acs.chemmater.8b02172 |
145 |
Zeng R. ; Yang Y. ; Shen T. ; Wang H. ; Xiong Y. ; Zhu J. ; Wang D. ; Abruña H. D. ACS Catal. 2019, 10, 770.
doi: 10.1021/acscatal.9b04344 |
146 |
Chen Q. ; Zhang J. ; Jia Y. ; Jiang Z. ; Xie Z. ; Zheng L. Nanoscale 2014, 6, 7019.
doi: 10.1039/c4nr00313f |
147 |
Feng Q. ; Zhao S. ; He D. ; Tian S. ; Gu L. ; Wen X. ; Chen C. ; Peng Q. ; Wang D. ; Li Y. J. Am. Chem. Soc. 2018, 140, 2773.
doi: 10.1021/jacs.7b13612 |
148 |
Yuan X. ; Jiang X. ; Cao M. ; Chen L. ; Nie K. ; Zhang Y. ; Xu Y. ; Sun X. ; Li Y. ; Zhang Q. Nano Res. 2018, 12, 429.
doi: 10.1007/s12274-018-2234-2 |
149 |
Kang Y. ; Murray C. B. J. Am. Chem. Soc. 2010, 132, 7568.
doi: 10.1021/ja100705j |
150 |
Farias M. J. S. ; Cheuquepan W. ; Tanaka A. A. ; Feliu J. M. J. Phys. Chem. Lett. 2018, 9, 1206.
doi: 10.1021/acs.jpclett.8b00030 |
151 |
Kodiyath R. ; Ramesh G. V. ; Koudelkova E. ; Tanabe T. ; Ito M. ; Manikandan M. ; Ueda S. ; Fujita T. ; Umezawa N. ; Noguchi H. ; et al Energy Environ. Sci. 2015, 8, 1685.
doi: 10.1039/c4ee03746d |
152 |
Sarkar S. ; Jana R. ; Suchitra ; Waghmare U. V. ; Kuppan B. ; Sampath S. ; Peter S. C. Chem. Mater. 2015, 27, 7459.
doi: 10.1021/acs.chemmater.5b03546 |
153 |
Wang C. ; Wu Y. ; Wang X. ; Zou L. ; Zou Z. ; Yang H. Electrochim. Acta 2016, 220, 628.
doi: 10.1016/j.electacta.2016.10.094 |
154 |
Zhang W. ; Wang R. ; Wang H. ; Lei Z. Fuel Cells 2010, 10, 734.
doi: 10.1002/fuce.200900184 |
155 |
Singh R. N. ; Singh A. ; Anindita Int. J. Hydrogen Energy 2009, 34, 2052.
doi: 10.1016/j.ijhydene.2008.12.047 |
156 |
Pattabiraman R. Appl. Catal. A 1997, 153, 9.
doi: 10.1016/j.ijhydene.2008.12.047 |
157 |
Jiang K. ; Wang P. ; Guo S. ; Zhang X. ; Shen X. ; Lu G. ; Su D. ; Huang X. Angew. Chem. 2016, 128, 9176.
doi: 10.1002/ange.201603022 |
158 |
Serov A. ; Martinez U. ; Atanassov P. Electrochem. Commun. 2013, 34, 185.
doi: 10.1016/j.elecom.2013.06.003 |
159 |
Shi Q. ; Zhu C. ; Bi C. ; Xia H. ; Engelhard M. H. ; Du D. ; Lin Y. J. Mater. Chem. A 2017, 5, 23952.
doi: 10.1039/c7ta08407b |
160 |
Zhu Y. ; Bu L. ; Shao Q. ; Huang X. ACS Catal. 2020, 10, 3455.
doi: 10.1021/acscatal.9b04313 |
161 |
Yun Q. ; Lu Q. ; Li C. ; Chen B. ; Zhang Q. ; He Q. ; Hu Z. ; Zhang Z. ; Ge Y. ; Yang N. ; et al ACS Nano 2019, 13, 14329.
doi: 10.1021/acsnano.9b07775 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[4] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[5] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[6] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[7] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[8] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[9] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[10] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[11] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[12] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[13] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[14] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[15] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
|