Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2010040.doi: 10.3866/PKU.WHXB202010040
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Qi Yuan, Hao Yang, Miao Xie, Tao Cheng()
Received:
2020-10-19
Accepted:
2020-11-30
Published:
2020-12-10
Contact:
Tao Cheng
E-mail:tcheng@suda.edu.cn
About author:
Tao Cheng, Email: tcheng@suda.edu.cn; Tel.: +86-512-65885861Supported by:
MSC2000:
Qi Yuan, Hao Yang, Miao Xie, Tao Cheng. Theoretical Research on the Electroreduction of Carbon Dioxide[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2010040.
Table 1
Electrochemical reactions with equilibrium potentials."
Product | Name, abbreviation | E0 (V vs. RHE) |
HCOOH(aq) | formic acid | -0.12 |
CO | carbon monoxide | -0.10 |
CH3OH | methanol | 0.03 |
C(s) | graphite | 0.21 |
CH4(g) | methane | 0.17 |
CH3COOH | acetic acid | 0.11 |
CH3CHO | acetaldehyde | 0.06 |
C2H5OH | ethanol, EtOH | 0.09 |
C2H4 | ethylene | 0.08 |
C2H6 | ethane | 0.14 |
C2H5CHO | propionaldehyde | 0.09 |
C3H7OH | propanol, PrOH | 0.10 |
1 |
Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazábal G. O. ; Pérez-Ramírez J. Energy Environ. Sci. 2013, 6, 3112.
doi: 10.1039/C3EE41272E |
2 |
Appel A. M. ; Bercaw J. E. ; Bocarsly A. B. ; Dobbek H. ; DuBois D. L. ; Dupuis M. ; Ferry J. G. ; Fujita E. ; Hille R. ; Kenis P. J.A. ; et al Chem. Rev. 2013, 113, 6621.
doi: 10.1021/cr300463y |
3 |
Davis S. J. ; Lewis N. S. ; Shaner M. ; Aggarwal S. ; Arent D. ; Azevedo I. L. ; Benson S. M. ; Bradley T. ; Brouwer J. ; Chiang Y.-M. ; et al Science 2018, 360, eaas9793.
doi: 10.1126/science.aas9793 |
4 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2014, 43, 631.
doi: 10.1039/C3CS60323G |
5 |
Lewis N. S. ; Nocera D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
doi: 10.1073/pnas.0603395103 |
6 |
Graves C. ; Ebbesen S. D. ; Mogensen M. ; Lackner K. S. Renew. Sust. Energ. Rev. 2011, 15, 1.
doi: 10.1016/j.rser.2010.07.014 |
7 |
Chu S. ; Cui Y. ; Liu N. Nat. Mater. 2017, 16, 16.
doi: 10.1038/nmat4834 |
8 |
Nitopi S. ; Bertheussen E. ; Scott S. B. ; Liu X. ; Engstfeld A. K. ; Horch S. ; Seger B. ; Stephens I. E.L. ; Chan K. ; Hahn C. ; et al Chem. Rev. 2019, 119, 7610.
doi: 10.1021/acs.chemrev.8b00705 |
9 |
Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energy Environ. Sci. 2012, 5, 7050.
doi: 10.1039/C2EE21234J |
10 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H. Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
11 |
Jouny M. ; Luc W. ; Jiao F. Ind. Eng. Chem. Res. 2018, 57, 2165.
doi: 10.1021/acs.iecr.7b03514 |
12 |
Spurgeon J. M. ; Kumar B. Energy Environ. Sci. 2018, 11, 1536.
doi: 10.1039/C8EE00097B |
13 |
Whipple D. T. ; Kenis P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451.
doi: 10.1021/jz1012627 |
14 |
Yoshio H. ; Katsuhei K. ; Shin S. Chem. Lett. 1985, 14, 1695.
doi: 10.1246/cl.1985.1695 |
15 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94)85172-7 |
16 |
Bagger A. ; Ju W. ; Varela A. S. ; Strasser P. ; Rossmeisl J. ChemPhysChem 2017, 18, 3266.
doi: 10.1002/cphc.201700736 |
17 |
Hori Y. ; Murata A. ; Takahashi R. J. Chem. Soc. Faraday Trans. 1989, 85, 2309.
doi: 10.1039/F19898502309 |
18 |
Hori Y. ; Kikuchi K. ; Murata A. ; Suzuki S. Chem. Lett. 1986, 15, 897.
doi: 10.1246/cl.1986.897 |
19 |
Hori Y. ; Murata A. ; Takahashi R. ; Suzuki S. J. Chem. Soc. Chem. Commun. 1988, 17
doi: 10.1039/C39880000017 |
20 |
Xu S. ; Carter E. A. Chem. Rev. 2019, 119, 6631.
doi: 10.1021/acs.chemrev.8b00481 |
21 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Nørskov J. K. ; Jaramillo T. F. Science 2017, 355, eaad4998.
doi: 10.1126/science.aad4998 |
22 |
Hammer B. ; Hansen L. B. ; Nørskov J. K. Phys. Rev. B 1999, 59, 7413.
doi: 10.1103/PhysRevB.59.7413 |
23 |
Hammer B. ; Morikawa Y. ; Nørskov J. K. Phys. Rev. Lett. 1996, 76, 2141.
doi: 10.1103/PhysRevLett.76.2141 |
24 |
Mathew K. ; Sundararaman R. ; Letchworth-Weaver K. ; Arias T. A. ; Hennig R. G. J. Chem. Phys 2014, 140, 084106.
doi: 10.1063/1.4865107 |
25 |
Tomasi J. ; Mennucci B. ; Cammi R. Chem. Rev. 2005, 105, 2999.
doi: 10.1021/cr9904009 |
26 |
Skyner R. E. ; McDonagh J. L. ; Groom C. R. ; van Mourik T. ; Mitchell J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174.
doi: 10.1039/C5CP00288E |
27 |
Nørskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J. R. ; Bligaard T. ; Jónsson H. J. Phys. Chem. B 2004, 108, 17886.
doi: 10.1021/jp047349j |
28 |
Taylor C. D. ; Wasileski S. A. ; Filhol J.-S. ; Neurock M. Phys. Rev. B 2006, 73, 165402.
doi: 10.1103/PhysRevB.73.165402 |
29 |
Lozovoi A. Y. ; Alavi A. ; Kohanoff J. ; Lynden-Bell R. M. J. Chem. Phys. 2001, 115, 1661.
doi: 10.1063/1.1379327 |
30 |
Letchworth-Weaver K. ; Arias T. A. Phys. Rev. B 2012, 86, 075140.
doi: 10.1103/PhysRevB.86.075140 |
31 |
Sundararaman R. ; Letchworth-Weaver K. ; Arias T. A. J. Chem. Phys. 2012, 137, 044107.
doi: 10.1063/1.4737392 |
32 |
Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2015, 6, 2663.
doi: 10.1021/acs.jpclett.5b01043 |
33 |
Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2016, 7, 1686.
doi: 10.1021/acs.jpclett.6b00382 |
34 |
Liu X. ; Schlexer P. ; Xiao J. ; Ji Y. ; Wang L. ; Sandberg R. B. ; Tang M. ; Brown K.S. ; Peng H. ; Ringe S. ; et al Nat. Commun 2019, 10, 32.
doi: 10.1038/s41467-018-07970-9 |
35 |
Schouten K. J. P. ; Pérez Gallent E. ; Koper M. T. M. J. Electroanal. Chem. 2014, 716, 53.
doi: 10.1016/j.jelechem.2013.08.033 |
36 |
Wuttig A. ; Yoon Y. ; Ryu J. ; Surendranath Y. J. Am. Chem. Soc. 2017, 139, 17109.
doi: 10.1021/jacs.7b08345 |
37 |
Laio A. ; Parrinello M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
doi: 10.1073/pnas.202427399 |
38 |
Ciccotti G. ; Ryckaert J. P. Comput. Phys. Rep. 1986, 4, 346.
doi: 10.1016/0167-7977(86)90022-5 |
39 |
Ryckaert J. P. ; Ciccotti G. J. Chem. Phys. 1983, 78, 7368.
doi: 10.1063/1.444728 |
40 |
Fixman M. Proc. Natl. Acad. Sci. USA 1974, 71, 3050.
doi: 10.1073/pnas.71.8.3050 |
41 |
Carter E. A. ; Ciccotti G. ; Hynes J. T. ; Kapral R. Chem. Phys. Lett. 1989, 156, 472.
doi: 10.1016/S0009-2614(89)87314-2 |
42 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Nørskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
43 |
Yoo J. S. ; Christensen R. ; Vegge T. ; Nørskov J. K. ; Studt F. ChemSusChem 2016, 9, 358.
doi: 10.1002/cssc.201501197 |
44 |
Lim H.-K. ; Shin H. ; Goddard W. A. ; Hwang Y. J. ; Min B. K. ; Kim H. J. Am. Chem. Soc. 2014, 136, 11355.
doi: 10.1021/ja503782w |
45 |
Cheng T. ; Xiao H. ; Goddard W. A. J. Am. Chem. Soc. 2016, 138, 13802.
doi: 10.1021/jacs.6b08534 |
46 |
Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
doi: 10.1038/nature16455 |
47 |
Jia L. ; Yang H. ; Deng J. ; Chen J. ; Zhou Y. ; Ding P. ; Li L. ; Han N. ; Li Y. Chin. J. Chem. 2019, 37, 497.
doi: 10.1002/cjoc.201900010 |
48 |
Schouten K. J. P. ; Kwon Y. ; van der Ham C. J. M. ; Qin Z. ; Koper M. T. M. Chem. Sci. 2011, 2, 1902.
doi: 10.1039/C1SC00277E |
49 |
Peterson A. A. ; Nørskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
doi: 10.1021/jz201461p |
50 |
Roberts F. S. ; Kuhl K. P. ; Nilsson A. Angew. Chem. Int. Ed. 2015, 54, 5179.
doi: 10.1002/anie.201412214 |
51 |
Cheng T. ; Xiao H. ; Goddard W. A. Proc. Natl. Acad. Sci. USA 2017, 114, 1795.
doi: 10.1073/pnas.1612106114 |
52 |
Wang L. ; Nitopi S. A. ; Bertheussen E. ; Orazov M. ; Morales-Guio C. G. ; Liu X. ; Higgins D. C. ; Chan K. ; Nørskov J.K. ; Hahn C. ; et al ACS Catal. 2018, 8, 7445.
doi: 10.1021/acscatal.8b01200 |
53 |
Montoya J. H. ; Shi C. ; Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2015, 6, 2032.
doi: 10.1021/acs.jpclett.5b00722 |
54 |
Garza A. J. ; Bell A. T. ; Head-Gordon M. ACS Catal. 2018, 8, 1490.
doi: 10.1021/acscatal.7b03477 |
55 |
Ma W. ; Xie S. ; Liu T. ; Fan Q. ; Ye J. ; Sun F. ; Jiang Z. ; Zhang Q. ; Cheng J. ; Wang Y. Nat. Catal. 2020, 3, 478.
doi: 10.1038/s41929-020-0450-0 |
56 |
Luc W. ; Fu X. ; Shi J. ; Lv J.-J. ; Jouny M. ; Ko B.H. ; Xu Y. ; Tu Q. ; Hu X. ; Wu J. ; et al Nat. Catal. 2019, 2, 423.
doi: 10.1038/s41929-019-0269-8 |
57 |
Kuhl K. P. ; Hatsukade T. ; Cave E. R. ; Abram D. N. ; Kibsgaard J. ; Jaramillo T. F. J. Am. Chem. Soc. 2014, 136, 14107.
doi: 10.1021/ja505791r |
58 |
Pokharel U. R. ; Fronczek F. R. ; Maverick A. W. Nat. Commun 2014, 5, 5883.
doi: 10.1038/ncomms6883 |
59 |
Francke R. ; Schille B. ; Roemelt M. Chem. Rev. 2018, 118, 4631.
doi: 10.1021/acs.chemrev.7b00459 |
60 |
Dalle K. E. ; Warnan J. ; Leung J. J. ; Reuillard B. ; Karmel I. S. ; Reisner E. Chem. Rev. 2019, 119, 2752.
doi: 10.1021/acs.chemrev.8b00392 |
61 |
Handoko A. D. ; Wei F. ; Jenndy Yeo B. S. ; Seh Z. W. Nat. Catal. 2018, 1, 922.
doi: 10.1038/s41929-018-0182-6 |
62 |
Lum Y. ; Ager J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
doi: 10.1002/anie.201710590 |
63 |
Lum Y. ; Cheng T. ; Goddard W. A. ; Ager J. W. J. Am. Chem. Soc. 2018, 140, 9337.
doi: 10.1021/jacs.8b03986 |
64 |
Favaro M. ; Xiao H. ; Cheng T. ; Goddard W. A. ; Yano J. ; Crumlin E. J. Proc. Natl. Acad. Sci. USA 2017, 114, 6706.
doi: 10.1073/pnas.1701405114 |
65 |
Eilert A. ; Roberts F. S. ; Friebel D. ; Nilsson A. J. Phys. Chem. Lett. 2016, 7, 1466.
doi: 10.1021/acs.jpclett.6b00367 |
66 |
Dunwell M. ; Yang X. ; Setzler B. P. ; Anibal J. ; Yan Y. ; Xu B. ACS Catal. 2018, 8, 3999.
doi: 10.1021/acscatal.8b01032 |
67 |
Pander J. E. ; Baruch M. F. ; Bocarsly A. B. ACS Catal. 2016, 6, 7824.
doi: 10.1021/acscatal.6b01879 |
68 |
Baruch M. F. ; Pander J. E. ; White J. L. ; Bocarsly A. B. ACS Catal. 2015, 5, 3148.
doi: 10.1021/acscatal.5b00402 |
69 |
Figueiredo M. C. ; Ledezma-Yanez I. ; Koper M. T. M. ACS Catal. 2016, 6, 2382.
doi: 10.1021/acscatal.5b02543 |
70 |
Pérez-Gallent E. ; Figueiredo M. C. ; Calle-Vallejo F. ; Koper M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621.
doi: 10.1002/anie.201700580 |
71 |
Chernyshova I. V. ; Somasundaran P. ; Ponnurangam S. Proc. Natl. Acad. Sci. USA 2018, 115, E9261.
doi: 10.1073/pnas.1802256115 |
72 |
Sun K. ; Cheng T. ; Wu L. ; Hu Y. ; Zhou J. ; Maclennan A. ; Jiang Z. ; Gao Y. ; Goddard W. A. ; Wang Z. J. Am. Chem. Soc. 2017, 139, 15608.
doi: 10.1021/jacs.7b09251 |
73 |
Feng X. ; Jiang K. ; Fan S. ; Kanan M. W. ACS Cent. Sci. 2016, 2, 169.
doi: 10.1021/acscentsci.6b00022 |
74 |
Wang Z. ; Yang G. ; Zhang Z. ; Jin M. ; Yin Y. ACS Nano 2016, 10, 4559.
doi: 10.1021/acsnano.6b00602 |
75 |
Reske R. ; Mistry H. ; Behafarid F. ; Roldan Cuenya B. ; Strasser P. J. Am. Chem. Soc. 2014, 136, 6978.
doi: 10.1021/ja500328k |
76 |
Gao D. ; Scholten F. ; Roldan Cuenya B. ACS Catal. 2017, 7, 5112.
doi: 10.1021/acscatal.7b01416 |
77 |
Rosen B. A. ; Salehi-Khojin A. ; Thorson M. R. ; Zhu W. ; Whipple D. T. ; Kenis P. J. A. ; Masel R. I. Science 2011, 334, 643.
doi: 10.1126/science.1209786 |
78 |
Cheng T. ; Fortunelli A. ; Goddard W. A. Proc. Natl. Acad. Sci. USA 2019, 116, 7718.
doi: 10.1073/pnas.1821709116 |
79 |
Jouny M. ; Lv J.-J. ; Cheng T. ; Ko B. H. ; Zhu J.-J. ; Goddard W. A. ; Jiao F. Nat. Chem. 2019, 11, 846.
doi: 10.1038/s41557-019-0312-z |
80 |
Feng Y. ; Yang H. ; Zhang Y. ; Huang X. ; Li L. ; Cheng T. ; Shao Q. Nano Lett. 2020, 11, 8282.
doi: 10.1021/acs.nanolett.0c03400 |
81 |
Ma X. ; Li Z. ; Achenie L. E. K. ; Xin H. J. Phys. Chem. Lett. 2015, 6, 3528.
doi: 10.1021/acs.jpclett.5b01660 |
82 |
Tran K. ; Ulissi Z. W. Nat. Catal. 2018, 1, 696.
doi: 10.1038/s41929-018-0142-1 |
83 |
Zhong M. ; Tran K. ; Min Y. ; Wang C. ; Wang Z. ; Dinh C.-T. ; De Luna P. ; Yu Z. ; Rasouli A.S. ; Brodersen P. ; et al Nature 2020, 581, 178.
doi: 10.1038/s41586-020-2242-8 |
84 |
Ulissi Z. W. ; Tang M. T. ; Xiao J. ; Liu X. ; Torelli D. A. ; Karamad M. ; Cummins K. ; Hahn C. ; Lewis N. S. ; Jaramillo T.F. ; et al ACS Catal. 2017, 7, 6600.
doi: 10.1021/acscatal.7b01648 |
[1] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-0. |
[2] | Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007052-0. |
[3] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-0. |
[4] | Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2005027-0. |
[5] | Yichen Meng, Siyu Kuang, Hai Liu, Qun Fan, Xinbin Ma, Sheng Zhang. Recent Advances in Electrochemical CO2 Reduction Using Copper-Based Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006034-0. |
[6] | Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009098-0. |
[7] | Piao Jin, Zichao Guan, Yan Liang, Kai Tan, Xia Wang, Guangling Song, Ronggui Du. Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1906033-0. |
[8] | Lin Li, Shuiyun Shen, Guanghua Wei, Junliang Zhang. Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1911011-0. |
[9] | Jian Zhang, Liang Wang, Zhiyi Wu, Chengtao Wang, Zerui Su, Feng-Shou Xiao. Rational Design of a Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation [J]. Acta Phys. -Chim. Sin., 2020, 36(9): 1912001-0. |
[10] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-0. |
[11] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
[12] | Peng Zhou,Jinzhi Sheng,Chongwei Gao,Jun Dong,Qinyou An,Liqiang Mai. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906046-0. |
[13] | Wei Zhou,Jun-Kang Guo,Sheng Shen,Jinbo Pan,Jie Tang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Progress in Photoelectrocatalytic Reduction of Carbon Dioxide [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1906048-0. |
[14] | Qianqian WANG, Dajun LIU, Xingquan HE. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts [J]. Acta Physico-Chimica Sinica, 2019, 35(7): 740-748. |
[15] | Xiaodong YANG,Chi CHEN,Zhiyou ZHOU,Shigang SUN. Advances in Active Site Structure of Carbon-Based Non-Precious Metal Catalysts for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 472-485. |
|