Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2010076.doi: 10.3866/PKU.WHXB202010076
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Yi Yang1,2, Chong Yan1,2, Jiaqi Huang1,2,*()
Received:
2020-10-30
Accepted:
2020-11-16
Published:
2020-11-19
Contact:
Jiaqi Huang
E-mail:jqhuang@bit.edu.cn
About author:
Jiaqi Huang, Email: jqhuang@bit.edu.cnSupported by:
MSC2000:
Yi Yang, Chong Yan, Jiaqi Huang. Research Progress of Solid Electrolyte Interphase in Lithium Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(11): 2010076.
Fig 3
(a) Energetics of the formation of the anode and cathode SEI layers under electroreduction and electro-oxidation conditions 23; (b) Correct notation for the negative and positive potential limits for the electrolyte stability, and the energy levels of HOMO and LUMO 24. (a) Adapted with permission from Ref. 23, copyright 2019 American Chemical Society; (b) Adapted with permission from Ref. 24, copyright 2018 Royal Society of Chemistry publisher. "
Fig 4
(a) The schematic diagram of the interface formation before and after cycling 28; (b) The development models of electric double layers 30. (a) Adapted with permission from Ref. 28, Copyright 2019 Chinese Chemical Society, John Wiley and Sons publisher; (b) Adapted from Royal Society of Chemistry publisher. "
Fig 6
(a) The traditional mosaic model to describe the SEI with multiple organic/inorganic components 77; (b) Schematic diagram of SEI layered structure model 78; (c) Schematic diagram of SEI formation process on graphite surface 22. (a) Adapted from Electrochemical Society, Inc publisher; (b) Adapted from Elsevier publisher; (c) Adapted from Springer Nature publisher. "
Fig 8
(a)The unique LiF nanostructure generated by FEC decomposition contributes to greatly enhanced Li cyclability 94; (b) Postulated decomposition mechanism of phospholane-based additives on NMC111 electrode surface 96; (c) Additives with specific cations (Cs+) to serve as a screening layer for self-healing Li deposition 102; (d) Influence of structural uniformity and mechanical strength on SEI failure time under different operating conditions 106; (e) The SEI formation mechanisms at 90 and 25 ℃ 108. (a) Adapted with permission from Ref. 94, copyright 2012 American Chemical Society; (b) Adapted with permission from Ref. 96, copyright 2019 American Chemical Society; (c) Adapted with permission from Ref. 102, copyright 2013 American Chemical Society; (d, e) Adapted with permission from Refs. 106, 108, copyright 2020 John Wiley and Sons publisher. "
Fig 9
(a) Buffering the concentration of Li ions and redistribute the ionic channels by LiF/Cu interface for dense and smooth Li deposition 116; (b) AFM topography image and Young's modulus distribution diagram of protected Li surface 119. (a, b) Adapted with permission from Refs. 116, 119, copyright 2018 John Wiley and Sons publisher. "
1 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
2 |
Yoshino A. Angew. Chem. Int. Ed. 2012, 51, 5798.
doi: 10.1002/anie.201105006 |
3 |
Li M. ; Lu J. ; Chen Z. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
4 |
Winter M. ; Barnett B. ; Xu K. Chem. Rev 2018, 118, 11433.
doi: 10.1021/acs.chemrev.8b00422 |
5 |
Yan C. ; Xu R. ; Xiao Y. ; Ding J. F. ; Xu L. ; Li B. Q. ; Huang J. Q. Adv. Funct. Mater. 2020, 30, 1909887.
doi: 10.1002/adfm.201909887 |
6 |
Gao X. ; Zhou Y. N. ; Han D. ; Zhou J. ; Zhou D. ; Tang W. ; Goodenough J. B. Joule 2020, 4, 1864.
doi: 10.1016/j.joule.2020.06.016 |
7 |
Liu J. ; Bao Z. N. ; Cui Y. ; Dufek E. J. ; Goodenough J. B. ; Khalifah P. ; Li Q. Y. ; Liaw B. Y. ; Liu P. ; Manthiram A. ; et al Nat. Energy 2019, 4, 180.
doi: 10.1038/s41560-019-0338-x |
8 |
Dunn J. B. ; Gaines L. ; Kelly J. C. ; James C. ; Gallagher K. G. Energy Environ. Sci. 2015, 8, 158.
doi: 10.1039/c4ee03029j |
9 | Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X.; Cai, W, L.; Huang, J, Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011482 |
10 |
Deng J. ; Bae C. ; Denlinger A. ; Miller T. Joule 2020, 4, 511.
doi: 10.1016/j.joule.2020.01.013 |
11 |
Zeng X. ; Li M. ; EI-Hady D. A. ; Alshitari W. ; AI-Bogami A. S. ; Lu J. ; Amine K. Adv. Energy Mater. 2019, 9, 1900161.
doi: 10.1002/aenm.201900161 |
12 |
Schmuch R. ; Wagner R. ; Hörpel G. ; Placke T. ; Winter M. Nat. Energy 2018, 3, 267.
doi: 10.1038/s41560-018-0107-2 |
13 |
Zhu G. L. ; Zhao C. Z. ; Huang J. Q. ; He C. ; Zhang J. ; Chen S. ; Xu L. ; Yuan H. ; Zhang Q. Small 2019, 15, 1805389.
doi: 10.1002/smll.201805389 |
14 |
Zhao Q. ; Stalin S. ; Zhao C. Z. ; Archer L. A. Nat. Rev. Mater 2020, 5, 229.
doi: 10.1038/s41578-019-0165-5 |
15 |
Li M. ; Wang C. ; Chen Z. ; Xu K. ; Lu J. Chem. Rev 2020, 120, 6783.
doi: 10.1021/acs.chemrev.9b00531 |
16 |
Peled E. J. Electrochem. Soc 1979, 126, 2047.
doi: 10.1149/1.2128859 |
17 |
Cheng X. B. ; Yan C. ; Zhang X. Q. ; Liu H. ; Zhang Q. ACS Energy Lett 2018, 3, 1564.
doi: 10.1021/acsenergylett.8b00526 |
18 | Winter, M.; Appel, W. K.; Evers, B.; Hodal, T.; Möller, K. C.; Schneider, I.; Wachtler, M.; Wagner, M. R.; Wrodnigg, G. H.; Besenhard, J. O. Electroact. Mater. 2001, 53. doi: 10.1007/978-3-7091-6211-8_6 |
19 |
Xu K. Chem. Rev 2014, 114, 11503.
doi: 10.1021/cr500003w |
20 |
Xu K. Chem. Rev 2004, 104, 4303.
doi: 10.1021/cr030203g |
21 |
An S. J. ; Li J. ; Daniel C. ; Mohanty D. ; Nagpure S. ; Wood D. L. Carbon 2016, 105, 52.
doi: 10.1016/j.carbon.2016.04.008 |
22 |
Liu T. ; Lin L. ; Bi X. ; Tian L. ; Yang K. ; Liu J. ; Li M. ; Chen Z. ; Lu J. ; Amine K. Nat. Nanotechnol 2019, 14, 50.
doi: 10.1038/s41565-018-0284-y |
23 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
24 |
Peljo P. ; Girault H. H. Energy Environ. Sci 2018, 11, 230.
doi: 10.1039/C8EE01286E |
25 |
Yan C. ; Li H. R. ; Chen X. ; Zhang X. Q. ; Cheng X. B. ; Xu R. ; Huang J. Q. ; Zhang Q. J. Am. Chem. Soc. 2019, 141, 9422.
doi: 10.1021/jacs.9b05029 |
26 |
Liu J. ; Chisti M. M. ; Zeng X. Anal. Chem 2017, 89, 4013.
doi: 10.1021/acs.analchem.6b04570 |
27 |
Borodin O. ; Ren X. ; Vatamanu J. ; Wald Cresce A. ; Knap J. ; Xu K. Acc. Chem. Res 2017, 50, 2886.
doi: 10.1021/acs.accounts.7b00486 |
28 | Liu Z. F. Acta Phys. -Chim. Sin 2019, 35, 1293. |
刘忠范. 物理化学学报, 2019, 35, 1293.
doi: 10.3866/PKU.WHXB201906040 |
|
29 |
Groß A. ; Sakong S. Curr. Opin. Electrochem 2019, 14, 1.
doi: 10.1016/j.coelec.2018.09.005 |
30 |
Zhang L. L. ; Zhao X. S. Chem. Soc. Rev 2009, 38, 2520.
doi: 10.1039/B813846J |
31 |
Wang G. ; Brown W. ; Kvetny M. Curr. Opin. Electrochem 2019, 13, 112.
doi: 10.1016/j.coelec.2018.11.022 |
32 |
Magnussen O. M. ; Gross A. J. Am. Chem. Soc 2019, 141, 4777.
doi: 10.1016/j.coelec.2018.11.022 |
33 |
Wang F. ; Borodin O. ; Ding M. S. ; Gobet M. ; Vatamanu J. ; Fan X. ; Gao T. ; Eidson N. ; Liang Y. ; Sun W. Joule 2018, 2, 927.
doi: 10.1016/j.joule.2018.02.011 |
34 |
Yang C. ; Chen J. ; Qing T. ; Fan X. ; Sun W. ; von Cresce A. ; Ding M. S. ; Borodin O. ; Vatamanu J. ; Schroeder M. A. Joule 2017, 1, 122.
doi: 10.1016/j.joule.2017.08.009 |
35 |
Huang J. ; Li Z. ; Ge H. ; Zhang J. Electrochem. Soc 2015, 162, A7037.
doi: 10.1149/2.0081513jes |
36 |
Herzog G. ; Moujahid W. ; Strutwolf J. ; Arrigan D. W. Analyst 2009, 134, 1608.
doi: 10.1039/B905441N |
37 |
Wang A. ; Kadam S. ; Li H. ; Shi S. ; Qi Y. NPJ Comput. Mater 2018, 4, 15.
doi: 10.1038/s41524-018-0064-0 |
38 |
von Cresce A. ; Xu K. Electrochem. Solid State Lett. 2011, 14, A154.
doi: 10.1149/1.3615828 |
39 |
Xu K. ; von Wald Cresce A. J. Mater. Res 2012, 27, 2327.
doi: 10.1557/jmr.2012.104 |
40 |
von Wald Cresce A. ; Gobet M. ; Borodin O. ; Peng J. ; Russell S. M. ; Wikner E. ; Fu A. ; Hu L. ; Lee H. S. ; Zhang Z. J. Phys. Chem. C 2015, 119, 27255.
doi: 10.1021/acs.jpcc.5b08895 |
41 |
Xu K. J. Electrochem. Soc 2007, 154, A162.
doi: 10.1149/1.2536554 |
42 |
Xu K. ; Lam Y. ; Zhang S. S. ; Jow T. R. ; Curtis T. B. J. Phys. Chem. C 2007, 111, 7411.
doi: 10.1021/jp068691u |
43 |
Schiele A. ; Breitung B. ; Hatsukade T. ; Berkes B. B. ; Hartmann P. ; Janek J. ; Brezesinski T. ACS Energy Lett 2017, 2, 2228.
doi: 10.1021/acsenergylett.7b00619 |
44 |
Yoon T. ; Chapman N. ; Seo D. M. ; Lucht B. L. J. Electrochem. Soc. 2017, 164, A2082.
doi: 10.1149/2.1421709jes |
45 |
Devic T. ; Lestriez B. ; Roué L. ACS Energy Lett 2019, 4, 550.
doi: 10.1021/acsenergylett.8b02433 |
46 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
47 |
Chen X. ; Shen X. ; Li B. ; Peng H. J. ; Cheng X. B. ; Li B. Q. ; Zhang X. Q. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 734.
doi: 10.1002/anie.201711552 |
48 |
Chen X. ; Zhang X. Q. ; Li H. R. ; Zhang Q. Batteries Supercaps 2019, 2, 128.
doi: 10.1002/batt.201800118 |
49 |
Zhang X. Q. ; Chen X. ; Hou L. P. ; Li B. Q. ; Cheng X. B. ; Huang J. Q. ; Zhang Q. ACS Energy Lett 2019, 4, 411.
doi: 10.1021/acsenergylett.8b02376 |
50 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
51 |
Yan C. ; Zhang X. Q. ; Huang J. Q. ; Liu Q. ; Zhang Q. Trends Chem 2019, 1, 693.
doi: 10.1016/j.trechm.2019.06.007 |
52 |
Li B. Q. ; Chen X. R. ; Chen X. ; Zhao C. X. ; Zhang R. ; Cheng X. B. ; Zhang Q. Research 2019, 2019, 4608940.
doi: 10.34133/2019/4608940 |
53 |
Levin E. E. ; Vassiliev S. Y. ; Nikitina V. A. Electrochim. Acta 2017, 228, 114.
doi: 10.1016/j.electacta.2017.01.040 |
54 |
Shin H. ; Park J. ; Sastry A. M. ; Lu W. J. Electrochem. Soc 2015, 162, A1683.
doi: 10.1149/2.0071509jes |
55 |
Liu Y. M. ; Nicolau B. G. ; Esbenshade J. L. ; Gewirth A. A. Anal. Chem. 2016, 88, 7171.
doi: 10.1021/acs.analchem.6b01292 |
56 |
Li J. D. ; Dong S. M. ; Wang C. ; Hu Z. L. ; Zhang Z. Y. ; Zhang H. ; Cui G. L. J. Mater. Chem. A 2018, 6, 11846.
doi: 10.1039/C8TA02975J |
57 |
Tong B. ; Wang J. W. ; Liu Z. J. ; Ma L. P. ; Zhou Z. B. ; Peng Z. Q. J. Power Sources 2018, 384, 80.
doi: 10.1016/j.jpowsour.2018.02.076 |
58 |
Bassett K. L. ; Capraz O. O. ; Ozdogru B. ; Gewirth A. A. ; Sottos N. R. J. Electrochem. Soc 2019, 166, A2707.
doi: 10.1149/2.1391912jes |
59 |
Liao Y. H. ; Li G. J. ; Xu N. ; Chen T. T. ; Wang X. S. ; Li W. S. Solid State Ion. 2019, 329, 31.
doi: 10.1016/j.ssi.2018.11.013 |
60 |
Liao B. ; Li H. Y. ; Xu M. Q. ; Xing L. D. ; Liao Y. H. ; Ren X. B. ; Fan W. Z. ; Yu L. ; Xu K. ; Li W. S. Adv. Energy Mater. 2018, 8, 1800802.
doi: 10.1002/aenm.201800802 |
61 |
Xu K. ; Lam Y. ; Zhang S. S. ; Jow T. R. ; Curtis T. B. J. Phys. Chem. C 2007, 111, 7411.
doi: 10.1021/jp068691u |
62 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
63 |
Abe T. ; Fukuda H. ; Iriyama Y. ; Ogumi Z. J. Electrochem. Soc 2004, 151, A1120.
doi: 10.1149/1.1763141 |
64 |
Abe T. ; Ohtsuka M. ; Sagane F. ; Iriyama Y. ; Ogumi Z. J. Electrochem. Soc 2004, 151, A950.
doi: 10.1149/1.1804813 |
65 |
Yamada Y. ; Yaegashi M. ; Abe T. ; Yamada A. Chem. Commun 2013, 49, 11194.
doi: 10.1039/C3CC46665E |
66 |
Yamada Y. ; Furukawa K. ; Sodeyama K. ; Kikuchi K. ; Yaegashi M. ; Tateyama Y. ; Yamada A. J. Am. Chem. Soc 2014, 136, 5039.
doi: 10.1021/ja412807w |
67 |
Yamada Y. ; Yamada A. Chem. Lett 2017, 46, 1056.
doi: 10.1246/cl.170284 |
68 |
Yamada Y. ; Wang J. H. ; Ko S. ; Watanabe E. ; Yamada A. Nat. Energy 2019, 4, 269.
doi: 10.1038/s41560-019-0336-z |
69 |
Chen S. ; Zheng J. ; Mei D. ; Han K. S. ; Engelhard M. H. ; Zhao W. ; Xu W. ; Liu J. ; Zhang J. G. Adv. Mater 2018, 30, 1706102.
doi: 10.1002/adma.201706102 |
70 |
Zeng Z. ; Murugesan V. ; Han K. S. ; Jiang X. ; Cao Y. ; Xiao L. ; Ai X. ; Yang H. ; Zhang J. G. ; Sushko M. L. ; Liu J. Nat. Energy 2018, 3, 674.
doi: 10.1038/s41560-018-0196-y |
71 |
Zheng J. ; Chen S. ; Zhao W. ; Song J. ; Engelhard M. H. ; Zhang J. G. ACS Energy Lett 2018, 3, 315.
doi: 10.1021/acsenergylett.7b01213 |
72 |
Wang L. ; Menakath A. ; Han F. ; Wang Y. ; Zavalij P. Y. ; Gaskell K. J. ; Borodin O. ; Iuga D. ; Brown S. P. ; Wang C. ; et al W. Nat. Chem 2019, 11, 789.
doi: 10.1038/s41557-019-0304-z |
73 |
Verma P. ; Maire P. ; Novák P. Electrochim. Acta 2010, 55, 6332.
doi: 10.1016/j.electacta.2010.05.072 |
74 |
Heiskanen S. K. ; Kim J. ; Lucht B. L. Joule 2019, 3, 2322.
doi: 10.1016/j.joule.2019.08.018 |
75 |
Gauthier M. ; Carney T. J. ; Grimaud A. ; Giordano L. ; Pour N. ; Chang H. H. ; Fenning D. P. ; Lux S. F. ; Paschos O. ; Bauer C. ; et al J. Phys. Chem. Lett 2015, 6, 4653.
doi: 10.1021/acs.jpclett.5b01727 |
76 |
Dey A. N. Thin Solid Films 1977, 43, 131.
doi: 10.1016/0040-6090(77)90383-2 |
77 |
Peled E. ; Golodnitsky D. ; Ardel G. J. Electrochem. Soc 1997, 144, L208.
doi: 10.1149/1.1837858 |
78 |
Aurbach D. J. Power Sources 2000, 89, 206.
doi: 10.1016/S0378-7753(00)00431-6 |
79 |
Chen D. ; Mahmoud M. A. ; Wang J. H. ; Waller G. H. ; Zhao B. ; Qu C. ; El-Sayed M. A. ; Liu M. Nano Lett 2019, 19, 2037.
doi: 10.1021/acs.nanolett.9b00179 |
80 |
Jurng S. ; Brown Z. L. ; Kim J. ; Lucht B. L. Energy Environ. Sci 2018, 11, 2600.
doi: 10.1039/C8EE00364E |
81 |
Gauthier M. ; Carney T. J. ; Grimaud A. ; Giordano L. ; Pour N. ; Chang H. H. ; Fenning D. P. ; Lux S. F. ; Paschos O. ; Bauer C. ; et al J. Phys. Chem. Lett 2015, 6, 4653.
doi: 10.1021/acs.jpclett.5b01727 |
82 |
Zhou Y. ; Su M. ; Yu X. ; Zhang Y. ; Wang J. G. ; Ren X. ; Cao R. ; Xu W. ; Baer D. R. ; Du Y. ; et al Nat. Nanotechnol. 2020, 15, 224.
doi: 10.1038/s41565-019-0618-4 |
83 |
Hou C. ; Han J. ; Liu P. ; Yang C. ; Huang G. ; Fujita T. ; Hirata A. ; Chen M. Adv. Energy Mater 2019, 9, 1902675.
doi: 10.1002/aenm.201902675 |
84 |
Huang W. ; Attia P. M. ; Wang H. ; Renfrew S. E. ; Jin N. ; Das S. ; Zhang Z. ; Boyle D. T. ; Li Y. ; Bazant M. Z. ; et al Nano Lett 2019, 19, 5140.
doi: 10.1021/acs.nanolett.9b01515 |
85 |
Benning S. ; Chen C. ; Eichel R. A. ; Notten P. H. L. ; Hausen F. ACS Appl. Energy Mater 2019, 2, 6761.
doi: 10.1021/acsaem.9b01222 |
86 |
Yan C. ; Yuan H. ; Park H. S. ; Huang J. Q. J. Energy Chem 2020, 47, 217.
doi: 10.1016/j.jechem.2019.09.034 |
87 |
Xu K. ; von Cresce A. ; Lee U. Langmuir 2010, 26, 11538.
doi: 10.1021/la1009994 |
88 |
Xu K. J. Electrochem. Soc. 2007, 154, A162.
doi: 10.1149/1.2536554 |
89 |
Liu Y. ; Zhu Y. ; Cui Y. Nat. Energy 2019, 4, 540.
doi: 10.1038/s41560-019-0405-3 |
90 |
Xu K. ; von Wald Cresce A. J. Mater. Res 2012, 27, 2327.
doi: 10.1557/jmr.2012.104 |
91 |
Cheng X. B. ; Yan C. ; Zhang X. Q. ; Liu H. ; Zhang Q. ACS Energy Lett 2018, 3, 1564.
doi: 10.1021/acsenergylett.8b00526 |
92 |
Shi S. ; Lu P. ; Liu Z. ; Qi Y. ; Hector L. G. ; Li H. ; Harris S. J. J. Am. Chem. Soc 2012, 134, 15476.
doi: 10.1021/ja305366r |
93 |
Aurbach D. ; Zinigrad E. ; Yaron C. ; Teller H. Solid State Ion. 2002, 148, 405.
doi: 10.1016/S0167-2738(02)00080-2 |
94 |
Brown Z. L. ; Jurng S. ; Nguyen C. C. ; Lucht B. L. ACS Appl. Energy Mater 2018, 1, 3057.
doi: 10.1021/acsaem.8b00705 |
95 |
Pritzl D. ; Solchenbach S. ; Wetjen M. ; Gasteiger H. J. Electrochem. Soc. 2017, 164, A2625.
doi: 10.1149/2.1441712jes |
96 |
von Aspern N. ; Diddens D. ; Kobayashi T. ; Börner M. ; Kazakova O. S. ; Kozel V. ; Röschenthaler G. V. ; Smiatek J. ; Winter M. ; Laskovic I. ACS Appl. Mater. Interfaces 2019, 11, 18.
doi: 10.1021/acsami.9b03359 |
97 |
Xu G. ; Kushima A. ; Yuan J. ; Dou H. ; Xue W. ; Zhang X. ; Yan X. ; Li J. Energy Environ. Sci 2017, 10, 2544.
doi: 10.1039/C7EE01898C |
98 |
Ma J. L. ; Meng F. L. ; Yu Y. ; Liu D. P. ; Yan J. M. ; Zhang Y. ; Zhang X. B. ; Jiang Q. Nat. Chem 2018, 11, 64.
doi: 10.1038/s41557-018-0166-9 |
99 |
Hu Z. ; Zhao L. ; Jiang T. ; Liu J. ; Rashid A. ; Sun P. ; Wang G. ; Yan C. ; Zhang L. Adv. Funct. Mater 2019, 29, 1906548.
doi: 10.1002/adfm.201906548 |
100 |
Zheng J. ; Ji G. ; Fan X. ; Chen J. ; Li Q. ; Wang H. ; Yang Y. ; DeMella K. C. ; Raghavan S. R. ; Wang C. Adv. Energy Mater 2019, 9, 1803774.
doi: 10.1002/aenm.201803774 |
101 |
Heng S. ; Wang Y. ; Qu Q. ; Guo R. ; Shan X. ; Battaglia V. S. ; Liu G. ; Zheng H. ACS Appl. Energy Mater 2019, 2, 6404.
doi: 10.1021/acsaem.9b00972 |
102 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. ; Shao Y. ; Engelhard M. H. ; Nie Z. ; Xiao J. ; et al J. Am. Chem. Soc 2013, 135, 4450.
doi: 10.1021/ja312241y |
103 | Dollé, M.; Grugeon, B.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97–98, 104. doi: 10.1016/S0378-7753(01)00507-9 |
104 | Ota, H; Sato, T.; Suzuki, H.; Usami, T. J. Power Sources 2001, 97–98, 107. doi: 10.1016/S0378-7753(01)00738-8 |
105 |
Liu G. ; Lu W. J. Power Sources 2017, 164, A1826.
doi: 10.1149/2.0381709jes |
106 |
Shen X. ; Zhang R. ; Chen X. ; Cheng X.B. ; Li X. Y. ; Zhang Q. Adv. Energy Mater 2020, 10, 1903645.
doi: 10.1002/aenm.201903645 |
107 |
Stetson C. ; Yin Y. ; Jiang C.S. ; DeCaluwe S. C. ; Al-Jassim M. ; Neale N. R. ; Ban C. ; Burrell A. ACS Energy Lett 2019, 4, 2770.
doi: 10.1021/acsenergylett.9b02082 |
108 | Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020. doi: 10.1002/anie.202002711 |
109 |
Yan C. ; Yao Y. X. ; Cai W. L. ; Xu Lei. ; Kaskel S. ; Park H. S. ; Huang J. Q. J. Energy Chem 2020, 49, 335.
doi: 10.1016/j.jechem.2020.02.052 |
110 |
Shin H. ; Park J. ; Han S. ; Sastr A M. ; Lu W. J. Power Sources 2015, 277, 169.
doi: 10.1016/j.jpowsour.2014.11.120 |
111 |
Yu C. ; Chen X. ; Xiao Z. ; Chao Lei. ; Zhang C. ; Lin X. ; Shen B. ; Zhang R. ; Wei F. Nano Lett. 2019, 19, 5124.
doi: 10.1021/acs.nanolett.9b01492 |
112 |
Cao X. ; Ren X. ; Zou L. ; Engelhard M. H. ; Huang W. ; Wang H. ; Matthews B. E. ; Lee H. ; Niu C. ; Arey B. W. ; et al Nat. Energy 2019, 4, 796.
doi: 10.1038/s41560-019-0464-5 |
113 |
Zhang W. ; Shen Z. ; Li S. ; Fan L. ; Wang X. ; Chen F. ; Zang X. ; Wu T. ; Ma F. ; Lu Y. Adv. Funct. Mater. 2020, 30, 2003800.
doi: 10.1002/adfm.202003800 |
114 |
Louli A. J. ; Ellis L. D. ; Dahn J. R. Joule 2019, 3, 745.
doi: 10.1016/j.joule.2018.12.009 |
115 |
Cheng X. B. ; Yan C. ; Chen X. ; Guan C. ; Huang J. Q. ; Peng H. J. ; Zhang Rui. ; Yang S. T. ; Zhang Q. Chem 2017, 2, 258.
doi: 10.1016/j.chempr.2017.01.003 |
116 |
Yan C. ; Cheng X. B. ; Yao Y. X. ; Shen X. ; Li B. Q. ; Li W. J. ; Zhang R. ; Huang J. Q. ; Li H. ; Zhang Q. Adv. Mater 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
117 |
An S. J. ; Li J. ; Daniel C. ; Wood D. L. J. Electrochem. Soc 2019, 166, A1121.
doi: 10.1149/2.0591906jes |
118 |
Zheng G. ; Lee S. W. ; Liang Z. ; Lee H. W. ; Yan K. ; Yao H. ; Wang H. ; Li W. ; Chu S. ; Cui Y. Nat. Nanotechnol. 2014, 9, 618.
doi: 10.1038/nnano.2014.152 |
119 | Yan C. ; Cheng X. B. ; Tian Y. ; Chen X. ; Zhang X. Q. ; Li W. J. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2018, 30, 1707629. |
[1] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[2] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
[3] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[4] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[5] | Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033-. |
[6] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-. |
[7] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-. |
[8] | Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang. A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007016-. |
[9] | Lifang Chen,Yulv Yu,Masako Kuwa,Tao Cheng,Yan Liu,Hiroshi Murakami,Harada Masafumi,Yuan Wang. Insight into the Formation Mechanism of "Unprotected" Metal Nanoclusters [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907008-. |
[10] | Feng JIN,Jing LI,Chenji HU,Houcai DONG,Peng CHEN,Yanbin SHEN,Liwei CHEN. High Performance Solid-state Battery with Integrated Cathode and Electrolyte [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1399-1403. |
[11] | Feng GUO, Peng CHEN, Tuo KANG, Yalong WANG, Chenghao LIU, Yanbin SHEN, Wei LU, Liwei CHEN. Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1365-1371. |
[12] | Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499. |
[13] | Jing-Ying BAI,Si-Zhen LI,Da-Jiang ZHENG,Li-Gong ZHANG,Li FENG,Qing-Xin CUI,Jing-Run WANG,Wen-Wu JIANG,Chang-Jian LIN. Preparation and Characterization of Black Micro-Arc Oxidation Films [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2271-2279. |
[14] | Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1593-1603. |
[15] | Xing-Rui LIU,Hui-Juan YAN,Dong WANG,Li-Jun WAN. In situ AFM Investigation of Interfacial Morphology of Single Crystal Silicon Wafer Anode [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 283-289. |
|