Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (8): 2011009.doi: 10.3866/PKU.WHXB202011009
• ARTICLE • Previous Articles Next Articles
Tonghui Cui1, Hangyue Li1, Zewei Lyu1, Yige Wang1, Minfang Han1,*(), Zaihong Sun2, Kaihua Sun2
Received:
2020-11-03
Accepted:
2020-12-07
Published:
2020-12-15
Contact:
Minfang Han
E-mail:hanminfang@tsinghua.edu.cn
Supported by:
MSC2000:
Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell[J].Acta Phys. -Chim. Sin., 2022, 38(8): 2011009.
Table 1
Testing parameters of EIS."
Parameter | Anode | Cathode |
Effect of Temperature | ||
T/℃ | 700, 750, 800 | |
φ(H2)/% | 100% | – |
φ(H2O)/% | 0 | – |
φ(O2)/% | – | 21% |
Total flow/(L∙min−1) | 2 | 6 |
Effect of Temperature | ||
T/℃ | 700, 750, 800 | |
φ(H2)/% | 90% | – |
φ(H2O)/% | 10% | – |
φ(O2)/% | – | 21% |
Total flow/(L∙min−1) | 2 | 6 |
Effect of anode H2 partial pressures | ||
T/℃ | 800 | |
φ(H2)/% | 40%–90% | – |
φ(H2O)/% | 10% | – |
φ(O2)/% | – | 21% |
Total flow/(L∙min−1) | 2 | 6 |
Effect of anode H2O partial pressures | ||
T/℃ | 800 | |
φ(H2)/% | 50% | – |
φ(H2O)/% | 3%–30% | – |
φ(O2)/% | – | 21% |
Total flow/(L∙min−1) | 2 | 6 |
Effect of cathode O2 partial pressures | ||
T/℃ | 800 | |
φ(H2)/% | 90% | – |
φ(H2O)/% | 10% | – |
φ(O2)/% | – | 10.5%–50% |
Total flow/(L∙min−1) | 2 | 2 |
Table 2
Physicochemical origins of DRT peaks for anode supported SOFC obtained by different authors."
Characteristic frequency/Hz | Physicochemical origin | ||
KIT (active area = 1 cm2) 8 | Shi (active area = 0.5 cm2) 12 | This work (active area = 100 cm2) | |
1 × 104–1 × 105 | Charge transfer reaction and ionic transport in the Ni/YSZ anode structure | Charge transfer at YSZ/GDC or LSCF/GDC interface | Oxygen ionic transport |
100–1 × 104 | H2 electrochemical reaction at Ni/YSZ/H2 boundary, O2 reduction at LSCF/O2 boundary | Charge transfer reaction within the anode | |
10–100 | Oxygen surface exchange kinetics of LSCF as well as the diffusivity of oxygen ions through the LSCF bulk, Gas diffusion within the anode substrate | H2 diffusion in anode, O2 diffusion in cathode | Oxygen surface exchange reaction within the cathode, Gas diffusion within the anode |
1–10 | Gas diffusion | Gas diffusion within the anode | |
0.1–1 | Gas-phase diffusion in the pores of the LSCF electrode | Gas conversion within the anode |
1 |
Hjalmarsson P. ; Sun X. ; Liu Y. L. ; Chen M. J. Power Sources 2014, 262, 316.
doi: 10.1016/j.jpowsour.2014.03.133 |
2 |
Fang Q. ; Frey C. E. ; Menzler N. H. ; Blum L. J. Electrochem. Soc. 2018, 165 (2), F38.
doi: 10.1149/2.0541802jes |
3 |
Hauch A. ; Brodersen K. ; Chen M. ; Mogensen M. B. Solid State Ionics 2016, 293, 27.
doi: 10.1016/j.ssi.2016.06.003 |
4 |
Lyu Z. ; Wang Y. ; Zhang Y. ; Han M. Chem. Eng. J. 2020, 393, 124755.
doi: 10.1016/j.cej.2020.124755 |
5 |
Barfod R. ; Hagen A. ; Ramousse S. ; Hendriksen P. V. ; Mogensen M. Fuel Cells 2006, 6 (2), 141.
doi: 10.1002/fuce.200500113 |
6 |
Jensen S. R. H. J. ; Hauch A. ; Hendriksen P. V. ; Mogensen M. J. Electrochem. Soc. 2009, 156 (6), B757.
doi: 10.1149/1.3116247 |
7 |
Schichlein H. ; Müller A. C. ; Voigts M. ; Krügel A. ; Ivers-Tiffée E. J. Appl. Electrochem. 2002, 32 (8), 875.
doi: 10.1023/a:1020599525160 |
8 |
Leonide A. ; Sonn V. ; Weber A. ; Ivers-Tiffée E. J. Electrochem. Soc. 2008, 155 (1), B36.
doi: 10.1149/1.2801372 |
9 |
Endler C. ; Leonide A. ; Weber A. ; Tietz F. ; Ivers-Tiffée E. J. Electrochem. Soc. 2010, 157 (2), B292.
doi: 10.1149/1.3270047 |
10 |
Kromp A. ; Leonide A. ; Weber A. ; Ivers-Tiffée E. J. Electrochem. Soc. 2011, 158 (8), B980.
doi: 10.1149/1.3597177 |
11 |
Caliandro P. ; Nakajo A. ; Diethelm S. ; Van herle J. J. Power Sources 2019, 436, 226838.
doi: 10.1016/j.jpowsour.2019.226838 |
12 | Shi W. Y. ; Jia C. ; Zhang Y. L. ; Lü Z. W. ; Han M. F. Acta Phys. -Chim. Sin. 2019, 35 (5), 509. |
施王影; 贾川; 张永亮; 吕泽伟; 韩敏芳. 物理化学学报, 2019, 35 (5), 509.
doi: 10.3866/PKU.WHXB201806071 |
|
13 |
Vinke I. C. ; de Haart L. G. J. ; Eichel R. A. ECS Trans. 2019, 91 (1), 589.
doi: 10.1149/09101.0589ecs |
14 |
Fang Q. ; Blum L. ; Menzler N. H. J. Electrochem. Soc. 2015, 162 (8), F907.
doi: 10.1149/2.0941508jes |
15 |
Sun X. ; Hendriksen P. V. ; Mogensen M. B. ; Chen M. Fuel Cells 2019, 19 (6), 740.
doi: 10.1002/fuce.201900081 |
16 |
Jia C. ; Chen M. ; Han M. Int. J. Appl. Ceram. Technol. 2017, 14 (5), 1006.
doi: 10.1111/ijac.12748 |
17 |
Sonn V. ; Leonide A. ; Ivers-Tiffée E. J. Electrochem. Soc. 2008, 155 (7), B675.
doi: 10.1149/1.2908860 |
18 |
Bessler W. G. ; Gewies S. J. Electrochem. Soc. 2007, 154 (6), B548.
doi: 10.1149/1.2720639 |
19 |
Fan H. ; Keane M. ; Singh P. ; Han M. J. Power Sources 2014, 268, 634.
doi: 10.1016/j.jpowsour.2014.03.080 |
20 |
Shi W. ; Lyu Z. ; Han M. ECS Trans. 2019, 91 (1), 791.
doi: 10.1149/09101.0791ecst |
21 |
Bessler W. ; Warnatz J. ; Goodwin D. Solid State Ionics 2007, 177 (39-40), 3371.
doi: 10.1016/j.ssi.2006.10.020 |
22 |
Shri Prakash B. ; Senthil Kumar S. ; Aruna S. T. Renew. Sust. Energy Rev. 2014, 36, 149.
doi: 10.1016/j.rser.2014.04.043 |
23 |
Simrick N. J. ; Bieberle-Hütter A. ; Ryll T. M. ; Kilner J. A. ; Atkinson A. ; Rupp J. L. M. Solid State Ionics 2012, 206, 7.
doi: 10.1016/j.ssi.2011.10.029 |
24 |
Endler-Schuck C. ; Joos J. ; Niedrig C. ; Weber A. ; Ivers-Tiffée E. Solid State Ionics 2015, 269, 67.
doi: 10.1016/j.ssi.2014.11.018 |
25 |
Boukamp B. Solid State Ionics 2004, 169 (1-4), 65.
doi: 10.1016/j.ssi.2003.07.002 |
26 |
Schönleber M. ; Klotz D. ; Ivers-Tiffée E. Electrochim. Acta 2014, 131, 20.
doi: 10.1016/j.electacta.2014.01.034 |
27 |
Dittrich L. ; Nohl M. ; Jaekel E. E. ; Foit S. ; de Haart L. G. J. ; Eichel R. A. J. Electrochem. Soc. 2019, 166 (13), F971.
doi: 10.1149/2.0581913jes |
28 |
Tong X. ; Ovtar S. ; Brodersen K. ; Hendriksen P. V. ; Chen M. J. Power Sources 2020, 451, 227742.
doi: 10.1016/j.jpowsour.2020.227742 |
29 | Wang J. ; Huang Q. A. ; Li W. H. ; Wamg J. ; Zhuang Q. C. ; Zhang J. J. J. Electrochem. 2020, 26, 607. |
王佳; 黄秋安; 李伟恒; 王娟; 庄全超; 张久俊. 电化学, 2020, 26, 607.
doi: 10.13208/j.electrochem.200641 |
|
30 |
Primdahl S. ; Mogensen M. J. Electrochem. Soc. 1998, 145 (7), 2431.
doi: 10.1149/1.1838654 |
31 |
Leonide A. ; Apel Y. ; Ivers-Tiffee E. ECS Trans. 2009, 19 (20), 81.
doi: 10.1149/1.3247567 |
32 |
Primdahl S. ; Mogensen M. J. Electrochem. Soc. 1999, 146 (8), 2827.
doi: 10.1149/1.1392015 |
33 |
Hong J. ; Bhardwaj A. ; Bae H. ; Kim I. H. ; Song S. J. J. Electrochem. Soc. 2020, 167 (11), 114504.
doi: 10.1149/1945-7111/aba00f |
34 |
Gewies S. ; Bessler W. G. J. Electrochem. Soc. 2008, 155 (9), B937.
doi: 10.1149/1.2943411 |
35 |
Sumi H. ; Shimada H. ; Yamaguchi Y. ; Yamaguchi T. ; Fujishiro Y. Electrochim. Acta 2020, 339, 135913.
doi: 10.1016/j.electacta.2020.135913 |
[1] | Wangying SHI, Chuan JIA, Yongliang ZHANG, Zewei Lü, Minfang HAN. Differentiation and Decomposition of Solid Oxide Fuel Cell Electrochemical Impedance Spectra [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 509-516. |
[2] | Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1614-1620. |
[3] | Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392. |
[4] | Liang YU,Fang-Yong YU,Li-Li YUAN,Wei-Zi CAI,Jiang LIU,Cheng-Hao YANG,Mei-Lin LIU. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(2): 503-509. |
[5] | CHENG Qing-Li, ZHANG Wei-Hua, TAO Bin. Investigation of the Electrochemical Corrosion of Copper under a Micrometric Electrolyte Droplet Using a Three-Electrode System [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1345-1350. |
[6] | FU Zhao-Ming, WANG Ming-Yang, ZHANG Yan-Xing, ZHANG Na, YANG Zong-Xian. First-Principles Study on the Microstructure of Triple-Phase Boundaries in the Ni/Yttria-Stabilized Zirconia Anode [J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1055-1060. |
[7] | LIU Dan-Dan, XIE Yong-Min, LIU Jiang, WANG Jin-Xia. Preparation of NiO-YSZ-Graphite Aqueous Slurry and Its Application in Fabricating Solid Oxide Fuel Cells by Slip-Casting [J]. Acta Phys. -Chim. Sin., 2014, 30(2): 331-337. |
[8] | LI Song-Mei, YIN Xiao-Lin, LIU Jian-Hua, ZHANG You, XUE Bing. Effect of Doping with Zn-Al-[V10O28]6- Layered Double Hydroxide on the Properties of Hybrid Sol-Gel Coatings on the LY12 Aluminum Surface [J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2092-2100. |
[9] | SUN Xian-Zhong, HUANG Bo, ZHANG Xiong, ZHANG Da-Cheng, ZHANG Hai-Tao, MA Yan-Wei. Experimental Investigation of Electrochemical Impedance Spectroscopy of Electrical Double Layer Capacitor [J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2071-2076. |
[10] | LUO Bing, XIA Da-Hai. Characterization of pH Effect on Corrosion Resistance of Nuclear Steam Generator Tubing Alloy by In-situ Scanning Electrochemical Microscopy [J]. Acta Phys. -Chim. Sin., 2014, 30(1): 59-66. |
[11] | HU Zhi, HUANG Xiao-Wei, CHEN Yang-Hui. Synthesis and Properties of SmBaCo2O5+δ Cathode Material via EDTA-Glycine Process [J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2585-2591. |
[12] | SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3 [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1954-1960. |
[13] | MENG Xiu-Xia, GONG Xun, YANG Nai-Tao, TAN Xiao-Yao, MA Zi-Feng. Preparation and Properties of Direct-Methane Solid Oxide Fuel Cell Based on a Graded Cu-CeO2-Ni-YSZ Composite Anode [J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1719-1726. |
[14] | QIN Guo-Heng, HUANG Xiao-Wei, HU Zhi. Chemical Compatibility and Electrochemical Performance between LaAlO3-Based Electrolyte and Selected Anode Materials [J]. Acta Phys. -Chim. Sin., 2013, 29(02): 311-318. |
[15] | SUN Cheng, LI Xi-Ming, XU Jin, YAN Mao-Cheng, WANG Fu-Hui, WANG Zhen-Yao. Effect of Urea on Microbiologically Induced Corrosion of Carbon Steel in Soil [J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2659-2668. |
|