Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2011050.doi: 10.3866/PKU.WHXB202011050
Special Issue: Graphene: Functions and Applications
• ARTICLE • Previous Articles Next Articles
Xiaoxiong Huang1,2, Yingjie Ma1,*(), Linjie Zhi1,2,*(
)
Received:
2020-11-19
Accepted:
2020-12-13
Published:
2020-12-18
Contact:
Yingjie Ma,Linjie Zhi
E-mail:mayj@nanoctr.cn;zhilj@nanoctr.cn
About author:
Email: zhilj@nanoctr.cn (L.Z.)Supported by:
MSC2000:
Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction[J].Acta Phys. -Chim. Sin., 2022, 38(2): 2011050.
1 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J Chem. Soc. Rev. 2014, 45, 631.
doi: 10.1002/chin.201417263 |
2 | Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕; 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
3 |
Zheng T. ; Jiang K. ; Wang H Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
4 |
Tran-Phu T. ; Daiyan R. ; Fusco Z. ; Ma Z. ; Amal R. ; Tricoli A Adv. Funct. Mater. 2020, 30, 1906478.
doi: 10.1002/adfm.201906478 |
5 |
Li F. ; Thevenon A. ; Rosas-Hernández A. ; Wang Z. ; Li Y. ; Gabardo C. M. ; Ozden A. ; Dinh C. T. ; Li J. ; Wang Y. ; et al Nature 2020, 577, 509.
doi: 10.1038/s41586-019-1782-2 |
6 |
Morales-Guio C. G. ; Cave E. R. ; Nitopi S. A. ; Feaster J. T. ; Wang L. ; Kuhl K. P. ; Jackson A. ; Johnson N. C. ; Abram D. N. ; Hatsukade T. ; et al Nat. Catal. 2018, 1, 764.
doi: 10.1038/s41929-018-0139-9 |
7 |
Tee S. Y. ; Win K. Y. ; Teo W. S. ; Koh L. D. ; Liu S. ; Teng C. P. ; Han M. Y Adv. Sci. 2017, 4, 1600337.
doi: 10.1002/advs.201600337 |
8 |
Hoffert M. I. ; Caldeira K. ; Benford G. ; Criswell D. R. ; Green C. ; Herzog H. ; Jain A. K. ; Kheshgi H. S. ; Lackner K. S. ; Lewis J. S. ; et al Science 2002, 298, 981.
doi: 10.1126/science.1072357 |
9 |
Zhang Y.-J. ; Sethuraman V. ; Michalsky R. ; Peterson A. A ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
10 |
Zhang W. ; Hu Y. ; Ma L. ; Zhu G. ; Wang Y. ; Xue X. ; Chen R. ; Yang S. ; Jin Z Adv. Sci. 2018, 5, 1700275.
doi: 10.1002/advs.201700275 |
11 |
Chang X. ; Wang T. ; Zhao Z. J. ; Yang P. ; Greeley J. ; Mu R. ; Zhang G. ; Gong Z. ; Luo Z. ; Chen J. ; et al Angew. Chem. Int. Ed. 2018, 57, 15415.
doi: 10.1002/anie.201805256 |
12 |
Zhu W. ; Michalsky R. ; Metin O. N. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
13 |
Liu S. B. ; Tao H. B. ; Zeng L. ; Liu Q. ; Xu Z. H. ; Liu Q. X. ; Luo J.-L. Am. Chem. Soc. 2017, 139, 2160.
doi: 10.1021/jacs.6b12103 |
14 |
Liu S. ; Xiao J. ; Lu X. F. ; Wang J. ; Wang X. ; Lou X. W Angew. Chem. Int. Ed. 2019, 58, 8499.
doi: 10.1002/anie.201903613 |
15 |
García J. ; Jiménez C. ; Martínez F. ; Camarillo R. ; Rincón J J. Catal. 2018, 367, 72.
doi: 10.1016/j.jcat.2018.08.017 |
16 | Jin H. D. ; Xiong L. K. ; Zhang X. ; Lian Y. B. ; Chen S. ; Lu Y. T. ; Deng Z. ; Peng Y Acta Phys. -Chim. Sin. 2021, 37, 2006017. |
金惠东; 熊力堃; 张想; 连跃彬; 陈思; 陆永涛; 邓昭; 彭扬; 物理化学学报, 2021, 37, 2006017.
doi: 10.3866/PKU.WHXB202006017 |
|
17 |
Jiang K. ; Sandberg R. B. ; Akey A. J. ; Liu X. ; Bell D. C. ; Nørskov J. K. ; Chan K. ; Wang H Nat. Catal. 2018, 1, 111.
doi: 10.1038/s41929-017-0009-x |
18 |
Lee S. ; Park G. ; Lee J ACS Catal. 2017, 7, 8594.
doi: 10.1021/acscatal.7b02822 |
19 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
20 |
Ye R. P. ; Ding J. ; Gong W. ; Argyle M. D. ; Yao Y. G Nat. Commun. 2019, 10, 5698.
doi: 10.1038/s41467-019-13638-9 |
21 |
Zhou W. ; Cheng K. ; Kang J. C. ; Zhou C. ; Subramanian V. ; Zhang Q. H. ; Wang Y Chem. Soc. Rev. 2019, 48
doi: 10.1039/C8CS00502H |
22 |
Yang X.-F. ; Wang A. Q. ; Qiao B. T. ; Li J. ; Liu J. Y Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m |
23 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
24 |
Ju W. ; Bagger A. ; Hao G.-P. ; Varela A. S. ; Sinev I. ; Bon V. ; Cuenya B. R. ; Kaskel S. ; Rossmeisl J. ; Strasser P Nat. Commun. 2017, 8, 944.
doi: 10.1038/s41467-017-01035-z |
25 |
Jiao L. ; Yang W. J. ; Wan G. ; Zhang R. ; Zheng X. S. ; Zhou H. ; Yu S. H. ; Jiang H. L Angew. Chem. Int. Ed. 2020, 59, 2.
doi: 10.1002/anie.202008787 |
26 |
Zhang X. ; Wu Z. ; Zhang X. ; Li L. ; Li Y. ; Xu H. ; Li X. ; Yu X. ; Zhang Z. ; Liang Y. ; et al Nat. Commun. 2017, 8, 14675.
doi: 10.1038/ncomms14675 |
27 |
Lin L. ; Li H. B. ; Yan C. C. ; Li H. F. ; Si R. ; Li M. R. ; Xiao J. P. ; Wang G. X. ; Bao X. H Adv. Mater. 2019, 31, 1903470.
doi: 10.1002/adma.201903470 |
28 |
Gu J. ; Hsu C. S. ; Bai L. ; Chen H. M. ; Hu X Science 2019, 364, 1091.
doi: 10.1126/science.aaw7515 |
29 |
Zhang H. ; Li J. ; Xi S. ; Du Y. ; Wang J Angew. Chem. Int. Ed. 2019, 131, 42.
doi: 10.1002/ange.201906079 |
30 |
Zhang X. ; Wang Y. ; Gu M. ; Wang M. ; Zhang Z. S. ; Pan W. Y. ; Jiang Z. ; Zheng H. Z. ; Lucero M. ; Wang H. L. ; et al Nat. Energy 2020, 5, 684.
doi: 10.1038/s41560-020-0667-9 |
31 |
Yang H. B. ; Hung S.-F. ; Liu S. ; Yuan K. D. ; Miao S. ; Zhang L. P. ; Huang X. ; Wang H.-Y. ; Cai W. Z. ; Chen R. ; et al Nat. Energy 2018, 3, 140.
doi: 10.1038/s41560-017-0078-8 |
32 |
Yan Y. ; Gu P. ; Zheng S. S. ; Zheng M. B. ; Pang H. ; Xue H. G J. Mater. Chem. A 2016, 4, 19078.
doi: 10.1039/c6ta08331e |
33 |
Li F. ; Han G.-F. ; Noh H.-J. ; Kim S.-J. ; Lu Y. L. ; Jeong H. Y. ; Fu Z. P. ; Baek J.-B. Energy Environ. Sci. 2018, 11, 2263.
doi: 10.1039/C8EE01169A |
34 |
Miao X. ; Qu D. ; Yang D. ; Nie B. ; Zhao Y. ; Fan H. ; Su Z Adv. Mater. 2018, 30, 1704740.
doi: 10.1002/adma.201704740 |
35 |
Zhao Y. ; Liang J. ; Wang C. ; Ma J. ; Wallace G. G Adv. Energy Mater. 2018, 8, 17025241.
doi: 10.1002/aenm.201702524 |
36 |
Wen C. F. ; Mao F. X. ; Liu Y. W. ; Zhang X. Y. ; Fu H. Q. ; Zheng L. R. ; Liu P. F. ; Yang H. G ACS Catal. 2020, 10, 1086.
doi: 10.1021/acscatal.9b02978 |
37 |
He S. ; Ji D. ; Zhang J. ; Novello P. ; Liu J J. Phys. Chem. B 2020, 3, 511.
doi: 10.1021/acs.jpcb.9b09730 |
38 |
Lu C. ; Yang J. ; Wei S. ; Bi S. ; Xia Y. ; Chen M. ; Hou Y. ; Qiu M. ; Yuan C. ; Su Y. ; et al Adv. Funct. Mater. 2019, 29, 1806884.
doi: 10.1002/adfm.201806884 |
39 |
Sa Y. J. ; Jung H. ; Shin D. ; Jeong H. Y. ; Ringe S. ; Kim H. ; Hwang Y. J. ; Joo S. H ACS Catal. 2020, 10, 10920.
doi: 10.1021/acscatal.0c02325 |
40 |
Gabardo C. M. ; Seifitokaldani A. ; Edwards J. P. ; Dinh C. T. ; Burdyny T. ; Kibria M. G. ; O'Brien C. P. ; Sargent E. H. ; Sinton D Energy Environ. Sci. 2018, 11, 2531.
doi: 10.1039/C8EE01684D |
41 |
Gao F.-Y. ; Bao R.-C. ; Gao M.-R. ; Yu S -H. J. Mater. Chem. A 2020, 8, 15458.
doi: 10.1039/D0TA03525D |
42 |
Seifitokaldani A. ; Gabardo C. M. ; Burdyny T. ; Dinh C. T. ; Edwards J. P. ; Kibria M. G. ; Bushuyev O. S. ; Kelley S. O. ; Sinton D. ; Sargent E. H J. Am. Chem. Soc. 2018, 140, 3833.
doi: 10.1021/jacs.7b13542 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[4] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[5] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[6] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[7] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[8] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[9] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[10] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[11] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[12] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[13] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
[14] | Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009077-. |
[15] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
|