Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2011073.doi: 10.3866/PKU.WHXB202011073
Special Issue: Two-Dimensional Photocatalytic Materials
• REVIEW • Previous Articles Next Articles
Wei Wang1,2, Yu Huang1,*(), Zhenyu Wang1
Received:
2020-11-28
Accepted:
2020-12-28
Published:
2020-12-30
Contact:
Yu Huang
E-mail:huangyu@ieecas.cn
About author:
Yu Huang, Email: huangyu@ieecas.cn; Tel.: +86-29-6233-6261Supported by:
MSC2000:
Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification[J].Acta Phys. -Chim. Sin., 2021, 37(8): 2011073.
1 |
Su J. ; Li G.-D. ; Li X.-H. ; Chen J.-S. Adv. Sci. 2019, 6 (7), 1801702.
doi: 10.1002/advs.201801702 |
2 |
Xiong J. ; Di J. ; Xia J. ; Zhu W. ; Li H. Adv. Funct. Mater. 2018, 28 (39), 1801983.
doi: 10.1002/adfm.201801983 |
3 |
Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Z. Energy Environ. Sci. 2012, 5 (5), 6717.
doi: 10.1039/C2EE03479D |
4 |
Cao S. ; Yu J. J. Phys. Chem. Lett. 2014, 5 (12), 2101.
doi: 10.1021/jz500546b |
5 |
Zhao Z. ; Sun Y. ; Dong F. Nanoscale 2015, 7 (1), 15.
doi: 10.1039/C4NR03008G |
6 |
Wang Y. ; Wang X. ; Antonietti M. Angew. Chem. Int. Ed. 2012, 51 (1), 68.
doi: 10.1002/anie.201101182 |
7 |
Wang Z. ; Chen M. ; Huang Y. ; Shi X. ; Zhang Y. ; Huang T. ; Cao J. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 239, 352.
doi: 10.1016/j.apcatb.2018.08.030 |
8 |
Tang J.-Y. ; Kong X. Y. ; Ng B.-J. ; Chew Y.-H. ; Mohamed A. R. ; Chai S.-P. Catal. Sci. Technol. 2019, 9 (9), 2335.
doi: 10.1039/C9CY00449A |
9 |
Xue J. ; Fujitsuka M. ; Majima T. Phys. Chem. Chem. Phys. 2019, 21 (5), 2318.
doi: 10.1039/C8CP06922K |
10 |
Wu M. ; Gong Y. ; Nie T. ; Zhang J. ; Wang R. ; Wang H. ; He B. J. Mater. Chem. A 2019, 7 (10), 5324.
doi: 10.1039/C8TA12076E |
11 |
Zhang D. ; Tan G. ; Wang M. ; Li B. ; Dang M. ; Ren H. ; Xia A. Mater. Res. Bull. 2020, 122, 110685.
doi: 10.1016/j.materresbull.2019.110685 |
12 |
Guo Q. ; Zhang Y. ; Zhang H.-S. ; Liu Y. ; Zhao Y.-J. ; Qiu J. ; Dong G. Adv. Funct. Mater. 2017, 27 (42), 1703711.
doi: 10.1002/adfm.201703711 |
13 |
Ong W.-J. ; Tan L.-L. ; Ng Y. H. ; Yong S.-T. ; Chai S.-P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075 |
14 |
Martin D. J. ; Qiu K. ; Shevlin S. A. ; Handoko A. D. ; Chen X. ; Guo Z. ; Tang J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240.
doi: 10.1002/anie.201403375 |
15 |
Frank S. N. ; Bard A. J. J. Am. Chem. Soc. 1977, 99 (14), 4667.
doi: 10.1021/ja00456a024 |
16 |
Huang Y. ; Zhu D. ; Zhang Q. ; Zhang Y. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Appl. Catal. B 2018, 234, 70.
doi: 10.1016/j.apcatb.2018.04.039 |
17 |
Huang Y. ; Liang Y. ; Rao Y. ; Zhu D. ; Cao J.-J. ; Shen Z. ; Ho W. ; Lee S. C. Environ. Sci. Technol. 2017, 51 (5), 2924.
doi: 10.1021/acs.est.6b04460 |
18 |
Huang Y. ; Wang W. ; Zhang Q. ; Cao J.-J. ; Huang R.-J. ; Ho W. ; Lee S. C. Sci. Rep. 2016, 6 (1), 23435.
doi: 10.1038/srep23435 |
19 |
Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8 (1), 76.
doi: 10.1038/nmat2317 |
20 |
Wang Y. ; Rao L. ; Wang P. ; Shi Z. ; Zhang L. Appl. Catal. B 2020, 262, 118308.
doi: 10.1016/j.apcatb.2019.118308 |
21 |
Peng G. ; Wu J. ; Wang M. ; Niklas J. ; Zhou H. ; Liu C. Nano Lett. 2020, 20 (4), 2879.
doi: 10.1021/acs.nanolett.0c00698 |
22 |
Wang Z. ; Huang Y. ; Ho W. ; Cao J. ; Shen Z. ; Lee S. C. Appl. Catal., B 2016, 199, 123.
doi: 10.1016/j.apcatb.2016.06.027 |
23 |
Wang Z. ; Huang Y. ; Chen L. ; Chen M. ; Cao J. ; Ho W. ; Lee S. C. J. Mater. Chem. A 2018, 6 (3), 972.
doi: 10.1039/C7TA09132J |
24 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136 (19), 6826.
doi: 10.1021/ja501866r |
25 | Wang Y. ; Shen S. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36 (3), 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
26 |
Zhang C. ; Li Y. ; Shuai D. ; Shen Y. ; Xiong W. ; Wang L. Chemosphere 2019, 214, 462.
doi: 10.1016/j.chemosphere.2018.09.137 |
27 |
Jourshabani M. ; Lee B.-K. ; Shariatinia Z. Appl. Catal. B 2020, 276, 119157.
doi: 10.1016/j.apcatb.2020.119157 |
28 |
He D. ; Zhang C. ; Zeng G. ; Yang Y. ; Huang D. ; Wang L. ; Wang H. Appl. Catal. B 2019, 258, 117957.
doi: 10.1016/j.apcatb.2019.117957 |
29 |
Li Y. ; Li X. ; Zhang H. ; Fan J. ; Xiang Q. J. Mater. Sci. Technol. 2020, 56, 69.
doi: 10.1016/j.jmst.2020.03.033 |
30 |
Tang S. ; Zhu Y. ; Li H. ; Xu H. ; Yuan S. Int. J. Hydrog. Energy 2019, 44 (59), 30935.
doi: 10.1016/j.ijhydene.2019.10.020 |
31 |
Dong G. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351 (6271), 361.
doi: 10.1126/science.aad0832 |
32 |
Liao J. ; Cui W. ; Li J. ; Sheng J. ; Wang H. ; Dong X. A. ; Chen P. ; Jiang G. ; Wang Z. ; Dong F. Chem. Eng. J. 2020, 379, 122282.
doi: 10.1016/j.cej.2019.122282 |
33 |
Cao J. ; Pan C. ; Ding Y. ; Li W. ; Lv K. ; Tang H. J. Environ. Chem. Eng. 2019, 7 (2), 102984.
doi: 10.1016/j.jece.2019.102984 |
34 |
Cao J. ; Nie W. ; Huang L. ; Ding Y. ; Lv K. ; Tang H. Appl. Catal. B 2019, 241, 18.
doi: 10.1016/j.apcatb.2018.09.007 |
35 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36 (7), 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
36 |
Mo R. ; Li J. ; Tang Y. ; Li H. ; Zhong J. Appl. Surf. Sci. 2019, 476, 552.
doi: 10.1016/j.apsusc.2019.01.085 |
37 |
Li H. ; Jin C. ; Wang Z. ; Liu Y. ; Wang P. ; Zheng Z. ; Whangbo M.-H. ; Kou L. ; Li Y. ; Dai Y. ; et al Chem. Eng. J. 2019, 369, 263.
doi: 10.1016/j.cej.2019.03.095 |
38 |
Zhang J. ; Huang Y. ; Nie T. ; Wang R. ; He B. ; Han B. ; Wang H. ; Tian Y. ; Gong Y. Appl. Surf. Sci. 2020, 499, 143942.
doi: 10.1016/j.apsusc.2019.143942 |
39 |
Wang H. ; Li M. ; Li H. ; Lu Q. ; Zhang Y. ; Yao S. Mater. Des. 2019, 162, 210.
doi: 10.1016/j.matdes.2018.11.049 |
40 |
Zhou C. ; Zeng Z. ; Zeng G. ; Huang D. ; Xiao R. ; Cheng M. ; Zhang C. ; Xiong W. ; Lai C. ; Yang Y. ; et al J. Hazard. Mater. 2019, 380, 120815.
doi: 10.1016/j.jhazmat.2019.120815 |
41 |
Zhang Y. ; Gao J. ; Chen Z. J. Colloid Interface Sci. 2019, 535, 331.
doi: 10.1016/j.jcis.2018.10.012 |
42 |
Wu J. ; Li N. ; Fang H.-B. ; Li X. ; Zheng Y.-Z. ; Tao X. Chem. Eng. J. 2019, 358, 20.
doi: 10.1016/j.cej.2018.09.208 |
43 |
Zhang X. ; Zhao R. ; Zhang N. ; Su Y. ; Liu Z. ; Gao R. ; Du C. Appl. Catal. B 2020, 263, 118316.
doi: 10.1016/j.apcatb.2019.118316 |
44 |
Xie Y. ; Li Y. ; Huang Z. ; Zhang J. ; Jia X. ; Wang X.-S. ; Ye J. Appl. Catal. B 2020, 265, 118581.
doi: 10.1016/j.apcatb.2019.118581 |
45 |
Ho W. ; Zhang Z. ; Lin W. ; Huang S. ; Zhang X. ; Wang X. ; Huang Y. ACS Appl. Mater. Interfaces 2015, 7 (9), 5497.
doi: 10.1021/am509213x |
46 |
Liang L. ; Shi L. ; Wang F. ; Yao L. ; Zhang Y. ; Qi W. Int. J. Hydrog. Energy 2019, 44 (31), 16315.
doi: 10.1016/j.ijhydene.2019.05.001 |
47 |
Xue Y. ; Kong X. ; Guo Y. ; Liang Z. ; Cui H. ; Tian J. J. Materiomics 2020, 6 (1), 128.
doi: 10.1016/j.jmat.2020.01.006 |
48 |
Wang Z. ; Huang Y. ; Chen M. ; Shi X. ; Zhang Y. ; Cao J. ; Ho W. ; Lee S. C. ACS Appl. Mater. Interfaces 2019, 11 (11), 10651.
doi: 10.1021/acsami.8b21987 |
49 |
Guo S. ; Zhang H. ; Yang P. ; Chen Y. ; Yu X. ; Yu B. ; Zhao Y. ; Yang Z. ; Liu Z. Catal. Sci. Technol. 2019, 9 (10), 2485.
doi: 10.1039/C8CY02509F |
50 |
Shan X. ; Ge G. ; Zhao Z. ChemCatChem 2019, 11 (5), 1534.
doi: 10.1002/cctc.201801803 |
51 |
Yang Z. ; Chu D. ; Jia G. ; Yao M. ; Liu B. Appl. Surf. Sci. 2020, 504, 144407.
doi: 10.1016/j.apsusc.2019.144407 |
52 |
Tian Y. ; Zhou L. ; Zhu Q. ; Lei J. ; Wang L. ; Zhang J. ; Liu Y. Nanoscale 2019, 11 (43), 20638.
doi: 10.1039/C9NR06802C |
53 |
Liu M. ; Zhang D. ; Han J. ; Liu C. ; Ding Y. ; Wang Z. ; Wang A. Chem. Eng. J. 2020, 382, 123017.
doi: 10.1016/j.cej.2019.123017 |
54 |
Liang X. ; Wang G. ; Dong X. ; Wang G. ; Ma H. ; Zhang X. ACS Appl. Nano Mater. 2019, 2 (1), 517.
doi: 10.1021/acsanm.8b02089 |
55 |
Shen M. ; Zhang L. ; Wang M. ; Tian J. ; Jin X. ; Guo L. ; Wang L. ; Shi J. J. Mater. Chem. A 2019, 7 (4), 1556.
doi: 10.1039/C8TA09302D |
56 |
Jiang L. ; Li J. ; Wang K. ; Zhang G. ; Li Y. ; Wu X. Appl. Catal. B 2020, 260, 118181.
doi: 10.1016/j.apcatb.2019.118181 |
57 |
Zhang Y. ; Di J. ; Ding P. ; Zhao J. ; Gu K. ; Chen X. ; Yan C. ; Yin S. ; Xia J. ; Li H. J. Colloid Interface Sci. 2019, 553, 530.
doi: 10.1016/j.jcis.2019.06.012 |
58 |
Lei J. ; Chen B. ; Lv W. ; Zhou L. ; Wang L. ; Liu Y. ; Zhang J. ACS Sustain. Chem. Eng. 2019, 7 (19), 16467.
doi: 10.1021/acssuschemeng.9b03678 |
59 |
Wang X. ; Wu L. ; Wang Z. ; Wu H. ; Zhou X. ; Ma H. ; Zhong H. ; Xing Z. ; Cai G. ; Jiang C. ; et al Sol. RRL 2019, 3 (4), 1800298.
doi: 10.1002/solr.201800298 |
60 |
Sun H. ; Wei K. ; Wu D. ; Jiang Z. ; Zhao H. ; Wang T. ; Zhang Q. ; Wong P. K. Appl. Catal. B 2020, 264, 118480.
doi: 10.1016/j.apcatb.2019.118480 |
61 |
Zhang Y. ; Wu L. ; Zhao X. ; Zhao Y. ; Tan H. ; Zhao X. ; Ma Y. ; Zhao Z. ; Song S. ; Wang Y. ; et al Adv. Energy Mater. 2018, 8 (25), 1801139.
doi: 10.1002/aenm.201801139 |
62 |
Lin L. ; Yu Z. ; Wang X. Angew. Chem. Int. Ed. 2019, 58 (19), 6164.
doi: 10.1002/anie.201809897 |
63 |
Wang Y. ; Rao L. ; Wang P. ; Guo Y. ; Shi Z. ; Guo X. ; Zhang L. Appl. Surf. Sci. 2020, 505, 144576.
doi: 10.1016/j.apsusc.2019.144576 |
64 |
Zhou M. ; Dong G. ; Ma J. ; Dong F. ; Wang C. ; Sun J. Appl. Catal. B 2020, 273, 119007.
doi: 10.1016/j.apcatb.2020.119007 |
65 |
Zhang H. ; Tang Y. ; Liu Z. ; Zhu Z. ; Tang X. ; Wang Y. Chem. Phys. Lett. 2020, 751, 137467.
doi: 10.1016/j.cplett.2020.137467 |
66 |
Feng Q. J. Phys.: Condens. Matter 2020, 32 (44), 445602.
doi: 10.1088/1361-648x/aba387 |
67 |
Panigrahi P. ; Kumar A. ; Karton A. ; Ahuja R. ; Hussain T. Int. J. Hydrog. Energy 2020, 45 (4), 3035.
doi: 10.1016/j.ijhydene.2019.11.184 |
68 |
Wang X. ; Li D. ; Nan Z. Sep. Purif. Technol. 2019, 224, 152.
doi: 10.1016/j.seppur.2019.04.088 |
69 |
Hu C. ; Wang M.-S. ; Chen C.-H. ; Chen Y.-R. ; Huang P.-H. ; Tung K.-L. J. Membr. Sci. 2019, 580, 1.
doi: 10.1016/j.memsci.2019.03.012 |
70 |
Wang H. ; Bu Y. ; Wu G. ; Zou X. Dalton Trans. 2019, 48 (31), 11724.
doi: 10.1039/C9DT01261C |
71 |
Lv H. ; Huang Y. ; Koodali R. T. ; Liu G. ; Zeng Y. ; Meng Q. ; Yuan M. ACS Appl. Mater. Interfaces 2020, 12 (11), 12656.
doi: 10.1021/acsami.9b19057 |
72 |
Chu K. ; Li Q.-Q. ; Liu Y.-P. ; Wang J. ; Cheng Y.-H. Appl. Catal. B 2020, 267, 118693.
doi: 10.1016/j.apcatb.2020.118693 |
73 |
Li Z. ; Gu G. ; Hu S. ; Zou X. ; Wu G. Chin. J. Catal. 2019, 40 (8), 1178.
doi: 10.1016/S1872-2067(19)63364-4 |
74 |
Hu X. ; Zhang W. ; Yong Y. ; Xu Y. ; Wang X. ; Yao X. Appl. Surf. Sci. 2020, 510, 145413.
doi: 10.1016/j.apsusc.2020.145413 |
75 |
Iqbal W. ; Yang B. ; Zhao X. ; Rauf M. ; Mohamed I. M. A. ; Zhang J. ; Mao Y. Catal. Sci. Technol. 2020, 10 (2), 549.
doi: 10.1039/C9CY02111F |
76 |
Lin W. ; Lu K. ; Zhou S. ; Wang J. ; Mu F. ; Wang Y. ; Wu Y. ; Kong Y. Appl. Surf. Sci. 2019, 474, 194.
doi: 10.1016/j.apsusc.2018.03.140 |
77 |
Zhou P. ; Meng X. ; Li L. ; Sun T. J. Alloys Compd. 2020, 827, 154259.
doi: 10.1016/j.jallcom.2020.154259 |
78 |
Wang K. ; Fu J. ; Zheng Y. Appl. Catal. B 2019, 254, 270.
doi: 10.1016/j.apcatb.2019.05.002 |
79 |
Chen D. ; Liu J. ; Jia Z. ; Fang J. ; Yang F. ; Tang Y. ; Wu K. ; Liu Z. ; Fang Z. J. Hazard. Mater. 2019, 361, 294.
doi: 10.1016/j.jhazmat.2018.09.006 |
80 |
Yu Y. ; Wu S. ; Gu J. ; Liu R. ; Wang Z. ; Chen H. ; Jiang F. J. Hazard. Mater. 2020, 384, 121247.
doi: 10.1016/j.jhazmat.2019.121247 |
81 |
Phang S. J. ; Tan L.-L. Catal. Sci. Technol. 2019, 9 (21), 5882.
doi: 10.1039/C9CY01452G |
82 |
Dong G. ; Zhao L. ; Wu X. ; Zhu M. ; Wang F. Appl. Catal. B 2019, 245, 459.
doi: 10.1016/j.apcatb.2019.01.013 |
83 |
Zhao L. ; Dong G. ; Zhang L. ; Lu Y. ; Huang Y. ACS Appl. Mater. Interfaces 2019, 11 (10), 10042.
doi: 10.1021/acsami.9b00111 |
84 |
Liu J. ; Xiong C. ; Jiang S. ; Wu X. ; Song S. Appl. Catal. B 2019, 249, 282.
doi: 10.1016/j.apcatb.2019.03.014 |
85 |
Li X.-H. ; Chen W.-L. ; He P. ; Wang T. ; Liu D. ; Li Y.-W. ; Li Y.-G. ; Wang E.-B. Inorg. Chem. Front. 2019, 6 (11), 3315.
doi: 10.1039/C9QI01093A |
86 |
Vu N.-N. ; Nguyen C.-C. ; Kaliaguine S. ; Do T.-O. ChemSusChem 2019, 12 (1), 291.
doi: 10.1002/cssc.201802394 |
87 |
Bellamkonda S. ; Shanmugam R. ; Gangavarapu R. R. J. Mater. Chem. A 2019, 7 (8), 3757.
doi: 10.1039/C8TA10580D |
88 |
Zhang Y. ; Thomas A. ; Antonietti M. ; Wang X. J. Am. Chem. Soc. 2009, 131 (1), 50.
doi: 10.1021/ja808329f |
89 |
Ge G. ; Zhao Z. Catal. Sci. Technol. 2019, 9 (2), 266.
doi: 10.1039/C8CY02006J |
90 |
Li W. ; Guo Z. ; Jiang L. ; Zhong L. ; Li G. ; Zhang J. ; Fan K. ; Gonzalez S. ; Jin K. ; Xu C. ; et al Chem. Sci. 2020, 11 (10), 2716.
doi: 10.1039/C9SC05060D |
91 |
Xing W. ; Tu W. ; Ou M. ; Wu S. ; Yin S. ; Wang H. ; Chen G. ; Xu R. ChemSusChem 2019, 12 (9), 2029.
doi: 10.1002/cssc.201801431 |
92 |
Zhou P. ; Hou X. ; Chao Y. ; Yang W. ; Zhang W. ; Mu Z. ; Lai J. ; Lv F. ; Yang K. ; Liu Y. ; et al Chem. Sci. 2019, 10 (23), 5898.
doi: 10.1039/C9SC00658C |
93 |
Zhou P. ; Lv F. ; Li N. ; Zhang Y. ; Mu Z. ; Tang Y. ; Lai J. ; Chao Y. ; Luo M. ; Lin F. ; et al Nano Energy 2019, 56, 127.
doi: 10.1016/j.nanoen.2018.11.033 |
94 |
Nguyen C.-C. ; Sakar M. ; Vu M.-H. ; Do T.-O. Ind. Eng. Chem. Res. 2019, 58 (9), 3698.
doi: 10.1021/acs.iecr.8b05792 |
95 |
Huang Y. ; Wang P. ; Wang Z. ; Rao Y. ; Cao J.-J. ; Pu S. ; Ho W. ; Lee S. C. Appl. Catal. B 2019, 240, 122.
doi: 10.1016/j.apcatb.2018.08.078 |
96 |
Huang Y. ; Zhang J. ; Wang Z. ; Liu Y. ; Wang P. ; Cao J.-j. ; Ho W. Sol. RRL 2020, 4 (8), 2000170.
doi: 10.1002/solr.202000170 |
97 |
Cao J. ; Huang Y. Sci. Technol. Rev. 2016, 17 (34)
doi: 10.3981/j.issn.1000-7857.2016 |
98 | Huang, Y.; Wang, W.; Zhang, Y.; Cao, J.; Huang, R.; Wang, X. Chapter 10—Synthesis and Applications of Nanomaterials with High Photocatalytic Activity on Air Purification. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 299-325. |
[1] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[2] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[3] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[4] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[5] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[6] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[7] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[8] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[9] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[10] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[11] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[12] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[13] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[14] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[15] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-. |
|