• Accepted manuscript • Previous Articles Next Articles
Xiaoting Liu1,2,3, Jincan Zhang1,2,3, Heng Chen1,3, Zhongfan Liu1,3
Received:
2020-12-17
Revised:
2021-01-04
Accepted:
2021-01-05
Published:
2021-01-12
Supported by:
MSC2000:
Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene[J].Acta Phys. -Chim. Sin., 0, (): 2012047.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202012047
(1) Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109 (2) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3, 491. doi: 10.1038/nnano.2008.199 (3) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872 (4) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965 (5) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996 (6) Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458 (7) Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; et al. Nanoscale 2015, 7, 4598. doi: 10.1039/c4nr01600a (8) Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501 (9) Neumaier, D.; Pindl, S.; Lemme, M. C. Nat. Mater. 2019, 18, 525. doi: 10.1038/s41563-019-0359-7 (10) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896 (11) Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. Science 2016, 353, 1413. doi: 10.1126/science.aah3398 (12) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ko, Y. K.; et al. Nat. Nanotechnol. 2008, 3, 563. doi: 10.1038/nnano.2008.215 (13) Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S ACS Nano 2008, 2, 2513. doi: 10.1021/nn800711v (14) Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925 (15) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245 (16) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457, 706. doi: 10.1038/nature07719 (17) Lin, L.; Peng, H.; Liu, Z. F. Nat. Mater. 2019, 18, 520. doi: 10.1038/s41563-019-0341-4 (18) Kong, W.; Kum, H.; Bae, S.-H.; Shim, J.; Kim, H.; Kong, L.; Meng, Y.; Wang, K.; Kim, C.; Kim, J. Nat. Nanotechnol. 2019, 14, 927. doi: 10.1038/s41565-019-0555-2 (19) Pulizzi, F.; Bubnova, O.; Milana, S.; Schilter, D.; Abergel, D.; Moscatelli, A. Nat. Nanotechnol. 2019, 14, 914. doi: 10.1038/s41565-019-0552-5 (20) Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H.-J.; Baik, J.; Choi, H. C. ACS Nano 2013, 7, 6575. doi: 10.1021/nn402847w (21) Huang, P.; Ruiz-Vargas, C.; Zande, A.; Whitney, W.; Levendorf, M.; Kevek, J.; Garg, S.; Alden, J.; Hustedt, C.; Zhu, Y.; et al. Nature 2011, 469, 389. doi: 10.1038/nature09718 (22) Yu, Q.; Jauregui, L.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; et al. Nat. Mater. 2011, 10, 443. doi: 10.1038/nmat3010 (23) Ni, G.-X.; Zheng, Y.; Bae, S.; Kim, H. R.; Pachoud, A.; Kim, Y. S.; Tan, C.-L.; Im, D.; Ahn, J.-H.; Hong, B. H.; et al. ACS Nano 2012, 6, 1158. doi: 10.1021/nn203775x (24) Deng, B.; Hou, Y.; Liu, Y.; Khodkov, T.; Goossens, S.; Tang, J.; Wang, Y.; Yan, R.; Du, Y.; Koppens, F. H.; et al. Nano Lett. 2020, 20, 6798. doi: 10.1021/acs.nanolett.0c02785 (25) Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325 (26) Zhang, J.; Sun, L.; Jia, K.; Liu, X.; Cheng, T.; Peng, H.; Lin, L.; Liu, Z. F. ACS Nano 2020, 14, 10796. doi: 10.1021/acsnano.0c06141 (27) Fang, W.; Hsu, A. L.; Song, Y.; Kong, J. Nanoscale 2015, 7, 20335. doi: 10.1039/c5nr04756k (28) Huang, M.; Bakharev, P. V.; Wang, Z.-J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y.; Qu, D.; et al. Nat. Nanotechnol. 2020, 15, 289. doi: 10.1038/s41565-019-0622-8 (29) Xue, Y.; Wu, B.; Jiang, L.; Guo, Y.; Huang, L.; Chen, J.; Tan, J.; Geng, D.; Luo, B.; Hu, W.; et al. J. Am. Chem. Soc. 2012, 134, 11060. doi: 10.1021/ja302483t (30) Lin, L.; Li, J.; Yuan, Q.; Li, Q.; Zhang, J.; Sun, L.; Rui, D.; Chen, Z.; Jia, K.; Wang, M.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337 (31) Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N.; et al. Nat. Mater. 2018, 17, 318. doi: 10.1038/s41563-018-0019-3 (32) Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Sci. Bull. 2017, 62, 1074. doi: 10.1016/j.scib.2017.07.005 (33) Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; et al. Science 2013, 342, 720. doi: 10.1126/science.1243879 (34) Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Nat. Commun. 2013, 4, 2096. doi: 10.1038/ncomms3096 (35) Jiang, B.; Sun, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2007068. [姜蓓, 孙靖宇, 刘忠范. 物理化学学报, 2021, 37, 2007068.] doi: 10.3866/PKU.WHXB202007068 (36) Deng, B.; Pang, Z.; Chen, S.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.; et al. ACS Nano 2017, 11, 12337. doi: 10.1021/acsnano.7b06196 (37) Li, B.-W.; Luo, D.; Zhu, L.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Adv. Mater. 2018, 30, 1706504. doi: 10.1002/adma.201706504 (38) Yuan, G.; Lin, D.; Wang, Y.; Huang, X.; Chen, W.; Xie, X.; Zong, J.; Yuan, Q.-Q.; Zheng, H.; Wang, D.; et al. Nature 2020, 577, 204. doi: 10.1038/s41586-019-1870-3 (39) Jia, Y.; Gong, X.; Peng, P.; Wang, Z.; Tian, Z.; Ren, L.; Fu, Y.; Zhang, H. Nano-Micro Lett. 2016, 8, 336. doi: 10.1007/s40820-016-0093-5 (40) Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H.-M.; Ren, W. Nat. Commun. 2017, 8, 14560. doi: 10.1038/ncomms14560 (41) Pettes, M. T.; Jo, I.; Yao, Z.; Shi, L Nano Lett. 2011, 11, 1195. doi: 10.1021/nl104156y (42) Matković, A.; Ralević, U.; Chhikara, M.; Jakovljević, M. M.; Jovanović, D.; Bratina, G.; Gajić, R. J. Appl. Phys. 2013, 114, 093505. doi: 10.1063/1.4819967 (43) Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P.; et al. Nat. Mater. 2013, 12, 925. doi: 10.1038/nmat3709 (44) Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S.; et al. Nature 2017, 544, 340. doi: 10.1038/nature22053 (45) Zheng, L.; Chen, Y.; Li, N.; Zhang, J.; Liu, N.; Liu, J.; Dang, W.; Deng, B.; Li, Y.; Gao, X.; et al. Nat. Commun. 2020, 11, 541. doi: 10.1038/s41467-020-14359-0 (46) Han, Y.; Fan, X.; Wang, H.; Zhao, F.; Tully, C. G.; Kong, J.; Yao, N.; Yan, N. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1009. doi: 10.1073/pnas.1919114117 (47) Hong, H.; Zhang, J.; Zhang, J.; Qiao, R.; Yao, F.; Cheng, Y.; Wu, C.; Lin, L.; Jia, K.; Zhao, Y.; et al. J. Am. Chem. Soc. 2018, 140, 14952. doi: 10.1021/jacs.8b09353 (48) Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W Nano Lett. 2012, 12, 414. doi: 10.1021/nl203733r (49) Leong, W. S.; Wang, H.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P.-C.; Mao, Y.; Palacios, T.; Buehler, M. J.; Hong, J.-Y.; et al. Nat. Commun. 2019, 10, 867. doi: 10.1038/s41467-019-08813-x (50) Lin, Y.-C.; Jin, C.; Lee, J.-C.; Jen, S.-F.; Suenaga, K.; Chiu, P.-W. ACS Nano 2011, 5, 2362. doi: 10.1021/nn200105j (51) Wang, X.; Dolocan, A.; Chou, H.; Tao, L.; Dick, A.; Akinwande, D.; Wilison, C. G. Chem. Mat. 2017, 29, 2033. doi: 10.1021/acs.chemmater.6b03875 (52) Li, W.; Liang, Y.; Yu, D.; Peng, L.; Pernstich, K. P.; Shen, T.; Walker, A. R. H.; Cheng, G.; Hacker, C. A.; Richter, C. A.; et al. Appl. Phys. Lett. 2013, 102, 183110. doi: 10.1063/1.4804643 (53) Moser, J.; Barreiro, A.; Bachtold, A. Appl. Phys. Lett. 2007, 91, 163513. doi: 10.1063/1.2789673 (54) Cheng, H. Acta Phys. -Chim. Sin. 2020, 36, 1909042. [成会明. 物理化学学报, 2020, 36, 1909042.] doi: 10.3866/PKU.WHXB201909042 (55) Schuenemann, C.; Schaeffel, F.; Bachmatiuk, A.; Queitsch, U.; Sparing, M.; Rellinghaus, B.; Lafdi, K.; Schultz, L.; Buechner, B.; Ruemmeli, M. H. ACS Nano 2011, 5, 8928. doi: 10.1021/nn2031066 (56) Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4 (57) Zhang, J.; Lin, L.; Sun, L.; Huang, Y.; Koh, A. L.; Dang, W.; Yin, J.; Wang, M.; Tan, C.; Li, T.; et al. Adv. Mater. 2017, 29, 1700639. doi: 10.1002/adma.201700639 (58) Zhang, J.; Jia, K.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L.; Li, T.; Li, Z.; Liu, X.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 14446. doi: 10.1002/anie.201905672 (59) Su, W.; Kumar, N.; Dai, N.; Roy, D. Chem. Commun. 2016, 52, 8227. doi: 10.1039/C6CC01990K (60) Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k (61) Zhang, X.; Li, H.; Ding, F. Adv. Mater. 2014, 26, 5488. doi: 10.1002/adma.201305922 (62) Gao, J.; Yuan, Q.; Hu, H.; Zhao, J.; Ding, F. J. Phys. Chem. C 2011, 115, 17695. doi: 10.1021/jp2051454 (63) Zhong, L.; Li, J.; Li, Y.; Lu, H.; Du, H.; Gan, L.; Xu, C.; Chiang, S. W.; Kang, F. J. Phys. Chem. C 2016, 120, 23239. doi: 10.1021/acs.jpcc.6b06750 (64) Zhang, W.; Wu, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2011, 115, 17782. doi: 10.1021/jp2006827 (65) Li, Z.; Zhang, W.; Fan, X.; Wu, P.; Zeng, C.; Li, Z.; Zhai, X.; Yang, J.; Hou, J. J. Phys. Chem. C 2012, 116, 10557. doi: 10.1021/jp210814j (66) Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. ACS Nano 2012, 6, 3614. doi: 10.1021/nn3008965 (67) Muñoz, R.; Gómez-Aleixandre, C. Chem. Vapor Depos. 2013, 19, 297. doi: 10.1002/cvde.201300051 (68) Qing, F.; Jia, R.; Li, B.-W.; Liu, C.; Li, C.; Peng, B.; Deng, L.; Zhang, W.; Li, Y.; Ruoff, R. S.; et al. 2D Mater. 2017, 4, 025089. doi: 10.1088/2053-1583/aa6da5 (69) Hu, C.; Li, H.; Zhang, S.; Li, W. J. Mater. Sci. 2016, 51, 3897. doi: 10.1007/s10853-015-9709-2 (70) Qiu, Z.; Li, P.; Li, Z.; Yang, J. Acc. Chem. Res. 2018, 51, 728. doi: 10.1021/acs.accounts.7b00592 (71) Shivayogimath, A.; Mackenzie, D.; Luo, B.; Hansen, O.; Bøggild, P.; Booth, T. J Sci. Rep. 2017, 7, 6183. doi: 10.1038/s41598-017-06276-y (72) Lewis, A. M.; Derby, B.; Kinloch, I. A. ACS Nano 2013, 7, 3104. doi: 10.1021/nn305223y (73) Wang, X.; Yuan, Q.; Li, J.; Ding, F. Nanoscale 2017, 9, 11584. doi: 10.1039/c7nr02743e (74) Seah, C.-M.; Chai, S.-P.; Mohamed, A. R. Carbon 2014, 70, 1. doi: 10.1016/j.carbon.2013.12.073 (75) Sun, J.; Gao, T.; Song, X.; Zhao, Y.; Lin, Y.; Wang, H.; Ma, D.; Chen, Y.; Xiang, W.; Wing, J.; et al. J. Am. Chem. Soc. 2014, 136, 6574. doi: 10.1021/ja5022602 (76) Zheng, S.; Zhong, G.; Wu, X.; D’Arsie, L.; Robertson, J. RSC Adv. 2017, 7, 33185. doi: 10.1039/c7ra04162d (77) Teng, P.-Y.; Lu, C.-C.; Akiyama-Hasegawa, K.; Lin, Y.-C.; Yeh, C.-H.; Suenaga, K.; Chiu, P.-W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k (78) Jia, K.; Zhang, J.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.; et al. J. Am. Chem. Soc. 2019, 58, 14446. doi: 10.1002/anie.201905672 (79) Jia, K.; Ci, H.; Zhang, J.; Sun, Z.; Ma, Z.; Zhu, Y.; Liu, S.; Liu, J.; Sun, L.; Liu, X.; et al. Angew. Chem. Int. Ed. 2020, 59, 17214. doi: 10.1002/anie.202005406 (80) Sun, L.; Lin, L.; Wang, Z.; Rui, D.; Yu, Z.; Zhang, J.; Li, Y.; Liu, X.; Jia, K.; Wang, K.; et al. Adv. Mater. 2019, 31, 1902978. doi: 10.1002/adma.201902978 (81) Cai, W.; Moore, A. L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R. S. Nano Lett. 2010, 10, 1645. doi: 10.1021/nl9041966 |
[1] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-0. |
[2] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
[3] | Qin WANG,Minmin XUE,Zhuhua ZHANG. Chemical Synthesis of Borophene: Progress and Prospective [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 565-571. |
[4] | Kexin WANG,Liurong SHI,Mingzhan WANG,Hao YANG,Zhongfan LIU,Hailin PENG. Biomass Hydroxyapatite-templated Synthesis of 3D Graphene [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1112-1118. |
[5] | Shuai CHEN,Junfeng GAO,Bharathi M. SRINIVASAN,Yong-Wei ZHANG. A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1119-1127. |
[6] | Qing-Bin LIU,Cui YU,Ze-Zhao HE,Jing-Jing WANG,Jia LI,Wei-Li LU,Zhi-Hong FENG. Epitaxial Graphene on Sapphire Substrate by Chemical Vapor Deposition [J]. Acta Phys. -Chim. Sin., 2016, 32(3): 787-792. |
[7] | Xu-Dong CHEN,Zhao-Long CHEN,Jing-Yu SUN,Yan-Feng ZHANG,Zhong-Fan LIU. Graphene Glass: Direct Growth of Graphene on Traditional Glasses [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 14-27. |
[8] | QIAO Zhi, XIE Xin-Jian, XUE Jun-Ming, LIU Hui, LIANG Li-Min, HAO Qiu-Yan, LIU Cai-Chi. Optimization of Intrinsic Silicon Passivation Layers in nc-Si:H/c-Si Silicon Heterojunction Solar Cells [J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1207-1214. |
[9] | ZHANG Yan-Feng, GAO Teng, ZHANG-Yu, LIU Zhong-Fan. Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies [J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2456-2464. |
[10] | WANG Xi-Wen, JIANG Fang-Ting, SUO Quan-Ling, FANG Yu-Zhu, LU Yong. Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance [J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2605-2612. |
[11] | WANG Jian-Tao, ZHANG Xiao-Hong, WANG Hui, OU Xue-Mei. Super-Hydrophobic Silicon/Silica Hierarchical Structure Film [J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2233-2238. |
[12] | PENG Yue-Hua, ZHOU Hai-Qing, LIU Xiang-Heng, HE Xiong-Wu, ZHAO Ding, HAI Kuo, ZHOU Wei-Chang, YUAN Hua-Jun, TANG Dong-Sheng. Preparation of Sn2S3 One-Dimensional Nanostructure Arrays by Chemical Vapor Deposition [J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1249-1253. |
[13] | LI Wen, ZHOU Jin, XING Wei, ZHUO Shu-Ping, Lü Yi-Min. Preparation of Microporous Carbon Using a Zeolite HY Template and Its Capacitive Performance [J]. Acta Phys. -Chim. Sin., 2011, 27(03): 620-626. |
[14] | CHI Jun-Hong, WANG Juan. Synthesis, Morphology and Optical Properties of Mn Doped SnO2 One-Dimensional Nanostructures [J]. Acta Phys. -Chim. Sin., 2010, 26(08): 2306-2310. |
[15] | CAO Yin-Di, DANG Li-Qin, BAI Dan, LEI Zhi-Bin, LIU Mei-Ying. Adsorption of Lysozymes on Fe/CMK-5 Composites Synthesized by Chemical Vapor Deposition [J]. Acta Phys. -Chim. Sin., 2010, 26(06): 1593-1598. |
|