Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2012085.doi: 10.3866/PKU.WHXB202012085
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Meihui Jiang1, Lizhi Sheng1,*(), Chao Wang1, Lili Jiang2, Zhuangjun Fan3,*(
)
Received:
2020-12-30
Accepted:
2021-01-18
Published:
2021-01-22
Contact:
Lizhi Sheng,Zhuangjun Fan
E-mail:shengli_zhi@126.com;fanzhj666@163.com
About author:
Email: fanzhj666@163.com (Z.F.)Supported by:
MSC2000:
Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation[J].Acta Phys. -Chim. Sin., 2022, 38(2): 2012085.
Fig 2
Schematic diagram of graphene film preparation. (a) Vacuum-assisted self-assembly 28. Adapted from 2011 Wiley-VCH. (b) Blade-coating 29. Adapted from 2020 Elsevier. (c) Pressing aerogel 32. Adapted from 2012 Wiley-VCH. (d) Wet spinning 36. Adapted from 2019 Elsevier. (e) Interfacial self-assembly 44. Adapted from 2014 Elsevier."
Fig 4
Graphene ribbon films. (a) Preparation diagram of IGOR by a "spraying-rapid freezing" approach 59. Adapted from 2017 Elsevier. (b) Preparation of multilayer-folded graphene ribbon film (F-GRF). (c) A photograph showing a large-area GRF and F-GRF. (d) Cross-section SEM image of the compressed multilayer-folded film (F-GRF) after releasing pressure (10 MPa). (e) Three blue LED bulbs lighting demonstration, powered by three pieces of device connected in series 60. Adapted from 2018 Wiley-VCH."
Fig 5
Vertically-oriented graphene films. (a) A schematic representing VGs' structural and morphological features. Inset illustrates the restacking of horizontal graphene nanosheets 61. Adapted from 2015 Royal Society of Chemistry. (b) Tilt and (c) Top SEM images of vertically oriented graphene sheets 67. Adapted from 2016 American Chemical Society. (d) Schematic diagram of graphene film deposition in two steps.(e) Top surface and (f) Cross-section SEM images of m-RGO film 68. Adapted from 2017 Elsevier."
Fig 6
Pillared graphene films. (a) Schematic illustration of the preparation and sample model of the regularly aligned graphene ribbon based transparent and flexible film 80. Adapted from 2017 Royal Society of Chemistry. (b) Digital photograph and (c) SEM micrograph of self-supporting flexible and transparent graphene film 81. Adapted from 2017 American Chemical Society. (d) Synthesis procedure and (e) Cross-sectional SEM image of EGM-GO.(f) CV curves of the ASSC under various bending angles at a scan rate of 50 mV·s?1. The inset photograph shows the digital photograph of ASSC 82. Adapted from 2020 Springer Nature. (g) The preparation scheme of RGO/PANI hybrid films by steamed water regulation techniques.(h) Top and (i) Cross-section FE-SEM images of RGO/PANI hybrid films [83[. Adapted from 2017 Elsevier."
Fig 8
Holey and supporting graphene films. (a) Schematic illustration of the ion diffusion behavior for the RGO film and porous GNCN film. (b) The optical images and (c) The cross-section SEM image and (d) High-resolution SEM image of the GNCN film 91. Adapted from 2015 Elsevier. (e) Schematic illustrations of ion access and transport in GF, HGF, PPDA-GF and PPDA-HGF. (f) The cross-section SEM image of PPDA-HGF. (g) Stress-strain curves of GF, HGF, PPDA-GF and PPDA-HGF. (h) Capacitance retention under different bending cycles, inset shows the FSSC under flat and bending states 92. Adapted from 2019 Elsevier."
Fig 9
Chlorine-doped graphene films 102. (a) Schematic illustration of Cl-RGOF design. (b) Optical image of Cl-RGOF. (c) Illustration of electron withdrawing effect. (d) Surface SEM image of Cl-RGOF. (e) Cross-section SEM image of Cl-RGOF. (f) Relationships of Cg and Ca with different mass loadings. (g) Image of a red LED lit by two FSSCs in series for more than 10 min. Adapted from 2019 American Chemical Society."
Fig 10
Functional group modified graphene film. (a) Schematic illustration for preparation of alkylated graphene nanosheets. (b) SEM and (c) TEM images of C4rGO 113. Adapted from 2015 Elsevier.(d) Procedure of preparing the graphene films. (e) Cross-section and (f) Surface SEM images of graphene film 114. Adapted from 2014 Elsevier."
Table 1
Preparation, foundational unit structure regulation methods and electrochemical properties of graphene films."
Preparation | Regulation | Composition | Electrolyte | Electrochemical properties | Ref. | |
Specific capacitance | Energy density | |||||
Vacuum-assisted self-assembly | Pillared structure | EGM-rGO | EMIMBF4 | 231 F·g-1 at 1 A·g-1 | 88.1 Wh·L–1 at ~880 W·L–1 | |
Pillared structure | GN/MCS | 1 mol·L-1 KOH* | 211 F·g-1 at 0.2 A·g-1 | – | ||
Pillared structure | GN/AC/MnO2 | PVA/Na2SO4 | 2.96 F·cm–3 at 1 mA·cm–2 | 0.27 mWh·cm–3 at 2 mW·cm–3 | ||
Pillared structure | AC/CNT/RGO | 1 mol·L-1 LiClO4 (EC/DEC = 1 : 1) | 101 F·g-1 at 0.2 A·g-1 | 30 Wh·kg-1 at ~2 kW·kg-1 | ||
Pillared structure | RGO/PPy/RGO | 1 mol·L-1 H2SO4 | 625.6 F·g-1 at 0.22 A·g-1 | 21.7 Wh·kg-1 at 110 W·kg-1 | ||
Pillared structure & Porous structure | GNCN | 1 mol·L-1 Na2SO4 | – | 23.1 Wh·kg-1 at 230.8 kW·kg-1 | ||
Pillared structure & Porous structure | PGF2-10 | 6 mol·L-1 KOH* | 318.8 F·cm–3 at 1 A·g-1 | |||
Pillared structure & Porous structure | CNT/HGR | 0.5 mol·L-1 H2SO4* | 268 F·g-1 at 0.25 A·g-1 | – | ||
Porous structure | LGO20 | PVA/H3PO4 | 149.7 mF·cm–2 at 3 mV·s–1 | 7.5 mWh·cm–3 at 0.38 W·cm–3 | ||
Heteroatom doped | F-RGO-60 | 6 mol·L-1 KOH | 262.5 F·cm–3 (178.6 F·g–1) at 0.1 A·g-1 | 9.14 Wh·L–1 at 36.7 W·L–1 | ||
Blade-coating | Ribbon-like structure | F-GRF | 6 mol·L-1 KOH | 89.9 F·g-1 at 2 mV·s–1 | 12.5 Wh·kg-1 at 89.9 W·kg-1 | |
Heteroatom doped | I-rGO | PVA-KOH | 450 mF·cm–2 at 1 mA·cm–2 | ~62 μWh·cm-2 at 500 μW·cm-2 | ||
Pillared structure | PPDA-HGF | 1 mol·L-1 H2SO4 PVA-H2SO4 | 516 F·cm–3 at 0.5 A·g-1 19.6 F·cm–3 at 1 A·g-1 | 17.9 Wh·L–1 at 430 W·L–1 2.72 Wh·L–1 at 146.5 W·L–1 | ||
Porous structure | Porous RGO | 1 mol·L-1 H2SO4 | 71 mF·cm–2 at 1 mA·cm–2 | 8.4 µWh·cm-2 at 4900 μW·cm-2 | ||
Pressing aerogel | Porous structure | HHG-PPy | 1 mol·L-1 Na2SO4 | 328 F·cm–3 at 0.5 A·g–1 | 22.3 Wh·L–1 at 189.5 W·L–1 | |
Porous structure | HGF | 6 mol·L-1 KOH EMIMBF4/AN | 310 F·g-1 at 1 A·g-1 298 F·g-1 at 1 A·g-1 | –35 Wh·kg-1 at ~260 W·L–1 | ||
Wet spinning | Heteroatom doped & Functional modification | OAP/rGO | 1 mol·L-1 H2SO4 | 637 F·g-1 at 1 A·g-1 | 14.1 Wh·kg-1 at 199.9 W·L–1 | |
Crumpled structure & Heteroatom doped | NGF | 1 mol·L-1 H2SO4 EMIMBF4 | 413 F·cm–3 at 1 A·g–1 380 F·cm–3 at 1 A·g–1 | –161 Wh·L–1 at 1435 W·L–1 | ||
Vertical orientation | GHF-HZ | 1 mol·L-1 H2SO4 | 211 F·g-1 at 0.2 A·g-1 | – | ||
Interfacial self-assembly | Porous structure | rHGF | 1 mol·L-1 H2SO4 PVA-H2SO4 | 244 F·cm–3 at 0.1 A·g–1 56 mF·cm–2 at 0.1 mA·cm–2 | 8.5 Wh·L–1 at 14 W·L–1 1.42 mWh·cm-3 at 1.41 W·cm-3 | |
Heteroatom doped | Cl-RGOF | KOH-PVA | 2312 mF·cm–2 at 1 mA·cm–2 | 160.6 Wh·cm–2 at 0.5 mW·cm–2 | ||
Crumpled structure | f-RGOF | 1 mol·L-1 H2SO4 PVA-H2SO4 | 238.4 F·g-1 at 0.5 A·g-1 208.8 F·g-1 at 0.5 A·g-1 | 8.3 Wh·kg-1 at 250 W·kg-1 1.7 mWh·cm-3 at 60 mW·cm-3 | ||
Functional modification & Porous structure | DDDC-rGO | 1 mol·L-1 H2SO4 1 mol·L-1 TEA in AN | 302 F·g-1 at 1 A·g-1 115 F·g-1 at 2 A·g-1 | 6.4 Wh·kg-1 at 0.2 kW·kg-1 29.3 Wh·kg-1 at 1.1 kW·kg-1 | ||
Functional modification & Vertical orientation | DDDC-rGO | 1 mol·L-1 H2SO4 | 430 F·g-1 at 0.5 A·g-1 | – | ||
Pillared structure | DA/rGO@PDA | 1 mol·L-1 H2SO4* 1 mol·L-1 H2SO4 | 772.8 F·cm–3 at 1 A·g-1 4 F·cm–3 at 0.5 A·g-1 | – 16.4 Wh·L–1 at 218.8 W·L–1 |
1 |
Korkmaz S. ; Kariper İ. A J. Energy Storage 2020, 27, 101038.
doi: 10.1016/j.est.2019.101038 |
2 |
Kumar S. ; Saeed G. ; Zhu L. ; Hui K. N. ; Kim N. H. ; Lee J. H Chem. Eng. J. 2021, 403, 126352.
doi: 10.1016/j.cej.2020.126352 |
3 |
Wang J.-G. ; Ren L. ; Hou Z. ; Shao M Chem. Eng. J. 2020, 397, 125521.
doi: 10.1016/j.cej.2020.125521 |
4 | Tian D. ; Lu X. ; Li W. ; Li Y. ; Wang C Acta Phys. -Chim. Sin. 2020, 36, 1904056. |
田地; 卢晓峰; 李闱墨; 李悦; 王策. 物理化学学报, 2020, 36, 1904056.
doi: 10.3866/PKU.WHXB201904056 |
|
5 | Wang Y. ; Huo W. ; Yuan X. ; Zhang Y Acta Phys. -Chim. Sin. 2020, 36, 1904007. |
王易; 霍旺晨; 袁小亚; 张育新. 物理化学学报, 2020, 36, 1904007.
doi: 10.3866/PKU.WHXB201904007 |
|
6 |
Jiang L. ; Fan Z Nanoscale 2014, 6, 1922.
doi: 10.1039/c3nr04555b |
7 | Cheng L. ; Li X. ; Li J. ; Qiu H. ; Xue Y. ; Evgenyevna K.-I. ; Kolesov V. ; Chen C. ; Yang J New Carbon Mater. 2020, 35, 684. |
程蕾; 李幸娟; 李静; 邱汉讯; 薛裕华; EvgenyevnaK.-I.; KolesovV.; 陈成猛; 杨俊和. 新型炭材料, 2020, 35, 684.
doi: 10.1016/S1872-5805(20]60522-4 |
|
8 |
Ma Y. ; Zhi L Small Methods 2019, 3, 1800199.
doi: 10.1002/smtd.201800199 |
9 |
Li X. ; Tang Y. ; Song J. ; Yang W. ; Wang M. ; Zhu C. ; Zhao W. ; Zheng J. ; Lin Y Carbon 2018, 129, 236.
doi: 10.1016/j.carbon.2017.11.099 |
10 |
Lv Z. ; Luo Y. ; Tang Y. ; Wei J. ; Zhu Z. ; Zhou X. ; Li W. ; Zeng Y. ; Zhang W. ; Zhang Y. ; et al Adv. Mater. 2018, 30, 1704531.
doi: 10.1002/adma.201704531 |
11 |
Jabari E. ; Ahmed F. ; Liravi F. ; Secor E. B. ; Lin L. ; Toyserkani E 2D Mater. 2019, 6, 042004.
doi: 10.1088/2053-1583/ab29b2 |
12 |
Xiong Z. ; Liao C. ; Han W. ; Wang X Adv. Mater. 2015, 27, 4469.
doi: 10.1002/adma.201501983 |
13 |
Gao C. ; Chen K. ; Wang Y. ; Zhao Y. ; Qu L ChemSusChem 2020, 13, 1255.
doi: 10.1002/cssc.201902707 |
14 | Guo N. ; Zhang S. ; Wang L. ; Jia D Acta Phys. -Chim. Sin. 2020, 36, 1903055. |
郭楠楠; 张苏; 王鲁香; 贾殿赠. 物理化学学报, 2020, 36, 1903055.
doi: 10.3866/PKU.WHXB201903055 |
|
15 |
Wang X. ; Wan F. ; Zhang L. ; Zhao Z. ; Niu Z. ; Chen J Adv. Funct. Mater. 2018, 28, 1707247.
doi: 10.1002/adfm.201707247 |
16 |
Zhu Y. ; Ye X. ; Jiang H. ; Wang L. ; Zhao P. ; Yue Z. ; Wan Z. ; Jia C J. Power Sources 2018, 400, 605.
doi: 10.1016/j.jpowsour.2018.07.075 |
17 |
Salman M. ; Chu X. ; Huang T. ; Cai S. ; Yang Q. ; Dong X. ; Gopalsamy K. ; Gao C Mater. Chem. Front. 2018, 2, 2313.
doi: 10.1039/c8qm00260f |
18 |
Meng Q. ; Du C. ; Xu Z. ; Nie J. ; Hong M. ; Zhang X. ; Chen J Chem. Eng. J. 2020, 393, 124684.
doi: 10.1016/j.cej.2020.124684 |
19 |
Wang Y. ; Chen J. ; Cao J. ; Liu Y. ; Zhou Y. ; Ouyang J.-H. ; Jia D J. Power Sources 2014, 271, 269.
doi: 10.1016/j.jpowsour.2014.08.007 |
20 |
Feng X. ; Chen W. ; Yan L Nanoscale 2015, 7, 3712.
doi: 10.1039/c4nr06897a |
21 |
Hu C. ; Song L. ; Zhang Z. ; Chen N. ; Feng Z. ; Qu L Energy Environ. Sci. 2015, 8, 31.
doi: 10.1039/c4ee02594f |
22 |
Lu X. ; Dou H. ; Zhang X Mater. Lett. 2016, 178, 304.
doi: 10.1016/j.matlet.2016.05.029 |
23 |
Deng L. ; Gu Y. ; Gao Y. ; Ma Z. ; Fan G J. Colloid Interface Sci. 2017, 494, 355.
doi: 10.1016/j.jcis.2017.01.062 |
24 |
Huang C. ; Hu A. ; Li Y. ; Zhou H. ; Xu Y. ; Zhang Y. ; Zhou S. ; Tang Q. ; Chen C. ; Chen X Nanoscale 2019, 11, 16515.
doi: 10.1039/c9nr06001d |
25 |
Hou M. ; Xu M. ; Hu Y. ; Li B Electrochim. Acta 2019, 313, 245.
doi: 10.1016/j.electacta.2019.05.037 |
26 |
Kavinkumar T. ; Kavitha P. ; Naresh N. ; Manivannan S. ; Muneeswaran M. ; Neppolian B Appl. Surf. Sci. 2019, 480, 671.
doi: 10.1016/j.apsusc.2019.02.231 |
27 |
Wu D.-Y. ; Zhou W.-H. ; He L.-Y. ; Tang H.-Y. ; Xu X.-H. ; Ouyang Q.-S. ; Shao J -J. Carbon 2020, 160, 156.
doi: 10.1016/j.carbon.2020.01.019 |
28 |
Yang X. ; Qiu L. ; Cheng C. ; Wu Y. ; Ma Z. F. ; Li D Angew. Chem. Int. Ed. 2011, 50, 7325.
doi: 10.1002/anie.201100723 |
29 |
Zhu Y. ; Ye X. ; Jiang H. ; Xia J. ; Yue Z. ; Wang L. ; Wan Z. ; Jia C. ; Yao X J. Power Sources 2020, 453, 227851.
doi: 10.1016/j.jpowsour.2020.227851 |
30 |
Fan Z. ; Zhu J. ; Sun X. ; Cheng Z. ; Liu Y. ; Wang Y ACS Appl. Mater. Interfaces 2017, 9, 21763.
doi: 10.1021/acsami.7b03477 |
31 |
Xu Y. ; Lin Z. ; Huang X. ; Liu Y. ; Huang Y. ; Duan X ACS Nano 2013, 7, 4042.
doi: 10.1021/nn4000836 |
32 |
Liu F. ; Song S. ; Xue D. ; Zhang H Adv. Mater. 2012, 24, 1089.
doi: 10.1002/adma.201104691 |
33 | Jian M. ; Zhang Y. ; Liu Z Acta Phys. -Chim. Sin. 2022, 38, 2007093. |
蹇木强; 张莹莹; 刘忠范. 物理化学学报, 2022, 38, 2007093.
doi: 10.3866/PKU.WHXB202007093 |
|
34 |
Xu Z. ; Gao C ACS Nano 2011, 5, 2908.
doi: 10.1021/nn200069w |
35 |
Xu Z. ; Gao C Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
36 |
Huang T. ; Chu X. ; Cai S. ; Yang Q. ; Chen H. ; Liu Y. ; Gopalsamy K. ; Xu Z. ; Gao W. ; Gao C Energy Storage Mater. 2019, 17, 349.
doi: 10.1016/j.ensm.2018.07.001 |
37 |
Kou L. ; Liu Z. ; Huang T. ; Zheng B. ; Tian Z. ; Deng Z. ; Gao C Nanoscale 2015, 7, 4080.
doi: 10.1039/c4nr07038k |
38 |
Oksuz M. ; Erbil H. Y RSC Adv. 2018, 8, 17443.
doi: 10.1039/c8ra02325e |
39 |
Kim F. ; Cote L. J. ; Huang J Adv. Mater. 2010, 22, 1954.
doi: 10.1002/adma.200903932 |
40 |
Loh K. P. ; Bao Q. ; Eda G. ; Chhowalla M Nat. Chem. 2010, 2, 1015.
doi: 10.1038/nchem.907 |
41 |
Moon I. K. ; Lee J. ; Ruoff R. S. ; Lee H Nat. Commun. 2010, 1, 73.
doi: 10.1038/ncomms1067 |
42 |
Shao J. J. ; Lv W. ; Guo Q. ; Zhang C. ; Xu Q. ; Yang Q. H. ; Kang F Chem. Commun. 2012, 48, 3706.
doi: 10.1039/c1cc16838j |
43 |
Chen C. ; Yang Q.-H. ; Yang Y. ; Lv W. ; Wen Y. ; Hou P.-X. ; Wang M. ; Cheng H -M. Adv. Mater. 2009, 21, 3007.
doi: 10.1002/adma.200803726 |
44 |
Oh Y. J. ; Yoo J. J. ; Kim Y. I. ; Yoon J. K. ; Yoon H. N. ; Kim J.-H. ; Park S. B Electrochim. Acta 2014, 116, 118.
doi: 10.1016/j.electacta.2013.11.040 |
45 |
Wang H. ; Sun X. ; Liu Z. ; Lei Z Nanoscale 2014, 6, 6577.
doi: 10.1039/c4nr00538d |
46 |
Lei Z. ; Lu L. ; Zhao X. S Energy Environ. Sci. 2012, 5, 6391.
doi: 10.1039/c1ee02478g |
47 |
Sammed K. A. ; Pan L. ; Asif M. ; Usman M. ; Cong T. ; Amjad F. ; Imran M. A Sci. Rep. 2020, 10, 2315.
doi: 10.1038/s41598-020-58162-9 |
48 | Kang L. ; Zhang G. ; Bai Y. ; Wang H. ; Lei Z. ; Liu Z Acta Phys. -Chim. Sin. 2020, 36, 1905032. |
康丽萍; 张改妮; 白云龙; 王焕京; 雷志斌; 刘宗怀. 物理化学学报, 2020, 36, 1905032.
doi: 10.3866/PKU.WHXB201905032 |
|
49 |
Jang G. G. ; Song B. ; Moon K.-S. ; Wong C.-P. ; Keum J. K. ; Hu M. Z Carbon 2017, 119, 296.
doi: 10.1016/j.carbon.2017.04.023 |
50 |
Xu T. ; Yang D. ; Fan Z. ; Li X. ; Liu Y. ; Guo C. ; Zhang M. ; Yu Z -Z. Carbon 2019, 152, 134.
doi: 10.1016/j.carbon.2019.06.005 |
51 |
Chao Y. ; Chen S. ; Chen H. ; Hu X. ; Ma Y. ; Gao W. ; Bai Y Electrochim. Acta 2018, 276, 118.
doi: 10.1016/j.electacta.2018.04.156 |
52 |
Wang X. ; Song X. ; Li S. ; Xu C. ; Cao Y. ; Xiao Z. ; Qi C. ; Ma X. ; Gao J Chem. Eng. Sci. 2020, 221, 115657.
doi: 10.1016/j.ces.2020.115657 |
53 |
Nishihara H. ; Kyotani T Adv. Mater. 2012, 24, 4473.
doi: 10.1002/adma.201201715 |
54 |
Liu D. ; Li Q. ; Zhao H J. Mater. Chem. A 2018, 6, 11471.
doi: 10.1039/c8ta02580k |
55 |
Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Cai W. ; Ferreira P. J. ; Pirkle A. ; Wallace R. M. ; Cychosz K. A. ; Thommes M. ; et al Science 2011, 332, 1537.
doi: 10.1126/science.1200770 |
56 |
Shao Y. ; Li J. ; Li Y. ; Wang H. ; Zhang Q. ; Kaner R. B Mater. Horiz. 2017, 4, 1145.
doi: 10.1039/c7mh00441a |
57 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X Nat. Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
58 |
Xu Y. ; Chen C. Y. ; Zhao Z. ; Lin Z. ; Lee C. ; Xu X. ; Wang C. ; Huang Y. ; Shakir M. I. ; Duan X Nano Lett. 2015, 15, 4605.
doi: 10.1021/acs.nanolett.5b01212 |
59 |
Sheng L. ; Wei T. ; Liang Y. ; Jiang L. ; Qu L. ; Fan Z Carbon 2017, 120, 17.
doi: 10.1016/j.carbon.2017.05.033 |
60 |
Sheng L. ; Chang J. ; Jiang L. ; Jiang Z. ; Liu Z. ; Wei T. ; Fan Z Adv. Funct. Mater. 2018, 28, 1800597.
doi: 10.1002/adfm.201800597 |
61 |
Bo Z. ; Mao S. ; Han Z. J. ; Cen K. ; Chen J. ; Ostrikov K. K Chem. Soc. Rev. 2015, 44, 2108.
doi: 10.1039/c4cs00352g |
62 |
Li M. ; Liu D. ; Wei D. ; Song X. ; Wei D. ; Wee A. T Adv. Sci. 2016, 3, 1600003.
doi: 10.1002/advs.201600003 |
63 |
Zhang Z. ; Lee C.-S. ; Zhang W Adv. Energy Mater. 2017, 7, 1700678.
doi: 10.1002/aenm.201700678 |
64 |
Zheng S. ; Li Z. ; Wu Z.-S. ; Dong Y. ; Zhou F. ; Wang S. ; Fu Q. ; Sun C. ; Guo L. ; Bao X ACS Nano 2017, 11, 4009.
doi: 10.1021/acsnano.7b00553 |
65 |
Qi H. ; Yick S. ; Francis O. ; Murdock A. ; van der Laan T. ; Ostrikov K. ; Bo Z. ; Han Z. ; Bendavid A Energy Storage Mater. 2020, 26, 138.
doi: 10.1016/j.ensm.2019.12.040 |
66 |
Zhang C. ; Peng Z. ; Lin J. ; Zhu Y. ; Ruan G. ; Hwang C. C. ; Lu W. ; Hauge R. H. ; Tour J. M ACS Nano 2013, 7, 5151.
doi: 10.1021/nn400750n |
67 |
Zhang Y. ; Zou Q. ; Hsu H. S. ; Raina S. ; Xu Y. ; Kang J. B. ; Chen J. ; Deng S. ; Xu N. ; Kang W. P ACS Appl. Mater. Interfaces 2016, 8, 7363.
doi: 10.1021/acsami.5b12652 |
68 |
Jang G. G. ; Song B. ; Li L. ; Keum J. K. ; Jiang Y. ; Hunt A. ; Moon K.-S. ; Wong C.-P. ; Hu M. Z Nano Energy 2017, 32, 88.
doi: 10.1016/j.nanoen.2016.12.016 |
69 |
Zhou Q. ; Wei T. ; Yue J. ; Sheng L. ; Fan Z Electrochim. Acta 2018, 291, 234.
doi: 10.1016/j.electacta.2018.08.104 |
70 |
Hong X. ; Zhang B. ; Murphy E. ; Zou J. ; Kim F J. Power Sources 2017, 343, 60.
doi: 10.1016/j.jpowsour.2017.01.034 |
71 |
Li P. ; Jin Z. ; Peng L. ; Zhao F. ; Xiao D. ; Jin Y. ; Yu G Adv. Mater. 2018, 30, e1800124.
doi: 10.1002/adma.201800124 |
72 |
Kahriz P. K. ; Mahdavi H. ; Ehsani A. ; Heidari A. A. ; Bigdeloo M Electrochim. Acta 2020, 354, 136736.
doi: 10.1016/j.electacta.2020.136736 |
73 |
Xu L. ; Jia M. ; Li Y. ; Jin X. ; Zhang F Sci. Rep. 2017, 7, 12857.
doi: 10.1038/s41598-017-11267-0 |
74 |
Zhou T. ; Wu C. ; Wang Y. ; Tomsia A. P. ; Li M. ; Saiz E. ; Fang S. ; Baughman R. H. ; Jiang L. ; Cheng Q Nat. Commun. 2020, 11, 2077.
doi: 10.1038/s41467-020-15991-6 |
75 |
Fan Z. ; Yan J. ; Zhi L. ; Zhang Q. ; Wei T. ; Feng J. ; Zhang M. ; Qian W. ; Wei F Adv. Mater. 2010, 22, 3723.
doi: 10.1002/adma.201001029 |
76 |
Wu Z. S. ; Zheng Y. ; Zheng S. ; Wang S. ; Sun C. ; Parvez K. ; Ikeda T. ; Bao X. ; Mullen K. ; Feng X Adv. Mater. 2017, 29, 1602960.
doi: 10.1002/adma.201602960 |
77 |
Huang C. ; Tang Q. ; Feng Q. ; Li Y. ; Xu Y. ; Zhang Y. ; Hu A. ; Zhang S. ; Deng W. ; Chen X J. Mater. Chem. A 2020, 8, 9661.
doi: 10.1039/c9ta13585e |
78 |
Yang X. ; Zhu J. ; Qiu L. ; Li D Adv. Mater. 2011, 23, 2833.
doi: 10.1002/adma.201100261 |
79 |
Yang X. ; Cheng C. ; Wang Y. ; Qiu L. ; Li D Science 2013, 341, 534.
doi: 10.1126/science.1239089 |
80 |
Li N. ; Huang X. ; Zhang H. ; Shi Z. ; Li Y. ; Wang C J. Mater. Chem. A 2017, 5, 14595.
doi: 10.1039/c7ta03353b |
81 |
Li N. ; Huang X. ; Zhang H. ; Li Y. ; Wang C ACS Appl. Mater. Interfaces 2017, 9, 9763.
doi: 10.1021/acsami.7b00487 |
82 |
Li Z. ; Gadipelli S. ; Li H. ; Howard C. A. ; Brett D. J. L. ; Shearing P. R. ; Guo Z. ; Parkin I. P. ; Li F Nat. Energy 2020, 5, 160.
doi: 10.1038/s41560-020-0560-6 |
83 |
Zhang L. ; Huang D. ; Hu N. ; Yang C. ; Li M. ; Wei H. ; Yang Z. ; Su Y. ; Zhang Y J. Power Sources 2017, 342, 1.
doi: 10.1016/j.jpowsour.2016.11.068 |
84 |
Zhang L. ; Yang C. ; Hu N. ; Yang Z. ; Wei H. ; Chen C. ; Wei L. ; Xu Z. J. ; Zhang Y Nano Energy 2016, 26, 668.
doi: 10.1016/j.nanoen.2016.06.013 |
85 |
Liu Y. ; Cai X. ; Luo B. ; Yan M. ; Jiang J. ; Shi W Carbon 2016, 107, 426.
doi: 10.1016/j.carbon.2016.06.025 |
86 |
El Rouby W. M. A RSC Adv. 2015, 5, 66767.
doi: 10.1039/c5ra10289h |
87 |
Deng S. ; Berry V Mater. Today 2016, 19, 197.
doi: 10.1016/j.mattod.2015.10.002 |
88 |
Ye X. ; Zhu Y. ; Jiang H. ; Wang L. ; Zhao P. ; Yue Z. ; Wan Z. ; Jia C Chem. Eng. J. 2019, 361, 1437.
doi: 10.1016/j.cej.2018.10.187 |
89 |
Lee K. ; Kim D. ; Yoon Y. ; Yang J. ; Yun H.-G. ; You I.-K. ; Lee H RSC Adv. 2015, 5, 60914.
doi: 10.1039/c5ra10246d |
90 |
Yan J. ; Liu J. ; Fan Z. ; Wei T. ; Zhang L Carbon 2012, 50, 2179.
doi: 10.1016/j.carbon.2012.01.028 |
91 |
Jiang L. ; Sheng L. ; Long C. ; Fan Z Nano Energy 2015, 11, 471.
doi: 10.1016/j.nanoen.2014.11.007 |
92 |
Ye X. ; Zhu Y. ; Jiang H. ; Yue Z. ; Wang L. ; Wan Z. ; Jia C J. Power Sources 2019, 441, 227167.
doi: 10.1016/j.jpowsour.2019.227167 |
93 |
Kumar R. ; Sahoo S. ; Joanni E. ; Singh R. K. ; Maegawa K. ; Tan W. K. ; Kawamura G. ; Kar K. K. ; Matsuda A Mater. Today 2020, 39, 47.
doi: 10.1016/j.mattod.2020.04.010 |
94 |
Rotte N. K. ; Naresh V. ; Muduli S. ; Reddy V. ; Srikanth V. V. S. ; Martha S. K Electrochim. Acta 2020, 363, 137209.
doi: 10.1016/j.electacta.2020.137209 |
95 |
Liu Z. ; Li D. ; Li Z. ; Liu Z. ; Zhang Z Appl. Surf. Sci. 2017, 422, 339.
doi: 10.1016/j.apsusc.2017.06.046 |
96 |
Gopalsamy K. ; Balamurugan J. ; Thanh T. D. ; Kim N. H. ; Lee J. H Chem. Eng. J. 2017, 312, 180.
doi: 10.1016/j.cej.2016.11.130 |
97 |
Xiao Z. ; Sheng L. ; Jiang L. ; Zhao Y. ; Jiang M. ; Zhang X. ; Zhang M. ; Shi J. ; Lin Y. ; Fan Z Chem. Eng. J. 2021, 408, 127269.
doi: 10.1016/j.cej.2020.127269 |
98 |
Zhang L. ; Chen H. ; Lu X. ; Wang Y. ; Tan L. ; Sui D. ; Qi W Appl. Surf. Sci. 2020, 529, 147022.
doi: 10.1016/j.apsusc.2020.147022 |
99 |
Dai S. ; Liu Z. ; Zhao B. ; Zeng J. ; Hu H. ; Zhang Q. ; Chen D. ; Qu C. ; Dang D. ; Liu M J. Power Sources 2018, 387, 43.
doi: 10.1016/j.jpowsour.2018.03.055 |
100 |
Enterría M. ; Pereira M. F. R. ; Martins J. I. ; Figueiredo J. L Carbon 2015, 95, 72.
doi: 10.1016/j.carbon.2015.08.009 |
101 |
Chen H. ; Lu X. ; Wang H. ; Sui D. ; Meng F. ; Qi W J. Energy Chem. 2020, 49, 348.
doi: 10.1016/j.jechem.2020.02.043 |
102 |
Jiang H. ; Ye X. ; Zhu Y. ; Yue Z. ; Wang L. ; Xie J. ; Wan Z. ; Jia C ACS Sustainable Chem. Eng. 2019, 7, 18844.
doi: 10.1021/acssuschemeng.9b03810 |
103 |
Hsiao Y.-J. ; Lin L -Y. ACS Sustainable Chem. Eng. 2020, 8, 2453.
doi: 10.1021/acssuschemeng.9b06569 |
104 |
Bakandritsos A. ; Chronopoulos D. D. ; Jakubec P. ; Pykal M. ; Čépe K. ; Steriotis T. ; Kalytchuk S. ; Petr M. ; Zbořil R. ; Otyepka M Adv. Funct. Mater. 2018, 28, 1801111.
doi: 10.1002/adfm.201801111 |
105 |
Alipour S. ; Mousavi-Khoshdel S. M Electrochim. Acta 2019, 317, 301.
doi: 10.1016/j.electacta.2019.05.029 |
106 |
Ma H. ; Zhou Q. ; Wu M. ; Zhang M. ; Yao B. ; Gao T. ; Wang H. ; Li C. ; Sui D. ; Chen Y. ; Shi G J. Mater. Chem. A 2018, 6, 6587.
doi: 10.1039/c7ta10843e |
107 |
Li Y. ; Zhou M. ; Xia Z. ; Gong Q. ; Liu X. ; Yang Y. ; Gao Q Colloids Surf. A 2020, 602, 125172.
doi: 10.1016/j.colsurfa.2020.125172 |
108 |
Tian W. ; Gao Q. ; Tan Y. ; Zhang Y. ; Xu J. ; Li Z. ; Yang K. ; Zhu L. ; Liu Z Carbon 2015, 85, 351.
doi: 10.1016/j.carbon.2015.01.001 |
109 |
Jana M. ; Saha S. ; Khanra P. ; Samanta P. ; Koo H. ; Chandra Murmu N. ; Kuila T J. Mater. Chem. A 2015, 3, 7323.
doi: 10.1039/c4ta07009g |
110 |
Ai W. ; Zhou W. ; Du Z. ; Du Y. ; Zhang H. ; Jia X. ; Xie L. ; Yi M. ; Yu T. ; Huang W J. Mater. Chem. 2012, 22, 23439.
doi: 10.1039/c2jm35234f |
111 |
Vermisoglou E. C. ; Jakubec P. ; Bakandritsos A. ; Pykal M. ; Talande S. ; Kupka V. ; Zboril R. ; Otyepka M Chem. Mater. 2019, 31, 4698.
doi: 10.1021/acs.chemmater.9b00655 |
112 |
Jiang L. ; Sheng L. ; Long C. ; Wei T. ; Fan Z Adv. Energy Mater. 2015, 5, 1500771.
doi: 10.1002/aenm.201500771 |
113 |
Zhao G. ; Zhao F.-G. ; Sun J. ; Wang W. ; Lu Y. ; Li W.-S. ; Chen Q -Y. Carbon 2015, 94, 114.
doi: 10.1016/j.carbon.2015.06.061 |
114 |
Yang J. ; Zou L Electrochim. Acta 2014, 130, 791.
doi: 10.1016/j.electacta.2014.03.077 |
[1] | Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103034-. |
[2] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[3] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[4] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[5] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-. |
[6] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
[7] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-. |
[8] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
[9] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-. |
[10] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-. |
[11] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-. |
[12] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-. |
[13] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-. |
[14] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-. |
[15] | Fan Xie, Ye Xi, Qingda Xu, Jingquan Liu. Utah Neural Electrode Technology for Brain-Computer Interface [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2003014-. |
|