Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2012088.doi: 10.3866/PKU.WHXB202012088
Special Issue: Graphene: Functions and Applications
• ARTICLE • Previous Articles Next Articles
Jian Wang1,2, Bo Yin2, Tian Gao2, Xingyi Wang2, Wang Li2, Xingxing Hong2, Zhuqing Wang1,*(), Haiyong He2,*(
)
Received:
2020-12-31
Accepted:
2021-01-26
Published:
2021-02-01
Contact:
Zhuqing Wang,Haiyong He
E-mail:wangzhq@aqnu.edu.cn;hehaiyong@nimte.ac.cn
About author:
Email: hehaiyong@nimte.ac.cn (H.H.)Supported by:
MSC2000:
Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery[J].Acta Phys. -Chim. Sin., 2022, 38(2): 2012088.
Table 1
Experimental reagent."
Name | Purity/Specification | Supplier |
Exfoliated graphite (EG) | a 17% (w) in water | Self made |
Graphene oxide (GO) | a 1.34% (w) in water | Changzhou Sixth Element Material Techlonogy Co., Ltd. |
Potassium metal | 99% | Aladdin |
Glass fiber filter | Renishaw inVia Reflex | Whatman, UK |
Potassium ion electroyte | 0.8 mol·L-1 KPF6 in EC : DEC = 1 : 1, v/v | Suzhou DodoChem |
Shell of button battery | CR2016 | Jinhong Newenergy Co., Ltd. |
Table 2
Experimental instrument."
Name | Model | Supplier |
X-ray powder diffractometer (XRD) | D8 ADVANCE DAVINCI | BRUNKER German company |
Field emission Scanning electron microscope (SEM) | Sirion200 | FEI, USA company |
Transmission electron microscope (TEM) | Tecnai F20 | FEI, USA company |
Confocal Raman microscope | Renishaw inVia Reflex | Renishaw UK company |
Specific surface area and porosity analyzer | ASAP2020MHD88 | Micromeritics USA instrument company |
Land battery test system | 5 V, 2–8 mA, 8CT | Wuhan Rambo Testing Equiment Co., Ltd. |
Solartron analytical CellTest system | XM CHAS 08 & 1400A | Solartron, UK |
Fig 5
Electrochemical performance comparison. (a–c) The first three circles of CV at 1 mV·s?1 sweep speed; (d, g) Comparison of constant current charge and discharge performance at current densities of 50 and 800 mA·g?1, respectively; (f) Rate performance of each material; (e, h) The specific capacity below 0.5 V and corresponding contribution ratio of each sample at 50 and 800 mA·g?1. (i) Capacity retention rate at each current density; (j) Cycling performance at 50 mA·g?1; (k) Cycling performance at 800 mA·g?1; (l) Electrochemical impedance chart."
1 | Pei Z. ; Fan G. ; Qin X Energy Storage Sci. Technol. 2020, 9 (5), 1562. |
裴哲义; 范高锋; 秦晓辉. 储能科学与技术, 2020, 9 (5), 1562.
doi: 10.19799/j.cnki.2095-4239.2020.0252 |
|
2 |
Liu S. J. ; Zhang C. ; Sun Y. D. ; Chen Q. ; He L. F. ; Zhang K. ; Zhang J. ; Liu B. ; Chen L. F Coord. Chem. Rev. 2020, 413, 213266.
doi: 10.1016/j.ccr.2020.213266 |
3 |
Fedotov S. S. ; Khasanova N. R. ; Samarin A. S. ; Drozhzhin O. A. ; Batuk D. ; Karakulina O. M. ; Hadermann J. ; Abakumov A. M. ; Antipov E. V Chem. Mater. 2016, 28, 411.
doi: 10.1021/acs.chemmater.5b04065 |
4 |
Eftekhari A. ; Jian Z. ; Ji X ACS Appl. Mater. Interfaces 2017, 9, 4404.
doi: 10.1021/acsami.6b07989 |
5 | Liu Y. C. ; Huang B. ; Shao Y. J. ; Shen M. Y. ; Du L. ; Liao S. J Prog. Chem. 2019, 31 (9), 1329. |
刘燕晨; 黄斌; 邵奕嘉; 沈牧原; 杜丽; 廖世军. 化学进展, 2019, 31 (9), 1329.
doi: 10.7536/PC190212 |
|
6 |
Huang H. ; Wang J. ; Yang X. ; Hu R. ; Liu J. ; Zhang L. ; Zhu M Angew. Chem. Int. Ed. 2020, 59 (34), 14504.
doi: 10.1002/anie.202004193 |
7 |
Wang S. ; Xiong P. ; Guo X. ; Zhang J. ; Gao X. ; Zhang F. ; Tang X. ; Notten P. H. L. ; Wang G Adv. Funct. Mater. 2020, 30 (27), 2001588.
doi: 10.1002/adfm.202001588 |
8 |
Zhao R. ; Di H. ; Hui X. ; Zhao D. ; Wang R. ; Wang C. ; Yin L Energy Environ. Sci. 2020, 13 (1), 246.
doi: 10.1039/c9ee03250a |
9 |
Qi S. H. ; Deng J. W. ; Zhang W. C. ; Feng Y. Z. ; Ma J. M Rare Met. 2020, 39 (9), 970.
doi: 10.1007/s12598-020-01454-w |
10 |
Wei C. ; Tao Y. ; Fei H. ; An Y. ; Tian Y. ; Feng J. ; Qian Y Energy Storage Mater 2020, 30, 206.
doi: 10.1016/j.ensm.2020.05.018 |
11 |
Wang W. ; Ji B. ; Yao W. ; Zhang X. ; Zheng Y. ; Zhou X. ; Kidkhunthod P. ; He H. ; Tang Y Sci. China Mater. 2020, 64, 1047.
doi: 10.1007/s40843-020-1512-0 |
12 |
Zhang H. ; Luo C. ; He H. ; Wu H. H. ; Zhang L. ; Zhang Q. ; Wang H. ; Wang M. S Nanoscale Horiz. 2020, 5 (5), 895.
doi: 10.1039/d0nh00018c |
13 |
Zhang Z. ; Jia B. ; Liu L. ; Zhao Y. ; Wu H. ; Qin M. ; Han K. ; Wang W. A. ; Xi K. ; Zhang L. ; et al ACS Nano 2019, 13 (10), 11363.
doi: 10.1021/acsnano.9b04728 |
14 |
Ji B. ; Yao W. ; Zheng Y. ; Kidkhunthod P. ; Zhou X. ; Tunmee S. ; Sattayaporn S. Nat. Commun. 2020, 11 (1), 1225.
doi: 10.1038/s41467-020-15044-y |
15 |
Yu A. ; Pan Q. ; Zhang M. ; Xie D. ; Tang Y Adv. Funct. Mater. 2020, 30 (24), 2001440.
doi: 10.1002/adfm.202001440 |
16 |
Kim C. ; Yang K. S. ; Kojima M. ; Yoshida K. ; Kim Y. J. ; Kim Y. A. ; Endo M Adv. Funct. Mater. 2006, 16 (18), 2393.
doi: 10.1002/adfm.200500911 |
17 |
Chen J. ; Cheng Y. ; Zhang Q. ; Luo C. ; Li H. Y. ; Wu Y. ; Zhang H. ; Wang X. ; Liu H. ; He X. ; et al Adv. Funct Mater. 2021, 31 (1), 2007158.
doi: 10.1002/adfm.202007158 |
18 |
Gabaudan V. ; Monconduit L. ; Stievano L. ; Berthelot R Front. Energy Res. 2019, 7, 46.
doi: 10.3389/fenrg.2019.00046 |
19 |
Zhang C. ; Zhao H. ; Lei Y Energy Environ. Mater. 2020, 3 (2), 105.
doi: 10.1002/eem2.12059 |
20 |
Wu Y. ; Zhao H. ; Wu Z. ; Yue L. ; Liang J. ; Liu Q. ; Luo Y. ; Gao S. ; Lu S. ; Chen G. ; et al Energy Storage Mater. 2021, 34, 483.
doi: 10.1016/j.ensm.2020.10.015 |
21 |
Jian Z. ; Luo W. ; Ji X J. Am. Chem. Soc. 2015, 137 (36), 11566.
doi: 10.1021/jacs.5b06809 |
22 |
Qin L. ; Xiao N. ; Zheng J. ; Lei Y. ; Zhai D. ; Wu Y Adv. Energy Mater. 2019, 9 (44), 1902618.
doi: 10.1002/aenm.201902618 |
23 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A Science 2004, 306 (5696), 666.
doi: 10.1126/science.1102896 |
24 |
Liu X. T. ; Zhang J. C. ; Chen H. ; Liu Z. F Acta Phys. -Chim. Sin. 2021, 37, 2012047.
doi: 10.3866/PKU.WHXB202012047 |
刘晓婷; 张金灿; 陈恒; 刘忠范. 物理化学学报, 2021, 37, 2012047.
doi: 10.3866/PKU.WHXB202012047 |
|
25 |
Chung D. D. L J. Mater. Sci. 2016, 51 (1), 544.
doi: 10.1007/s10853-015-9284-6 |
26 |
Doughty D. H. ; Butler P. C. ; Akhil A. A. ; Clark N. H. ; Boyes J. D Electrochem. Soc. Interface 2010, 19 (3), 49.
doi: 10.1149/2.f05103if |
27 |
Hong W. ; Zhang Y. ; Yang L. ; Tian Y. ; Ge P. ; Hu J. ; Wei W. ; Zou G. ; Hou H. ; Ji X Nano Energy 2019, 65, 104038.
doi: 10.1016/j.nanoen.2019.104038 |
28 |
Yang W. ; Zhou J. ; Wang S. ; Zhang W. ; Wang Z. ; Lv F. ; Wang K. ; Sun Q. ; Guo S Energy Environ. Sci. 2019, 12 (5), 1605.
doi: 10.1039/c9ee00536f |
29 |
Chou S. L. ; Wang J. Z. ; Choucair M. ; Liu H. K. ; Stride J. A. ; Dou S. X Electrochem. Commun. 2010, 12 (2), 303.
doi: 10.1016/j.elecom.2009.12.024 |
30 |
Zhou X. ; Yin Y. X. ; Wan L. J. ; Guo Y. G Chem. Commun. 2012, 48 (16), 2198.
doi: 10.1039/c2cc17061b |
31 |
Zhang E. ; Jia X. ; Wang B. ; Wang J. ; Yu X. ; Lu B Adv. Sci. 2020, 7 (15), 2000470.
doi: 10.1002/advs.202000470 |
32 |
Wang Y. ; Gao X. ; Li L. ; Wang M. ; Shui J. ; Xu M Nano Energy 2020, 67, 104248.
doi: 10.1016/j.nanoen.2019.104248 |
33 |
Nawar A. M. ; Yahia I. S. ; Al-Kotb M. S J. Mater. Sci.-Mater. Electron. 2020, 31 (15), 12127.
doi: 10.1007/s10854-020-03759-z |
34 |
Jian Z. ; Hwang S. ; Li Z. ; Hernandez A. S. ; Wang X. ; Xing Z. ; Su D. ; Ji X Adv. Funct. Mater. 2017, 27 (26), 1700324.
doi: 10.1002/adfm.201700324 |
35 | Tang Z. Y. ; Xue J. J. ; Liu C. Y. ; Zhuang X. G Acta Phys. -Chim. Sin. 2001, 17 (5), 38. |
唐致远; 薛建军; 刘春燕; 庄新国. 物理化学学报, 2001, 17 (5), 385.
doi: 10.3866/PKU.WHXB20010501 |
|
36 |
Wan J. ; Chen Q. Q. ; Li W. ; Pan L. H. ; Zhao Z. H. ; Yu D. D. ; Tang Z. H. ; He H. Y Electrochim. Acta 2020, 345, 136238.
doi: 10.1016/j.electacta.2020.136238 |
37 |
Chen L. F. ; Hou C. C. ; Zou L. ; Kitta M. ; Xu Q Sci. Bull. 2021, 66 (2), 170.
doi: 10.1016/j.scib.2020.06.022 |
38 |
Chen D. M Chin. Phys. Soc. 2010, 59 (9), 6399.
doi: 10.7498/aps.59.6399 |
39 |
Zhang K. L ; Li W. ; Cai W. L. ; Chen L. F. ; Wang D. ; Chen Y. H. ; Pan H. L. ; Wang L. B. ; Qian Y. T Inorg. Chem. Front. 2019, 6 (4), 955.
doi: 10.1039/c9qi00052f |
[1] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[2] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[3] | Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057-. |
[4] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[5] | Peng PENG,Hongtao LIU,Bin WU,Qingxin TANG,Yunqi LIU. Nitrogen Doped Graphene with a p-Type Field-Effect and Its Fine Modulation [J]. Acta Physico-Chimica Sinica, 2019, 35(11): 1282-1290. |
[6] | Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428. |
[7] | Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery [J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794. |
[8] | Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562. |
[9] | Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549. |
[10] | Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite [J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2035-2041. |
[11] | Guang-Yong LI,Xiao-Han WU,Wei-Na HE,Jian-Hui FANG,Xue-Tong ZHANG. Controlled Assembly of Graphene-Based Aerogels [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2146-2158. |
[12] | Meng-Ting SUN,Bi-Chun HUANG,Jie-Wen MA,Shi-Hui LI,Li-Fu DONG. Morphological Effects of Manganese Dioxide on Catalytic Reactions for Low-Temperature NH3-SCR [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1501-1510. |
[13] | Sheng-Jun ZHAO,Wei ZHANG,Hui-Ning DENG,Wei LIU. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation [J]. Acta Phys. -Chim. Sin., 2016, 32(3): 723-727. |
[14] | JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1383-1390. |
[15] | LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong. Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide [J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1179-1185. |
|