Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2101009.doi: 10.3866/PKU.WHXB202101009
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Yadong Du1, Xiangtong Meng1,3,*(), Zhen Wang1, Xin Zhao1, Jieshan Qiu1,2,*(
)
Received:
2021-01-05
Accepted:
2021-02-18
Published:
2021-02-26
Contact:
Xiangtong Meng,Jieshan Qiu
E-mail:mengxt@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
About author:
Email: qiujs@mail.buct.edu.cn (J.Q.)Supported by:
MSC2000:
Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction[J].Acta Phys. -Chim. Sin., 2022, 38(2): 2101009.
Table 1
Standard redox potentials for ECR products."
Reaction | Eθ/V (vs. SHE) | |
1 | CO2+ 2H+ + 2e- → HCOOH | -0.610 |
2 | CO2 + 2H+ + 2e- → CO + H2O | -0.520 |
3 | CO2 + 4H+ + 4e- → CH2O + H2O | -0.510 |
4 | CO2 + 6H+ + 6e- → CH3OH + H2O | -0.380 |
5 | CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.240 |
6 | 2CO2 + 12H+ + 12e- → C2H4 + 4H2O | -0.349 |
7 | 2CO2 + 12H+ + 12e- → C2H5OH + 3H2O | -0.329 |
8 | 2CO2 + 14H+ + 14e- → C2H6 + 4H2O | -0.270 |
9 | CO2 + e- → CO2·- | -1.900 |
10 | 2H+ + 2e- → H2 | -0.420 |
Table 2
Summary of graphene-based catalysts for ECR."
Catalysts | Electrolyte | Products & FE | Stability | E | Ref. |
DG | 0.1 mol·L-1 KHCO3 | CO (84%) | 10 h (> 70%) | -0.60 V vs. RHE | |
DPC-NH3-950 | 0.5 mol·L-1 NaHCO3 | CO (81%) | 27 h (75%) | -0.90 V vs. RHE | |
GNDs-160 | 0.5 mol·L-1 KHCO3 | HCOO- (86%) | -0.68 V vs. RHE | ||
NG-800 | 0.1 mol·L-1 KHCO3 | CO (85%) | 5 h (80%) | -0.58 V vs. RHE | |
NGQDs | 1 mol·L-1 KOH | C2H4 (31%) | -0.75 V vs. RHE | ||
NGQDs | 1 mol·L-1 KOH | C2H5OH (16%) | -0.78 V vs. RHE | ||
N-graphene | 0.5 mol·L-1 KHCO3 | HCOO- (73%) | 12 h (63–70%) | -0.84 V vs. RHE | |
Ni-N-Gr | 0.1 mol·L-1 KHCO3 | CO (> 90%) | 5 h (> 70%) | -0.70– -0.90 V vs. RHE | |
Ni-NG | 0.5 mol·L-1 KHCO3 | CO (95%) | 20 h (90%) | -0.72 V vs. RHE | |
Ni2+@NG | 0.5 mol·L-1 KHCO3 | CO (92%) | -0.68 V vs. RHE | ||
Ni-N-MEGO | 0.5 mol·L-1 KHCO3 | CO (92.1%) | 21 h (~89%) | -0.70 V vs. RHE | |
Fe/NG-750 | 0.1 mol·L-1 KHCO3 | CO (80%) | 10 h (~70%) | -0.60 V vs. RHE | |
FeN5 | 0.1 mol·L-1 KHCO3 | CO (97%) | 24 h (~97%) | -0.46 V vs. RHE | |
Fe-N-G-p | 0.1 mol·L-1 KHCO3 | CO (94%) | 9 h (> 90%) | -0.58 V vs. RHE | |
Single-atom Snδ+ on N-doped graphene | 0.25 mol·L-1 KHCO3 | HCOO- (74.3%) | 200 h (> 70%) | -1.60 V vs SCE | |
Zn-N-G-800 | 0.5 mol·L-1 KHCO3 | CO (90.8%) | 15 h (> 80%) | -0.50 V vs. RHE | |
Bi-MOF | 0.1 mol·L-1 NaHCO3 | CO (97%) | 4 h (> 80%) | -0.50 V vs. RHE | |
Cu0.5NC | 0.1 mol·L-1 CsHCO3 | CO (74%) | -0.60 V vs. RHE | ||
(Cl, N)-Mn/G | 0.5 mol·L-1 KHCO3 | CO (97%) | -0.60 V vs. RHE | ||
In-SAs/NC | 0.5 mol·L-1 KHCO3 | HCOO- (96%) | -0.65 V vs. RHE | ||
Au-OLA | 0.1 mol·L-1 KHCO3 | CO (75%) | 10 h (64–68%) | -0.70 V vs. RHE | |
AuNP | 0.5 mol·L-1 KHCO3 | CO (92%) | 24 h (67%) | -0.66 V vs. RHE | |
NGQDs-SCAu NPs | 0.5 mol·L-1 KHCO3 | CO (93%) | 24 h (~90%) | -0.25 V vs. RHE | |
R-ZnO/rGO | 0.5 mol·L-1 KHCO3 | CO (94.3%) | 21 h (~80%) | -1.00 V vs. RHE | |
Bi/rGO | 0.1 mol·L-1 KHCO3 | HCOO- (98%) | 15 h (> 90%) | -0.80 V vs. RHE | |
p-NG-Cu-7 | 0.5 mol·L-1 KHCO3 | C2H4 (19%) | 12 h (~60%) | -0.90 V vs. RHE | |
NGQ/Cu-nr | 1 mol·L-1 KOH | C2+ alcohols (52.4%) | 100 h (~52.4%) | -0.90 V vs. RHE | |
PO-5 nm Co/SL-NG | 0.1 mol·L-1 NaHCO3 | CH3OH (71.4%) | 10 h | -0.90 V vs. SCE | |
G-CuxO-2 h | 0.5 mol·L-1 KHCO3 | HCOO- (81%) | 9 h (87.2%) | -0.80 V vs. RHE | |
Cu/VG-Ar | 0.1 mol·L-1 KHCO3 | Total gas and liquid products (60.6%) | -1.20V vs. RHE | ||
In2O3-rGO | 0.1 mol·L-1 KHCO3 | HCOO- (84.6%) | 10 h (> 80%) | -1.20 V vs. RHE | |
Bi2O3-NGQDs | 0.5 mol·L-1 KHCO3 | HCOO- (~100%) | 15 h (> 90%) | -0.90 V vs. RHE | |
NapCo@SNG | 0.1 mol·L-1 KHCO3 | CO (97%) | 8000 s (> 95%) | -0.80 V vs. RHE | |
phen-Cu/G | 0.1 mol·L-1 KHCO3 | CO + HCOO- (~90%) | -0.60 V vs. RHE | ||
CCG/CoPc-A | 0.1 mol·L-1 KHCO3 | CO (77%) | 30 h (75%) | -0.59 V vs. RHE |
Fig 6
(a) An SEM image of graphene foam and Electrocatalytic activity of NGs towards CO2 reduction 52, (b) Electrocatalytic activity of NGQDs and GQDs towards CO2 reduction 53. (a) Adapted with permission from Ref. 52, Copyright 2016 American Chemical Society. (b) Adapted with permission from Ref. 53, Copyright 2016 Nature Publishing group."
Fig 7
(a) Surface immobilization of Ni Ions on N-doped graphene 66, (b) Anchored Fe single atoms on N-doped graphene 68, (c) Hosting atomically dispersed N-coordinated Fe sites on graphene 70. (a) Adapted with permission from Ref. 66, Copyright 2018 John Wiley and Sons. (b) Adapted with permission from Ref. 68, Copyright 2020 American Chemical Society. (c) Adapted with permission from Ref. 70, Copyright 2021 John Wiley and Sons."
Fig 9
Computed local pH and reduced GO coverage effects. (a) Schematic of computational fluid dynamics simulation domain, (b) Plots of CO FE and H2 FE as a function of coverage level, Contour plots of (c) pH and (d) pCO2 under a steady state at different coverage levels of 0, 50%, and 97.5%, respectively 33. (a–d) Adapted with permission from Ref. 33, Copyright 2020 American Chemical Society."
1 |
Singh G. ; Lee J. ; Karakoti A. ; Bahadur R. ; Yi J. ; Zhao D. ; AlBahily K. ; Vinu A Chem. Soc. Rev. 2020, 49, 4360.
doi: 10.1039/D0CS00075B |
2 |
Panda D. ; Kumar E. A. ; Singh S. K Ind. Eng. Chem. Res. 2019, 58, 5301.
doi: 10.1021/acs.iecr.8b03958 |
3 |
Ye L. ; Ying Y. ; Sun D. ; Zhang Z. ; Fei L. ; Wen Z. ; Qiao J. ; Huang H Angew. Chem. Int. Ed. 2019, 59, 3244.
doi: 10.1002/anie.201912751 |
4 |
Yang C. ; Liu S. ; Wang Y. ; Song J. ; Wang G. ; Wang S. ; Zhao Z. J. ; Mu R. ; Gong J Angew. Chem. Int. Ed. 2019, 58, 11242.
doi: 10.1002/anie.201904649 |
5 |
Graciani J. ; Mudiyanselage K. ; Xu F. ; Baber A. E. ; Evans J. ; Senanayake S. D. ; Stacchiola D. J. ; Liu P. ; Hrbek J. ; Sanz J. F. ;et al Science 2014, 345, 546.
doi: 10.1126/science.1253057 |
6 |
Bie C. ; Zhu B. ; Xu F. ; Zhang L. ; Yu J Adv. Mater. 2019, 31, 1902868.
doi: 10.1002/adma.201902868 |
7 |
Ouyang T. ; Huang H. H. ; Wang J. W. ; Zhong D. C. ; Lu T. B Angew. Chem. Int. Ed. 2017, 56, 738.
doi: 10.1002/anie.201610607 |
8 |
Chang X. ; Wang T. ; Zhang P. ; Wei Y. ; Zhao J. ; Gong J Angew. Chem. Int. Ed. 2016, 55, 8840.
doi: 10.1002/anie.201602973 |
9 |
Liu T. ; Ali S. ; Lian Z. ; Li B. ; Su D. S J. Mater. Chem. A 2017, 5, 21596.
doi: 10.1039/C7TA06674K |
10 |
Cui H. ; Guo Y. ; Guo L. ; Wang L. ; Zhou Z. ; Peng Z J. Mater. Chem. A 2018, 6, 18782.
doi: 10.1039/C8TA07430E |
11 |
Hu C. ; Bai S. ; Gao L. ; Liang S. ; Yang J. ; Cheng S. D. ; Mi S. B. ; Qiu J ACS Catal. 2019, 9, 11579.
doi: 10.1021/acscatal.9b03175 |
12 |
Hu C. ; Mu Y. ; Bai S. ; Yang J. ; Gao L. ; Cheng S. D. ; Mi S. B. ; Qiu J Carbon 2019, 153, 609.
doi: 10.1016/j.carbon.2019.07.071 |
13 |
Guo Z. ; Xiao N. ; Li H. ; Wang Y. ; Li C. ; Liu C. ; Xiao J. ; Bai J. ; Zhao S. ; Qiu J J. CO2 Util. 2020, 38, 212.
doi: 10.1016/j.jcou.2020.01.020 |
14 |
Li H. ; Xiao N. ; Wang Y. ; Liu C. ; Zhang S. ; Zhang H. ; Bai J. ; Xiao J. ; Li C. ; Guo Z. ; et al J. Mater. Chem. A 2020, 8, 1779.
doi: 10.1039/C9TA12401B |
15 |
Tan X. ; Yu C. ; Ren Y. ; Cui S. ; Li W. ; Qiu J Energy Environ. Sci. 2021, 14, 765.
doi: 10.1039/D0EE02981E |
16 |
Schuchmann K. ; Müller V Science 2013, 342, 1382.
doi: 10.1126/science.1244758 |
17 |
Zhang E. ; Wang T. ; Yu K. ; Liu J. ; Chen W. ; Li A. ; Rong H. ; Lin R. ; Ji S. ; Zheng X. ; et al J. Am. Chem. Soc 2019, 141, 16569.
doi: 10.1021/jacs.9b08259 |
18 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
19 |
Han N. ; Ding P. ; He L. ; Li Y. ; Li Y Adv. Energy Mater. 2020, 10, 1902338.
doi: 10.1002/aenm.201902338 |
20 |
Weng Z. ; Zhang X. ; Wu Y. ; Huo S. ; Jiang J. ; Liu W. ; He G. ; Liang Y. ; Wang H Angew. Chem. Int. Ed. 2017, 56, 13135.
doi: 10.1002/anie.201707478 |
21 |
Zhu D. D. ; Liu J. L. ; Qiao S. Z Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766 |
22 |
Mou S. ; Wu T. ; Xie J. ; Zhang Y. ; Ji L. ; Huang H. ; Wang T. ; Luo Y. ; Xiong X. ; Tang B. ; et al Adv. Mater. 2019, 31, 1903499.
doi: 10.1002/adma.201903499 |
23 |
Ma T. ; Fan Q. ; Li X. ; Qiu J. ; Wu T. ; Sun Z J. CO2 Util. 2019, 30, 168.
doi: 10.1016/j.jcou.2019.02.001 |
24 |
Wei X. ; Li Y. ; Chen L. ; Shi J Angew. Chem. Int. Ed. 2021, 60, 3148.
doi: 10.1002/anie.202012066 |
25 |
Verma S. ; Lu S. ; Kenis P. J. A Nat. Energy 2019, 4, 466.
doi: 10.1038/s41560-019-0374-6 |
26 |
Nitopi S. ; Bertheussen E. ; Scott S. B. ; Liu X. ; Engstfeld A. K. ; Horch S. ; Seger B. ; Stephens I. E. L. ; Chan K. ; Hahn C. ;et al Chem. Rev. 2019, 119, 7610.
doi: 10.1021/acs.chemrev.8b00705 |
27 |
Handoko A. D. ; Wei F. ; Jenndy; Yeo B. S. ; Seh Z. W Nat. Catal. 2018, 1, 922.
doi: 10.1038/s41929-018-0182-6 |
28 |
Lum Y. ; Cheng T. ; Goddard W. A. ; Ager J. W J. Am. Chem. Soc. 2018, 140, 9337.
doi: 10.1021/jacs.8b03986 |
29 | Gao D. ; Wei P. ; Li H. ; Lin L. ; Wang G. ; Bao X Acta Phys. -Chim. Sin. 2021, 37, 2009021. |
高敦峰; 魏鹏飞; 李合肥; 林龙; 汪国雄; 包信和. 物理化学学报, 2021, 37, 2009021.
doi: 10.3866/PKU.WHXB202009021 |
|
30 |
Resasco J. ; Chen L. D. ; Clark E. ; Tsai C. ; Hahn C. ; Jaramillo T. F. ; Chan K. ; Bell A. T J. Am. Chem. Soc. 2017, 139, 11277.
doi: 10.1021/jacs.7b06765 |
31 |
Dong Q. ; Zhang X. ; He D. ; Lang C. ; Wang D ACS Cent. Sci. 2019, 5, 1461.
doi: 10.1021/acscentsci.9b00519 |
32 |
Zhong Y. ; Xu Y. ; Ma J. ; Wang C. ; Sheng S. ; Cheng C. ; Li M. ; Han L. ; Zhou L. ; Cai Z. ; et al Angew. Chem. Int. Ed. 2020, 59, 19095.
doi: 10.1002/anie.202005522 |
33 |
Nguyen D. L. T. ; Lee C. W. ; Na J. ; Kim M. C. ; Tu N. D. K. ; Lee S. Y. ; Sa Y. J. ; Won D. H. ; Oh H. S. ; Kim H. ;et al ACS Catal. 2020, 10, 3222.
doi: 10.1021/acscatal.9b05096 |
34 |
Dong H. ; Zhang L. ; Li L. ; Deng W. ; Hu C. ; Zhao Z. J. ; Gong J Small 2019, 15, 1900289.
doi: 10.1002/smll.201900289 |
35 |
Luo W. ; Zhang J. ; Li M. ; Züttel A ACS Catal. 2019, 9, 3783.
doi: 10.1021/acscatal.8b05109 |
36 | Zhou Y. ; Han N. ; Li Y Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
37 |
Zhu Q. ; Ma J. ; Kang X. ; Sun X. ; Liu H. ; Hu J. ; Liu Z. ; Han B Angew. Chem. Int. Ed. 2016, 55, 9012.
doi: 10.1002/anie.201601974 |
38 |
Bai X. ; Chen W. ; Zhao C. ; Li S. ; Song Y. ; Ge R. ; Wei W. ; Sun Y Angew. Chem. Int. Ed. 2017, 56, 12219.
doi: 10.1002/anie.201707098 |
39 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
40 |
Lai Q. ; Yang N. ; Yuan G Electrochem. Commun. 2017, 83, 24.
doi: 10.1016/j.elecom.2017.08.015 |
41 |
Zhu Q. ; Sun X. ; Yang D. ; Ma J. ; Kang X. ; Zheng L. ; Zhang J. ; Wu Z. ; Han B Nat. Commun. 2019, 10, 3851.
doi: 10.1038/s41467-019-11599-7 |
42 |
Dinh C. ; Burdyny T. ; Kibria M. G. ; Seifitokaldani A. ; Gabardo C. M. ; García de Arquer F. P. ; Kiani A. ; Edwards J. P. ; De Luna P. ; Bushuyev O. S. ;et al Science 2018, 360, 783.
doi: 10.1126/science.aas9100 |
43 | Meng Y. ; Kuang S. ; Liu H. ; Fan Q. ; Ma X. ; Zhang S Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
44 |
Tan X. ; Yu C. ; Zhao C. ; Huang H. ; Yao X. ; Han X. ; Guo W. ; Cui S. ; Huang H. ; Qiu J ACS Appl. Mater. Interfaces 2019, 11, 9904.
doi: 10.1021/acsami.8b19111 |
45 |
Li Y. ; Sun Q Adv. Energy Mater. 2016, 6, 1600463.
doi: 10.1002/aenm.201600463 |
46 |
Liu X. ; Xiao J. ; Peng H. ; Hong X. ; Chan K. ; Nørskov J. K Nat. Commun. 2017, 8, 15438.
doi: 10.1038/ncomms15438 |
47 |
Wang H. ; Jia J. ; Song P. ; Wang Q. ; Li D. ; Min S. ; Qian C. ; Wang L. ; Li Y. F. ;et al Angew. Chem. Int. Ed. 2017, 56, 7847.
doi: 10.1002/anie.201703720 |
48 |
Ma C. ; Hou P. ; Wang X. ; Wang Z. ; Li W. ; Kang P Appl. Catal. B 2019, 250, 347.
doi: 10.1016/j.apcatb.2019.03.041 |
49 |
Kumar B. ; Asadi M. ; Pisasale D. ; Sinha-Ray S. ; Rosen B. A. ; Haasch R. ; Abiade J. ; Yarin A. L. ; Salehi-Khojin A Nat. Commun. 2013, 4, 2819.
doi: 10.1038/ncomms3819 |
50 |
Han P. ; Yu X. ; Yuan D. ; Kuang M. ; Wang Y. ; Al-Enizi A. M. ; Zheng G J. Colloid Interface Sci. 2019, 534, 332.
doi: 10.1016/j.jcis.2018.09.036 |
51 |
Yang F. ; Ma X. ; Cai W. B. ; Song P. ; Xu W J. Am. Chem. Soc. 2019, 141, 20451.
doi: 10.1021/jacs.9b11123 |
52 |
Wu J. ; Liu M. ; Sharma P. P. ; Yadav R. M. ; Ma L. ; Yang Y. ; Zou X. ; Zhou X. D. ; Vajtai R. ; Yakobson B. I. ;et al Nano Lett. 2016, 16, 466.
doi: 10.1021/acs.nanolett.5b04123 |
53 |
Wu J. ; Ma S. ; Sun J. ; Gold J. I. ; Tiwary C. ; Kim B. ; Zhu L. ; Chopra N. ; Vajtai R. ;et al Nat. Commun. 2016, 7, 13869.
doi: 10.1038/ncomms13869 |
54 |
Chen Z. ; Mou K. ; Yao S. ; Liu L J. Mater. Chem. A 2018, 6, 11236.
doi: 10.1039/C8TA03328E |
55 |
Yao P. ; Qiu Y. ; Zhang T. ; Su P. ; Li X. ; Zhang H ACS Sustainable Chem. Eng. 2019, 7, 5249.
doi: 10.1021/acssuschemeng.8b06160 |
56 |
Wang R. ; Sun X. ; Ould-Chikh S. ; Osadchii D. ; Bai F. ; Kapteijn F. ; Gascon J ACS Appl. Mater. Interfaces 2018, 10, 14751.
doi: 10.1021/acsami.8b02226 |
57 |
Kuang M. ; Guan A. ; Gu Z. ; Han P. ; Qian L. ; Zheng G Nano Res. 2019, 12, 2324.
doi: 10.1007/s12274-019-2396-6 |
58 |
Li C. ; Wang Y. ; Xiao N. ; Li H. ; Ji Y. ; Guo Z. ; Liu C. ; Qiu J Carbon 2019, 151, 46.
doi: 10.1016/j.carbon.2019.05.042 |
59 |
Li H. ; Xiao N. ; Wang Y. ; Li C. ; Ye X. ; Guo Z. ; Pan X. ; Liu C. ; Bai J. ; Xiao J. ; et al J. Mater. Chem. A 2019, 7, 18852.
doi: 10.1039/C9TA05904K |
60 |
Rao C. N. R. ; Sood A. K. ; Voggu R. ; Subrahmanyam K. S J. Phys. Chem. Lett. 2010, 1, 572.
doi: 10.1021/jz9004174 |
61 |
Geim A. K. ; Novoselov K. S Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
62 |
Dong Y. ; Zhang Q. ; Tian Z. ; Li B. ; Yan W. ; Wang S. ; Jiang K. ; Su J. ; Oloman C. W. ; Gyenge E. L. ;et al Adv. Mater. 2020, 32, 2001300.
doi: 10.1002/adma.202001300 |
63 |
Wang H. ; Chen Y. ; Hou X. ; Ma C. ; Tan T Green Chem. 2016, 18, 3250.
doi: 10.1039/C6GC00410E |
64 |
Su P. ; Iwase K. ; Nakanishi S. ; Hashimoto K. ; Kamiya K Small 2016, 12, 6083.
doi: 10.1002/smll.201602158 |
65 |
Jiang K. ; Siahrostami S. ; Zheng T. ; Hu Y. ; Hwang S. ; Stavitski E. ; Peng Y. ; Dynes J. ; Gangisetty M. ; Su D. ; et al Energy Environ. Sci 2018, 11, 893.
doi: 10.1039/C7EE03245E |
66 |
Bi W. ; Li X. ; You R. ; Chen M. ; Yuan R. ; Huang W. ; Wu X. ; Chu W. ; Wu C. ; Xie Y Adv. Mater. 2018, 30, 1706617.
doi: 10.1002/adma.201706617 |
67 |
Cheng Y. ; Zhao S. ; Li H. ; He S. ; Veder J. P. ; Johannessen B. ; Xiao J. ; Lu S. ; Pan J. ; Chisholm M. F. ;et al Appl. Catal. B 2019, 243, 294.
doi: 10.1016/j.apcatb.2018.10.046 |
68 |
Zhang C. ; Yang S. ; Wu J. ; Liu M. ; Yazdi S. ; Ren M. ; Sha J. ; Zhong J. ; Nie K. ; Jalilov A. S. ;et al Adv. Energy Mater. 2018, 8, 1703487.
doi: 10.1002/aenm.201703487 |
69 |
Zhang H. ; Li J. ; Xi S. ; Du Y. ; Hai X. ; Wang J. ; Xu H. ; Wu G. ; Zhang J. ; Lu J. ; et al Angew. Chem. Int. Ed 2019, 58, 14871.
doi: 10.1002/anie.201906079 |
70 |
Pan F. ; Li B. ; Sarnello E. ; Fei Y. ; Feng X. ; Gang Y. ; Xiang X. ; Fang L. ; Li T. ; Hu Y. H. ;et al ACS Catal. 2020, 10, 10803.
doi: 10.1021/acscatal.0c02499 |
71 |
Zu X. ; Li X. ; Liu W. ; Sun Y. ; Xu J. ; Yao T. ; Yan W. ; Gao S. ; Wang C. ; Wei S. ; et al Adv. Mater. 2019, 31, 1808135.
doi: 10.1002/adma.201808135 |
72 |
Chen Z. ; Mou K. ; Yao S. ; Liu L ChemSusChem 2018, 11, 2944.
doi: 10.1002/cssc.201800925 |
73 |
Karapinar D. ; Huan N. T. ; Ranjbar Sahraie N. ; Li J. ; Wakerley D. ; Touati N. ; Zanna S. ; Taverna D. ; Galvão Tizei L.H. ; Zitolo A. ;et al Angew. Chem. Int. Ed. 2019, 58, 15098.
doi: 10.1002/anie.201907994 |
74 |
Zhang B. ; Zhang J. ; Shi J. ; Tan D. ; Liu L. ; Zhang F. ; Lu C. ; Su Z. ; Tan X. ; Cheng X. ; et al Nat. Commun. 2019, 10, 2980.
doi: 10.1038/s41467-019-10854-1 |
75 |
Shang H. ; Wang T. ; Pei J. ; Jiang Z. ; Zhou D. ; Wang Y. ; Li H. ; Dong J. ; Zhuang Z. ; Chen W. ; et al Angew. Chem. Int. Ed 2020, 59, 22465.
doi: 10.1002/anie.202010903 |
76 |
Zhao Y. ; Wang C. ; Liu Y. ; MacFarlane D. R. ; Wallace G. G Adv. Energy Mater. 2018, 8, 1801400.
doi: 10.1002/aenm.201801400 |
77 |
Rogers C. ; Perkins W. S. ; Veber G. ; Williams T. E. ; Cloke R. R. ; Fischer F. R J. Am. Chem. Soc. 2017, 139, 4052.
doi: 10.1021/jacs.6b12217 |
78 |
Fu J. ; Wang Y. ; Liu J. ; Huang K. ; Chen Y. ; Li Y. ; Zhu J. J ACS Energy Lett. 2018, 3, 946.
doi: 10.1021/acsenergylett.8b00261 |
79 |
Duan Y. X. ; Liu K. H. ; Zhang Q. ; Yan J. M. ; Jiang Q Small Methods 2020, 4, 1900846.
doi: 10.1002/smtd.201900846 |
80 |
Li Q. ; Zhu W. ; Fu J. ; Zhang H. ; Wu G. ; Sun S Nano Energy 2016, 24, 1.
doi: 10.1016/j.nanoen.2016.03.024 |
81 |
Chen C. ; Yan X. ; Liu S. ; Wu Y. ; Wan Q. ; Sun X. ; Zhu Q. ; Liu H. ; Ma J. ; Zheng L. ; et al Angew. Chem. Int. Ed 2020, 59, 16459.
doi: 10.1002/anie.202006847 |
82 |
Huang J. ; Guo X. ; Yue G. ; Hu Q. ; Wang L ACS Appl. Mater. Interfaces 2018, 10, 44403.
doi: 10.1021/acsami.8b14822 |
83 |
Ni W. ; Li C. ; Zang X. ; Xu M. ; Huo S. ; Liu M. ; Yang Z. ; Yan Y. M Appl. Catal. B 2019, 259, 118044.
doi: 10.1016/j.apcatb.2019.118044 |
84 |
Ma Z. ; Tsounis C. ; Kumar P. V. ; Han Z. ; Wong R. J. ; Toe C. Y. ; Zhou S. ; Bedford N. M. ; Thomsen L. ; Ng Y. H. ;et al Adv. Funct. Mater. 2020, 30, 1910118.
doi: 10.1002/adfm.201910118 |
85 |
Zhang Z. ; Ahmad F. ; Zhao W. ; Yan W. ; Zhang W. ; Huang H. ; Ma C. ; Zeng J Nano Lett. 2019, 19, 4029.
doi: 10.1021/acs.nanolett.9b01393 |
86 |
Chen Z. ; Mou K. ; Wang X. ; Liu L Angew. Chem. Int. Ed. 2018, 57, 12790.
doi: 10.1002/anie.201807643 |
87 |
Wang J. ; Huang X. ; Xi S. ; Lee J.M. ; Wang C. ; Du Y. ; Wang X Angew. Chem. Int. Ed. 2019, 58, 13532.
doi: 10.1002/anie.201906475 |
88 |
Wang J. ; Gan L. ; Zhang Q. ; Reddu V. ; Peng Y. ; Liu Z. ; Xia X. ; Wang C. ; Wang X Adv. Energy Mater. 2019, 9, 1803151.
doi: 10.1002/aenm.201803151 |
89 |
Choi J. ; Wagner P. ; Gambhir S. ; Jalili R. ; MacFarlane D. R. ; Wallace G. G. ; Officer D. L ACS Energy Lett. 2019, 4, 666.
doi: 10.1021/acsenergylett.8b02355 |
90 |
Li L. ; Huang Y. ; Li Y EnergyChem 2020, 2, 100024.
doi: 10.1016/j.enchem.2019.100024 |
91 |
Tang C. ; Zhang Q Adv. Mater. 2017, 29, 1604103.
doi: 10.1002/adma.201604103 |
92 |
Yuan W. ; Zhou Y. ; Li Y. ; Li C. ; Peng H. ; Zhang J. ; Liu Z. ; Dai L. ; Shi G Sci. Rep. 2013, 3, 2248.
doi: 10.1038/srep02248 |
93 |
Banhart F. ; Kotakoski J. ; Krasheninnikov A. V ACS Nano 2011, 5, 26.
doi: 10.1021/nn102598m |
94 |
Lu J. ; Bao Y. ; Su C. L. ; Loh K. P ACS Nano 2013, 7, 8350.
doi: 10.1021/nn4051248 |
95 |
Zhu Y. ; Lv K. ; Wang X. ; Yang H. ; Xiao G. ; Zhu Y J. Mater. Chem. A 2019, 7, 14895.
doi: 10.1039/C9TA02353D |
96 |
Meng X. ; Yu C. ; Song X. ; Iocozzia J. ; Hong J. ; Rager M. ; Jin H. ; Wang S. ; Huang L. ; Qiu J. ; et al Angew. Chem. Int. Ed 2018, 57, 4682.
doi: 10.1002/anie.201801337 |
97 |
Zou X. ; Liu M. ; Wu J. ; Ajayan P. M. ; Li J. ; Liu B. ; Yakobson B. I ACS Catal. 2017, 7, 6245.
doi: 10.1021/acscatal.7b01839 |
98 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94]85172-7 |
99 |
Zhang S. ; Kang P. ; Meyer T. J J. Am. Chem. Soc. 2014, 136, 1734.
doi: 10.1021/ja4113885 |
100 |
Sreekanth N. ; Nazrulla M.A. ; Vineesh T. V. ; Sailaja K. ; Phani K. L Chem. Commun. 2015, 51, 16061.
doi: 10.1039/c5cc06051f |
101 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
102 |
Zhao D. ; Zhuang Z. ; Cao X. ; Zhang C. ; Peng Q. ; Chen C. ; Li Y Chem. Soc. Rev. 2020, 49, 2215.
doi: 10.1039/C9CS00869A |
103 | Cui X. ; Shi F Acta Phys. -Chim. Sin. 2021, 37, 2006080. |
崔新江; 石峰. 物理化学学报, 2021, 37, 2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
104 |
Huang P. ; Cheng M. ; Zhang H. ; Zuo M. ; Xiao C. ; Xie Y Nano Energy 2019, 61, 428.
doi: 10.1016/j.nanoen.2019.05.003 |
105 |
Ning H. ; Wang X. ; Wang W. ; Mao Q. ; Yang Z. ; Zhao Q. ; Song Y. ; Wu M Carbon 2019, 146, 218.
doi: 10.1016/j.carbon.2019.02.010 |
106 |
Mistry H. ; Reske R. ; Zeng Z. ; Zhao Z. J. ; Greeley J. ; Strasser P. ; Cuenya B. R J. Am. Chem. Soc. 2014, 136, 16473.
doi: 10.1021/ja508879j |
107 |
Zhu W. ; Michalsky R. ; Metin Ö. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
108 |
Daiyan R. ; Lovell E. C. ; Huang B. ; Zubair M. ; Leverett J. ; Zhang Q. ; Lim S. ; Horlyck J. ; Tang J. ; Lu X. ;et al Adv. Energy Mater. 2020, 10, 2001381.
doi: 10.1002/aenm.202001381 |
109 |
Feng Y. ; Cheng C. Q. ; Zou C. Q. ; Zheng X. L. ; Mao J. ; Liu H. ; Li Z. ; Dong C. K. ; Du X. W Angew. Chem. Int. Ed. 2020, 59, 19297.
doi: 10.1002/anie.202008852 |
110 |
Zheng T. ; Jiang K. ; Wang H Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
111 |
Yi J. D. ; Xie R. ; Xie Z. L. ; Chai G. L. ; Liu T. F. ; Chen R. P. ; Huang Y. B. ; Cao R Angew. Chem. Int. Ed. 2020, 59, 23641.
doi: 10.1002/anie.202010601 |
112 |
Yang F. ; Mao X. ; Ma M. ; Jiang C. ; Zhang P. ; Wang J. ; Deng Q. ; Zeng Z. ; Deng S Carbon 2020, 168, 528.
doi: 10.1016/j.carbon.2020.06.088 |
113 |
Azenha C. ; Mateos-Pedrero C. ; Alvarez-Guerra M. ; Irabien A. ; Mendes A Electrochim. Acta 2020, 363, 137207.
doi: 10.1016/j.electacta.2020.137207 |
114 |
Wang Y. ; Wang Z. ; Dinh C. T. ; Li J. ; Ozden A. ; Golam Kibria M. ; Seifitokaldani A. ; Tan C. S. ; Gabardo C. M. ; Luo M. ;et al Nat. Catal. 2020, 3, 98.
doi: 10.1038/s41929-019-0397-1 |
[1] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[2] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[3] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[4] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[5] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[6] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[7] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[8] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[9] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[10] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[11] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[12] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[13] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[14] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[15] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
|