Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2103034.doi: 10.3866/PKU.WHXB202103034
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang()
Received:
2021-03-16
Accepted:
2021-04-06
Published:
2021-04-12
Contact:
Yingying Zhang
E-mail:yingyingzhang@tsinghua.edu.cn
About author:
Yingying Zhang, Email: yingyingzhang@tsinghua.edu.cn; Tel.: +86-10-62798503Supported by:
MSC2000:
Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective[J].Acta Phys. -Chim. Sin., 2022, 38(9): 2103034.
Fig 1
Spinning process of silkworms and the hierarchical structure of natural silk fibers. (a) Structure of a silk gland in a silkworm. It can be divided into three parts according to the evolution of silk protein during spinning: anterior gland, middle gland, and posterior gland 21. (b) Hierarchical micro/nanostructure of natural silk fiber. (c) Hydrophobic repeat segments and hydrophilic non-repeat segments are alternately arranged in a heavy chain, and sealed with N-terminal segments and C-terminal segments. (d, e) Structure of β-crystallites (d) and the antiparallel structure of β-sheet (e) 19. (a) Adapted with permission from Ref. 21, Copyright 2017, Nature Publishing Group. (b–e) Adapted with permission from Ref. 19, Copyright 2019, American Chemical Society."
Table 1
Comparison of mechanical and electrical properties between silk-based fibers and other polymer-based conductive fibers."
Materials | Stress/MPa | Modulus/GPa | Toughness/(MJ?m?3) | Electrical conductivity/(S?m?1) | Ref. |
Ag/PEDOT: PSS a/silk yarns | 750 | NA | NA | 320 | |
MWCNT b/silk fiber | 633 | 14.8 | 54 | 20 | |
CNTs/silk fiber | 169.3 ± 10.4 | NA | 5.7 ± 0.7 | 638 | |
CNT/spider silk fiber | 600 | 7 | 290 | 12–15 | |
MWCNT/rGOs c/cellulose fiber | 5.4 | NA | NA | 1195 | |
CNT/cellulose fiber | 240 | 19 | NA | 152.9 | |
PEDOT: PSS/PU d fiber | 52 | 0.01 | 66 | 70 | |
Mxene/PU fiber | 37.2 | 0.25 | 11.95 | ||
PEDOT: PSS fiber | 86 | 2.4 | 8.3 | 800 | |
rGO/PPy e fiber | 85 | 4 | 4.2 | 1800 |
Fig 2
Silk-based fibers and textiles for sensing devices. (a) Graphene/silk fiber prepared by dry-Meyer-rod-coating for stress sensor 80. (b) Silk-CNT hybrid fibers prepared by wetting spinning and post drawing for pressure and electric response humidity sensing 72. (c) Carbonized silk textile for wearable strain sensor 65. (d) Multifunctional and wearable sweat analysis patch based on silk fabric-derived N doped carbon textile 87. (e) In-situ grown carbon nanotubes on carbonized silk textile for wearable airflow sensor 4. (f) Carbonized silk nanofiber membrane for detecting spatial distribution of pressure 91. (a) Adapted with permission from Ref. 80, Copyright 2016, American Chemical Society. (b) Adapted with permission from Ref. 72, Copyright 2020, Wiley-VCH. (c) Adapted with permission from Ref. 65, Copyright 2016, Wiley-VCH. (d) Adapted with permission from Ref. 87, Copyright 2019, AAAS. (e) Adapted with permission from Ref. 4, Copyright 2020, Wiley-VCH. (f) Adapted with permission from Ref. 91, Copyright 2017, American Chemical Society."
Fig 3
Silk-based fibers and textiles for actuators and optical devices. (a, b) Schematic illustration of the manufacturing process of the silk-based microactuator (a) and photographs of smart textile woven from tensile silk yarn (b), which had different weaving denseness 93. (c) Images of silk yarns weaved into air-conditioning textiles in wet/dry state 95. (d) Genes Structure of Fluorescence silk and wedding dress produced by the colored fluorescent silks 99. (e) Photographs of colored silk cocoons and fibers under room light and UV irradiation 101. (f) Schematic of direct-write assembly of silk waveguides in both straight and curvy patterns, and the setup used to image and analyze the transverse face of the silk waveguides. Optical images of printed silk waveguide and straight and wavy silk waveguides guiding light from a laser source 110. (a, b) Adapted with permission from Ref. 93, Copyright 2019, Wiley-VCH. (c) Adapted with permission from Ref. 95, Copyright 2020, Springer Nature. (d) Adapted with permission from Ref. 99, Copyright 2013, Wiley-VCH. (e) Adapted with permission from Ref. 101, Copyright 2011, Wiley-VCH. (f) Adapted with permission from Ref. 110, Copyright 2009, Wiley-VCH."
Fig 4
Silk-based materials used as energy storage devices. (a) Preparation of flexible and conductive hollow graphene fibers templated by silk fiber and the fabrication of the all-solid supercapacitor 126. (b) PEDOT conductive polymer coated on the Au@silk fiber for fiber-shaped microsupercapacitors 127. (c) Schematic of fabrication of graphitic N-doped porous carbon nanosheets derived from silk 133. (d) Silk-derived defect-rich and N-doped nanocarbon electrocatalyst for flexible and rechargeable Zn-Air Batteries 66. (e) Isolated metal single-site catalysts embedded in N-doped carbon nanosheets derived from silk fiber for catalyzing the oxidation of benzene to phenol with hydrogen peroxide at room temperature 134. (a) Adapted with permission from Ref. 126, Copyright 2017, the Royal Society of Chemistry. (b) Adapted with permission from Ref. 127, Copyright 2016, American Chemical Society. (c) Adapted with permission from Ref. 133, Copyright 2018, the Royal Society of Chemistry. (d) Adapted with permission from Ref. 66, Copyright 2019, American Chemical Society. (e) Adapted with permission from Ref. 134, Copyright 2018, Nature Publishing Group."
Fig 5
Application of silk in other flexible and wearable fields. (a) Colorless silk/CuS hybrid fabric with spontaneous heating property under sunlight 143. (b) Silk fibers with aligned lamellar pores for thermal stealth textile 142. (c) Silk-sheathed CNT (CNT@Silk) wire for textile electronics 145. (d) CNTs ink mediated by sericin for printed electronics 146. (e) Silicon electronics on silk as a path to bioresorbable, implantable devices 148. (f) Self-healable multifunctional electronic tattoos by incorporating graphene with SF/Ca2+ films for multifunctional sensors 152. (a) Adapted with permission from Ref. 143, Copyright 2020, American Chemical Society. (b) Adapted with permission from Ref. 142, Copyright 2018, Wiley-VCH. (c) Adapted with permission from Ref. 145, Copyright 2018, American Chemical Society. (d) Adapted with permission from Ref. 146, Copyright 2020, Wiley-VCH. (e) Adapted with permission from Ref. 148, Copyright 2009, American Institute of Physics. (f) Adapted with permission from Ref. 152, Copyright 2019, Wiley-VCH."
1 |
Sun, H.; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H. Nat. Rev. Mater. 2017, 2, 17023.
doi: 10.1038/natrevmats.2017.23 |
2 |
Weng, W.; Yang, J.; Zhang, Y.; Li, Y.; Yang, S.; Zhu, L.; Zhu, M. Adv. Mater. 2020, 32, 1902301.
doi: 10.1002/adma.201902301 |
3 |
Lee, J.; Zambrano, B. L.; Woo, J.; Yoon, K.; Lee, T. Adv. Mater. 2020, 32, 1902532.
doi: 10.1002/adma.201902532 |
4 |
Wang, H.; Li, S.; Wang, Y.; Wang, H.; Shen, X.; Zhang, M.; Lu, H.; He, M.; Zhang, Y. Adv. Mater. 2020, 32, 1908214.
doi: 10.1002/adma.201908214 |
5 |
Zhang, M.; Zhao, M.; Jian, M.; Wang, C.; Yu, A.; Yin, Z.; Liang, X.; Wang, H.; Xia, K.; Liang, X.; et al. Matter 2019, 1, 168.
doi: 10.1016/j.matt.2019.02.003 |
6 |
Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J.; Oh, Y. J.; Oviedo, J. P.; Bykova, J.; et al. Science 2017, 357, 773.
doi: 10.1126/science.aam8771 |
7 |
Zhang, M.; Wang, Y.; Jian, M.; Wang, C.; Liang, X.; Niu, J.; Zhang, Y. Adv. Sci. 2020, 7, 1903048.
doi: 10.1002/advs.201903048 |
8 |
Wu, Y.; Mechael, S. S.; Lerma, C.; Carmichael, R. S.; Carmichael, T. B. Matter 2020, 2, 882.
doi: 10.1016/j.matt.2020.01.017 |
9 |
Hardy, D. A.; Moneta, A.; Sakalyte, V.; Connolly, L.; Shahidi, A.; Hughes-Riley, T. Fibers 2018, 6, 35.
doi: 10.3390/fib6020035 |
10 |
Zhang, Z.; Cui, L.; Shi, X.; Tian, X.; Wang, D.; Gu, C.; Chen, E.; Cheng, X.; Xu, Y.; Hu, Y.; et al. Adv. Mater. 2018, 30, 1800323.
doi: 10.1002/adma.201800323 |
11 |
Zhang, Z.; Guo, K.; Li, Y.; Li, X.; Guan, G.; Li, H.; Luo, Y.; Zhao, F.; Zhang, Q.; Wei, B.; et al. Nat. Photonic. 2015, 9, 233.
doi: 10.1038/nphoton.2015.37 |
12 |
Shi, X.; Zuo, Y.; Zhai, P.; Shen, J.; Yang, Y.; Gao, Z.; Liao, M.; Wu, J.; Wang, J.; Xu, X.; et al. Nature 2021, 591, 240.
doi: 10.1038/s41586-021-03295-8 |
13 |
Levitt, A.; Hegh, D.; Phillips, P.; Uzun, S.; Anayee, M.; Razal, J. M.; Gogotsi, Y.; Dion, G. Mater. Today. 2020, 34, 17.
doi: 10.1016/j.mattod.2020.02.005 |
14 |
Yu, X.; Pan, J.; Zhang, J.; Sun, H.; He, S.; Qiu, L.; Lou, H.; Sun, X.; Peng, H. J. Mater. Chem. A. 2017, 5, 6032.
doi: 10.1039/C7TA00248C |
15 |
Wen, Z.; Yeh, M.-H.; Guo, H.; Wang, J.; Zi, Y.; Xu, W.; Deng, J.; Zhu, L.; Wang, X.; Hu, C.; et al. Sci. Adv. 2016, 2, e1600097.
doi: 10.1126/sciadv.1600097 |
16 |
Fu, Y.; Cai, X.; Wu, H.; Lv, Z.; Hou, S.; Peng, M.; Yu, X.; Zou, D. Adv. Mater. 2012, 24, 5713.
doi: 10.1002/adma.201202930 |
17 |
Yang, C.; Jiang, Q.; Li, W.; He, H.; Yang, L.; Lu, Z.; Huang, H. Chem. Mater. 2019, 31, 9277.
doi: 10.1021/acs.chemmater.9b02115 |
18 |
Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Chem 2017, 3, 348.
doi: 10.1016/j.chempr.2017.05.004 |
19 |
Wang, C.; Xia, K.; Zhang, Y.; Kaplan, D. L. Acc. Chem. Res. 2019, 52, 2916.
doi: 10.1021/acs.accounts.9b00333 |
20 |
Liu, Y.; Ren, J.; Ling, S. Compos. Commun. 2019, 13, 85.
doi: 10.1016/j.coco.2019.03.004 |
21 |
Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D. L.; Buehler, M. J. Nat. Commun. 2017, 8, 1387.
doi: 10.1038/s41467-017-00613-5 |
22 |
Terry, A. E.; Knight, D. P.; Porter, D.; Vollrath, F. Biomacromolecules 2004, 5, 768.
doi: 10.1021/bm034381v |
23 |
Hu, L.; Han, Y.; Ling, S.; Huang, Y.; Yao, J.; Shao, Z.; Chen, X. ACS Biomater. Sci. Eng. 2020, 6, 1874.
doi: 10.1021/acsbiomaterials.9b01586 |
24 |
Asakura, T.; Umemura, K.; Nakazawa, Y.; Hirose, H.; Higham, J.; Knight, D. Biomacromolecules 2007, 8, 175.
doi: 10.1021/bm060874z |
25 |
Eisoldt, L.; Smith, A.; Scheibel, T. Mater. Today. 2011, 14, 80.
doi: 10.1016/S1369-7021(11)70057-8 |
26 |
Vollrath, F.; Knight, D. P. Nature 2001, 410, 541.
doi: 10.1038/35069000 |
27 |
Willcox, P. J.; Gido, S. P.; Muller, W.; Kaplan, D. L. Macromolecules 1996, 29, 5106.
doi: 10.1021/ma960588n |
28 |
Volkov, V.; Ferreira, A. V.; Cavaco-Paulo, A. Macromol. Mater. Eng. 2015, 300, 1199.
doi: 10.1002/mame.201500179 |
29 |
Rising, A.; Johansson, J. Nat. Chem. Biol. 2015, 11, 309.
doi: 10.1038/nchembio.1789 |
30 |
Nguyen, A. T.; Huang, Q.-L.; Yang, Z.; Lin, N.; Xu, G.; Liu, X. Y. Small 2015, 11, 1039.
doi: 10.1002/smll.201402985 |
31 |
Wang, Q.; Ling, S.; Yao, Q.; Li, Q.; Hu, D.; Dai, Q.; Weitz, D. A.; Kaplan, D. L.; Buehler, M. J.; Zhang, Y. ACS Mater. Lett. 2020, 2, 153.
doi: 10.1021/acsmaterialslett.9b00461 |
32 |
Guo, C.; Li, C.; Vu, H. V.; Hanna, P.; Lechtig, A.; Qiu, Y.; Mu, X.; Ling, S.; Nazarian, A.; Lin, S. J.; et al. Nat. Mater. 2020, 19, 102.
doi: 10.1038/s41563-019-0560-8 |
33 |
Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X.; Lovett, M. L.; Kaplan, D. L. Nat. Protoc. 2011, 6, 1612.
doi: 10.1038/nprot.2011.379 |
34 |
Wang, X.; Wenk, E.; Matsumoto, A.; Meinel, L.; Li, C.; Kaplan, D. L. J. Controlled Release 2007, 117, 360.
doi: 10.1016/j.jconrel.2006.11.021 |
35 |
Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D. L. Biomaterials 2010, 31, 1025.
doi: 10.1016/j.biomaterials.2009.11.002 |
36 |
Cao, Z.; Chen, X.; Yao, J.; Huang, L.; Shao, Z. Soft Matter 2007, 3, 910.
doi: 10.1039/B703139D |
37 |
Breslauer, D. N.; Muller, S. J.; Lee, L. P. Biomacromolecules 2010, 11, 643.
doi: 10.1021/bm901209u |
38 |
Zhou, G.; Shao, Z.; Knight, D. P.; Yan, J.; Chen, X. Adv. Mater. 2009, 21, 366.
doi: 10.1002/adma.200800582 |
39 | Shao, Z. Silkworm Fiber, Spider Silk and Their Fibroin Beijing: Chemical Industry Press, 2015, 220-289. |
邵正中 蚕丝、蜘蛛丝及其丝蛋白, 北京: 化学工业出版社社, 2015, 220-289. | |
40 |
Yang, W.; Lv, L.; Li, X.; Han, X.; Li, M.; Li, C. ACS Nano 2020, 14, 10600.
doi: 10.1021/acsnano.0c04686 |
41 |
Wang, Z.; Yang, H.; Li, Y.; Zheng, X. ACS Appl. Mater. Interfaces. 2020, 12, 15726.
doi: 10.1021/acsami.0c01330 |
42 |
Ling, S.; Kaplan, D. L.; Buehler, M. J. Nat. Rev. Mater. 2018, 3, 18016.
doi: 10.1038/natrevmats.2018.16 |
43 |
Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D. L.; Buehler, M. J.; Ling, S. Chem. Rev. 2019, 119, 12279.
doi: 10.1021/acs.chemrev.9b00416 |
44 |
Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L. Chem. Soc. Rev. 2018, 47, 6486.
doi: 10.1039/c8cs00187a |
45 |
Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Nat. Rev. Mater. 2018, 3, 11.
doi: 10.1038/natrevmats2018.8 |
46 |
Mortimer, B.; Holland, C.; Vollrath, F. Biomacromolecules 2013, 14, 3653.
doi: 10.1021/bm401013k |
47 |
Shao, Z. Z.; Vollrath, F. Nature 2002, 418, 741.
doi: 10.1038/418741a |
48 |
Wang, J.-T.; Li, L.-L.; Zhang, M.-Y.; Liu, S.-L.; Jiang, L.-H.; Shen, Q. Mater. Sci. Eng. C. 2014, 34, 417.
doi: 10.1016/j.msec.2013.09.041 |
49 |
Wang, Q.; Wang, C.; Zhang, M.; Jian, M.; Zhang, Y. Nano Lett. 2016, 16, 6695.
doi: 10.1021/acs.nanolett.6b03597 |
50 |
Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J. F.; Duguay, F.; Chretien, N.; Welsh, E. A.; Soares, J. W.; Karatzas, C. N. Science 2002, 295, 472.
doi: 10.1126/science.1065780 |
51 |
Fang, G.; Zheng, Z.; Yao, J.; Chen, M.; Tang, Y.; Zhong, J.; Qi, Z.; Li, Z.; Shao, Z.; Chen, X. J. Mater. Chem. B. 2015, 3, 3940.
doi: 10.1039/c5tb00448a |
52 |
Qiu, W.; Patil, A.; Hu, F.; Liu, X. Y. Small 2019, 15, 1903948.
doi: 10.1002/smll.201903948 |
53 |
Soong, H. K.; Kenyon, K. R. Ophthalmology. 1984, 91, 479.
doi: 10.1016/S0161-6420(84)34273-7 |
54 |
Catherine, P. Eur. J. Dermatol. 2013, 23, 767.
doi: 10.1684/ejd.2013.2186 |
55 |
Jiao, Z.; Song, Y.; Jin, Y.; Zhang, C.; Peng, D.; Chen, Z.; Chang, P.; Kundu, S. C.; Wang, G.; Wang, Z.; et al. Macromol. Biosci. 2017, 17, 1700229.
doi: 10.1002/mabi.201700229 |
56 |
Kunz, R. I.; Brancalhão, R. M. C.; Ribeiro, L. D. F. C.; Natali, M. R. M. Biomed. Res. Int. 2016, 2016, 8175701.
doi: 10.1155/2016/8175701 |
57 |
Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D. L. Biomaterials 2005, 26, 147.
doi: 10.1016/j.biomaterials.2004.02.047 |
58 |
Patil, A. C.; Xiong, Z.; Thakor, N. V. Small Methods 2020, 4, 2000274.
doi: 10.1002/smtd.202000274 |
59 |
Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. Adv. Healthcare Mater. 2019, 8, 1800465.
doi: 10.1002/adhm.201800465 |
60 |
Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S.; et al. Science 2012, 337, 1640.
doi: 10.1126/science.1226325 |
61 |
Hu, F.; Lin, N.; Liu, X. Y. iScience 2020, 23, 101035.
doi: 10.1016/j.isci.2020.101035 |
62 |
Maiti, S.; Karan, S. K.; Kim, J. K.; Khatua, B. B. Adv. Energy Mater. 2019, 9, 1803027.
doi: 10.1002/aenm.201803027 |
63 |
Niu, Q.; Huang, L.; Lv, S.; Shao, H.; Fan, S.; Zhang, Y. Nano Energy 2020, 74, 104837.
doi: 10.1016/j.nanoen.2020.104837 |
64 |
Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K.-Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H.-J. Nat. Commun. 2015, 6, 7145.
doi: 10.1038/ncomms8145 |
65 |
Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Adv. Mater. 2016, 28, 6640.
doi: 10.1002/adma.201601572 |
66 |
Wang, C.; Chen, W.; Xia, K.; Xie, N.; Wang, H.; Zhang, Y. Small 2019, 15, 1804966.
doi: 10.1002/smll.201804966 |
67 |
Wang, C.; Xie, N.-H.; Zhang, Y.; Huang, Z.; Xia, K.; Wang, H.; Guo, S.; Xu, B.-Q.; Zhang, Y. Chem. Mater. 2019, 31, 1023.
doi: 10.1021/acs.chemmater.8b04572 |
68 |
Qiao, M.; Wang, H.; Lu, H.; Li, S.; Yan, J.; Qu, L.; Zhang, Y.; Jiang, L.; Lu, Y. Sci. China Mater. 2020, 63, 1300.
doi: 10.1007/s40843-020-1351-3 |
69 |
Jian, M.; Zhang, Y.; Liu, Z. Chin. J. Polym. Sci. 2020, 38, 459.
doi: 10.1007/s10118-020-2379-9 |
70 |
Hwang, B.; Lund, A.; Tian, Y.; Darabi, S.; Müller, C. ACS Appl. Mater. Interfaces. 2020, 12, 27537.
doi: 10.1021/acsami.0c04316 |
71 |
Ye, C.; Ren, J.; Wang, Y.; Zhang, W.; Qian, C.; Han, J.; Zhang, C.; Jin, K.; Buehler, M. J.; Kaplan, D. L.; et al. Matter 2019, 1, 1411.
doi: 10.1016/j.matt.2019.07.016 |
72 |
Ma, L.; Liu, Q.; Wu, R.; Meng, Z.; Patil, A.; Yu, R.; Yang, Y.; Zhu, S.; Fan, X.; Hou, C.; et al. Small 2020, 16, e2000203.
doi: 10.1002/smll.202000203 |
73 |
Steven, E.; Saleh, W. R.; Lebedev, V.; Acquah, S. F. A.; Laukhin, V.; Alamo, R. G.; Brooks, J. S. Nat. Commun. 2013, 4, 2435.
doi: 10.1038/ncomms3435 |
74 |
Liu, Y.; Wang, Y.; Nie, Y.; Wang, C.; Ji, X.; Zhou, L.; Pan, F.; Zhang, S. ACS Sustainable Chem. Eng. 2019, 7, 20013.
doi: 10.1021/acssuschemeng.9b05489 |
75 |
Cho, S.-Y.; Yu, H.; Choi, J.; Kang, H.; Park, S.; Jang, J.-S.; Hong, H.-J.; Kim, I.-D.; Lee, S.-K.; Jeong, H. S.; et al. ACS Nano 2019, 13, 9332.
doi: 10.1021/acsnano.9b03971 |
76 |
Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E.; et al. Adv. Funct. Mater. 2015, 25, 3114.
doi: 10.1002/adfm.201500628 |
77 |
Levitt, A.; Seyedin, S.; Zhang, J.; Wang, X.; Razal, J. M.; Dion, G.; Gogotsi, Y. Small 2020, 16, 2002158.
doi: 10.1002/smll.202002158 |
78 |
Jalili, R.; Razal, J. M.; Innis, P. C.; Wallace, G. G. Adv. Funct. Mater. 2011, 21, 3363.
doi: 10.1002/adfm.201100785 |
79 |
Schirmer, K. S. U.; Esrafilzadeh, D.; Thompson, B. C.; Quigley, A. F.; Kapsa, R. M. I.; Wallace, G. G. J. Mater. Chem. B. 2016, 4, 1142.
doi: 10.1039/C5TB02130H |
80 |
Zhang, M.; Wang, C.; Wang, Q.; Jian, M.; Zhang, Y. ACS Appl. Mater. Interfaces. 2016, 8, 20894.
doi: 10.1021/acsami.6b06984 |
81 |
Wu, R.; Ma, L.; Hou, C.; Meng, Z.; Guo, W.; Yu, W.; Yu, R.; Hu, F.; Liu, X. Y. Small 2019, 15, 1901558.
doi: 10.1002/smll.201901558 |
82 |
Lu, Z.; Mao, C.; Zhang, H. J. Mater. Chem. C. 2015, 3, 4265.
doi: 10.1039/C5TC00917K |
83 |
Ling, S.; Wang, Q.; Zhang, D.; Zhang, Y.; Mu, X.; Kaplan, D. L.; Buehler, M. J. Adv. Funct. Mater. 2018, 28, 1705291.
doi: 10.1002/adfm.201705291 |
84 |
Hwang, B.; Lund, A.; Tian, Y.; Darabi, S.; Muller, C. ACS Appl. Mater. Interfaces. 2020, 12, 27537.
doi: 10.1021/acsami.0c04316 |
85 |
Li, B. T.; Xiao, G.; Liu, F.; Qiao, Y.; Li, C. M.; Lu, Z. S. J. Mater. Chem. C. 2018, 6, 4549.
doi: 10.1039/c8tc00238j |
86 |
Wang, C.; Xia, K.; Jian, M.; Wang, H.; Zhang, M.; Zhang, Y. J. Mater. Chem. C. 2017, 5, 7604.
doi: 10.1039/C7TC01962A |
87 |
He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y. Sci. Adv. 2019, 5, eaax0649.
doi: 10.1126/sciadv.aax0649 |
88 |
Lu, W.; Yu, P.; Jian, M.; Wang, H.; Wang, H.; Liang, X.; Zhang, Y. ACS Appl. Mater. Interfaces. 2020, 12, 11825.
doi: 10.1021/acsami.9b21068 |
89 |
Lu, W.; Jian, M.; Wang, Q.; Xia, K.; Zhang, M.; Wang, H.; He, W.; Lu, H.; Zhang, Y. Nanoscale. 2019, 11, 11856.
doi: 10.1039/C9NR01791G |
90 |
Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Adv. Funct. Mater. 2017, 27, 1605657.
doi: 10.1002/adfm.201605657 |
91 |
Wang, C.; Xia, K.; Zhang, M.; Jian, M.; Zhang, Y. ACS Appl. Mater. Interfaces. 2017, 9, 39484.
doi: 10.1021/acsami.7b13356 |
92 |
Gotti, C.; Sensini, A.; Zucchelli, A.; Carloni, R.; Focarete, M. L. Appl. Mater. Today. 2020, 20, 100772.
doi: 10.1016/j.apmt.2020.100772 |
93 |
Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; Jung de Andrade, M.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; et al. Adv. Funct. Mater. 2019, 29, 1808241.
doi: 10.1002/adfm.201808241 |
94 |
Lin, S.; Wang, Z.; Chen, X.; Ren, J.; Ling, S. Adv. Sci. 2020, 7, 1902743.
doi: 10.1002/advs.201902743 |
95 |
Yin, Z.; Shi, S.; Liang, X.; Zhang, M.; Zheng, Q.; Zhang, Y. Adv. Fiber Mater. 2019, 1, 197.
doi: 10.1007/s42765-019-00021-y |
96 |
Krasnov, I.; Krekiehn, N. R.; Krywka, C.; Jung, U.; Zillohu, A. U.; Strunskus, T.; Elbahri, M.; Magnussen, O. M.; Müller, M. Appl. Phys. Lett. 2015, 106, 093702.
doi: 10.1063/1.4913912 |
97 |
Shimanovich, U.; Pinotsi, D.; Shimanovich, K.; Yu, N.; Bolisetty, S.; Adamcik, J.; Mezzenga, R.; Charmet, J.; Vollrath, F.; Gazit, E.; et al. Macromol. Biosci. 2018, 18, 1700295.
doi: 10.1002/mabi.201700295 |
98 |
Agrawal, A. Nat. Biotechnol. 1999, 17, 412.
doi: 10.1038/8558 |
99 |
Iizuka, T.; Sezutsu, H.; Tatematsu, K.-i.; Kobayashi, I.; Yonemura, N.; Uchino, K.; Nakajima, K.; Kojima, K.; Takabayashi, C.; Machii, H.; et al. Adv. Funct. Mater. 2013, 23, 5232.
doi: 10.1002/adfm.201300365 |
100 |
Zhang, F. Acta Bioch. Biophys. Sin. 1999, 31, 119.
doi: 10.1016/S0005-2736(99)00009-7 |
101 |
Tansil, N. C.; Li, Y.; Teng, C. P.; Zhang, S.; Win, K. Y.; Chen, X.; Liu, X. Y.; Han, M.-Y. Adv. Mater. 2011, 23, 1463.
doi: 10.1002/adma.201003860 |
102 |
Lin, N.; Meng, Z.; Toh, G. W.; Zhen, Y.; Diao, Y.; Xu, H.; Liu, X. Y. Small 2015, 11, 1205.
doi: 10.1002/smll.201402079 |
103 |
Lin, N.; Cao, L.; Huang, Q.; Wang, C.; Wang, Y.; Zhou, J.; Liu, X.-Y. Adv. Funct. Mater. 2016, 26, 8885.
doi: 10.1002/adfm.201603826 |
104 |
Song, Y.; Lin, Z.; Kong, L.; Xing, Y.; Lin, N.; Zhang, Z.; Chen, B.-H.; Liu, X.-Y. Adv. Funct. Mater. 2017, 27, 1700628.
doi: 10.1002/adfm.201700628 |
105 |
Zhang, P.; Lan, J.; Wang, Y.; Xiong, Z. H.; Huang, C. Z. Biomaterials 2015, 36, 26.
doi: 10.1016/j.biomaterials.2014.08.026 |
106 |
Cohen-Karni, T.; Jeong, K. J.; Tsui, J. H.; Reznor, G.; Mustata, M.; Wanunu, M.; Graham, A.; Marks, C.; Bell, D. C.; Langer, R.; et al. Nano Lett. 2012, 12, 5403.
doi: 10.1021/nl302810c |
107 |
Founda, I. M.; El-Tonsy, M. M. J. Mater. Sci. 1990, 25, 4752.
doi: 10.1007/BF01129936 |
108 |
Prajzler, V.; Min, K.; Kim, S.; Nekvindova, P. Materials. 2018, 11, 112.
doi: 10.3390/ma11010112 |
109 |
Kujala, S.; Mannila, A.; Karvonen, L.; Kieu, K.; Sun, Z. Sci. Rep. 2016, 6, 22358.
doi: 10.1038/srep22358 |
110 |
Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G. Adv. Mater. 2009, 21, 2411.
doi: 10.1002/adma.200801580 |
111 |
Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. L. Nano Lett. 2006, 6, 2768.
doi: 10.1021/nl061802g |
112 |
He, X.; Zi, Y. L.; Yu, H.; Zhang, S. L.; Wang, J.; Ding, W. B.; Zou, H. Y.; Zhang, W.; Lu, C. H.; Wang, Z. L. Nano Energy 2017, 39, 328.
doi: 10.1016/j.nanoen.2017.06.046 |
113 |
Wang, Z. L.; Song, J. Science 2006, 312, 242.
doi: 10.1126/science.1124005 |
114 |
Maiti, S.; Kumar Karan, S.; Lee, J.; Kumar Mishra, A.; Bhusan Khatua, B.; Kon Kim, J. Nano Energy 2017, 42, 282.
doi: 10.1016/j.nanoen.2017.10.041 |
115 |
Gomes, J.; Serrado Nunes, J.; Sencadas, V.; Lanceros-Mendez, S. Smart Mater. Struct. 2010, 19, 065010.
doi: 10.1088/0964-1726/19/6/065010 |
116 |
Harvey, E. N. Science 1939, 89, 460.
doi: 10.1126/science.89.2316.460 |
117 |
Fukada, E. J. Phys. Soc. Jpn. 1956, 11, 1301A.
doi: 10.1143/JPSJ.11.1301A |
118 |
Yucel, T.; Cebe, P.; Kaplan, D. L. Adv. Funct. Mater. 2011, 21, 779.
doi: 10.1002/adfm.201002077 |
119 |
Sencadas, V.; Garvey, C.; Mudie, S.; Kirkensgaard, J. J. K.; Gouadec, G.; Hauser, S. Nano Energy 2019, 66, 104106.
doi: 10.1016/j.nanoen.2019.104106 |
120 |
Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Nano Energy 2012, 1, 328.
doi: 10.1016/j.nanoen.2012.01.004 |
121 |
Wang, S.; Lin, L.; Wang, Z. L. Nano Lett. 2012, 12, 6339.
doi: 10.1021/nl303573d |
122 |
Li, X.; Jiang, C.; Ying, Y.; Ping, J. Adv. Energy Mater. 2020, 10, 2002001.
doi: 10.1002/aenm.202002001 |
123 |
Kim, H.-J.; Kim, J.-H.; Jun, K.-W.; Kim, J.-H.; Seung, W.-C.; Kwon, O. H.; Park, J.-Y.; Kim, S.-W.; Oh, I.-K. Adv. Energy Mater. 2016, 6, 1502329.
doi: 10.1002/aenm.201502329 |
124 |
Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. Nano Energy 2019, 59, 268.
doi: 10.1016/j.nanoen.2019.02.052 |
125 |
Guo, Y.; Zhang, X.-S.; Wang, Y.; Gong, W.; Zhang, Q.; Wang, H.; Brugger, J. Nano Energy 2018, 48, 152.
doi: 10.1016/j.nanoen.2018.03.033 |
126 |
Jiang, D.; Zhang, J.; Li, C.; Yang, W.; Liu, J. New J. Chem. 2017, 41, 11792.
doi: 10.1039/C7NJ02042B |
127 |
Das, C.; Krishnamoorthy, K. ACS Appl. Mater. Interfaces. 2016, 8, 29504.
doi: 10.1021/acsami.6b10431 |
128 |
Sun, C.; Li, X.; Zhao, J.; Cai, Z.; Ge, F. Electrochim. Acta. 2019, 317, 42.
doi: 10.1016/j.electacta.2019.05.124 |
129 |
Song, P.; Tao, J.; He, X.; Sun, Y.; Shen, X.; Zhai, L.; Yuan, A.; Zhang, D.; Ji, Z.; Li, B. Chem. Eng. J. 2020, 386, 124024.
doi: 10.1016/j.cej.2020.124024 |
130 |
Hou, J.; Cao, C.; Idrees, F.; Ma, X. ACS Nano 2015, 9, 2556.
doi: 10.1021/nn506394r |
131 |
Sahu, V.; Grover, S.; Tulachan, B.; Sharma, M.; Srivastava, G.; Roy, M.; Saxena, M.; Sethy, N.; Bhargava, K.; Philip, D.; et al. Electrochim. Acta. 2015, 160, 244.
doi: 10.1016/j.electacta.2015.02.019 |
132 |
Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S.-J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; et al. Adv. Mater. 2013, 25, 1993.
doi: 10.1002/adma.201204692 |
133 |
Zhang, L.; Meng, Z.; Qi, Q.; Yan, W.; Lin, N.; Liu, X. Y. RSC Adv. 2018, 8, 22146.
doi: 10.1039/C8RA01988F |
134 |
Zhu, Y.; Sun, W.; Luo, J.; Chen, W.; Cao, T.; Zheng, L.; Dong, J.; Zhang, J.; Zhang, M.; Han, Y.; et al. Nat. Commun. 2018, 9, 3861.
doi: 10.1038/s41467-018-06296-w |
135 |
Huang, W.; Zhang, A.; Liang, H.; Liu, R.; Cai, J.; Cui, L.; Liu, J. J. Colloid Interface Sci. 2019, 549, 140.
doi: 10.1016/j.jcis.2019.04.066 |
136 |
Hu, M.; Hu, T.; Cheng, R.; Yang, J.; Cui, C.; Zhang, C.; Wang, X. J. Energy Chem. 2018, 27, 161.
doi: 10.1016/j.jechem.2017.10.030 |
137 |
Li, X.; Sun, C.; Cai, Z.; Ge, F. Appl. Surf. Sci. 2019, 473, 967.
doi: 10.1016/j.apsusc.2018.12.244 |
138 |
Pan, P.; Hu, Y.; Wu, K.; Cheng, Z.; Shen, Z.; Jiang, L.; Mao, J.; Ni, C.; Ge, Y.; Wang, Z. J. Alloy. Compd. 2020, 814, 152306.
doi: 10.1016/j.jallcom.2019.152306 |
139 |
Zhang, W.; Yang, Z.-Y.; Tang, R.-C.; Guan, J.-P.; Qiao, Y.-F. J. Clean. Prod. 2020, 250, 119545.
doi: 10.1016/j.jclepro.2019.119545 |
140 |
Bhattacharjee, S.; Macintyre, C. R.; Bahl, P.; Kumar, U.; Wen, X.; Aguey-Zinsou, K.-F.; Chughtai, A. A.; Joshi, R. Adv. Mater. Interfaces. 2020, 7, 2000814.
doi: 10.1002/admi.202000814 |
141 |
Zhou, Q.; Wu, W.; Zhou, S.; Xing, T.; Sun, G.; Chen, G. Chem. Eng. J. 2020, 382, 122988.
doi: 10.1016/j.cej.2019.122988 |
142 |
Cui, Y.; Gong, H.; Wang, Y.; Li, D.; Bai, H. Adv. Mater. 2018, 30, 1706807.
doi: 10.1002/adma.201706807 |
143 |
Wang, H.; Dong, Q.; Yao, J.; Shao, Z.; Ma, J.; Chen, X. Biomacromolecules 2020, 21, 1596.
doi: 10.1021/acs.biomac.0c00170 |
144 |
Peng, Y.; Cui, Y. Joule. 2020, 4, 724.
doi: 10.1016/j.joule.2020.02.011 |
145 |
Yin, Z.; Jian, M.; Wang, C.; Xia, K.; Liu, Z.; Wang, Q.; Zhang, M.; Wang, H.; Liang, X.; Liang, X.; et al. Nano Lett. 2018, 18, 7085.
doi: 10.1021/acs.nanolett.8b03085 |
146 |
Liang, X.; Li, H.; Dou, J.; Wang, Q.; He, W.; Wang, C.; Li, D.; Lin, J.-M.; Zhang, Y. Adv. Mater. 2020, 32, 2000165.
doi: 10.1002/adma.202000165 |
147 |
UniProt Consortium, T. Nucleic. Acids. Res. 2018, 46, 2699.
doi: 10.1093/nar/gky092 |
148 |
Kim, D.-H.; Kim, Y.-S.; Amsden, J.; Panilaitis, B.; Kaplan, D. L.; Omenetto, F. G.; Zakin, M. R.; Rogers, J. A. Appl. Phys. Lett. 2009, 95, 133701.
doi: 10.1063/1.3238552 |
149 |
Wang, D.; Wang, L.; Lou, Z.; Zheng, Y.; Wang, K.; Zhao, L.; Han, W.; Jiang, K.; Shen, G. Nano Energy 2020, 78, 105252.
doi: 10.1016/j.nanoen.2020.105252 |
150 |
Wang, T.; Li, Y.; Zhang, J.; Yan, K.; Jaumaux, P.; Yang, J.; Wang, C.; Shanmukaraj, D.; Sun, B.; Armand, M.; et al. Nat. Commun. 2020, 11, 5429.
doi: 10.1038/s41467-020-19246-2 |
151 |
Xu, Y.; Song, Y.; Xu, F. Nano Energy 2021, 79, 105468.
doi: 10.1016/j.nanoen.2020.105468 |
152 |
Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Adv. Funct. Mater. 2019, 29, 1808695.
doi: 10.1002/adfm.201808695 |
153 |
Qiu, W.; Patil, A.; Hu, F.; Liu, X. Y. Small 2019, 15, 45.
doi: 10.1002/smll.201903948 |
[1] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[2] | Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4 [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107. |
[3] | Qian WU,Wei-Zheng WENG,Chun-Li LIU,Chuan-Jing HUANG,Wen-Sheng XIA,Hui-Lin WAN. Effect of Preparation Methods on Photo-Induced Formation of Peroxide Species on Nd2O3 [J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2064-2071. |
[4] | Xue ZHANG,Yang HAN,Shuang-Zhi CHAI,Nan-Tao HU,Zhi YANG,Hui-Juan GENG,Hao WEI. Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1330-1346. |
[5] | DENG Tao-Li, YAN Shi-Run, HU Jian-Guo. Preparation and Up-Conversion Photoluminescence Properties of GdAlO3:Er3+, Yb3+ Phosphors [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 773-780. |
[6] | YE Qing, ZHAO Jian-Sheng, LI Dong-Hui, ZHAO Jun, CHENG Shui-Yuan, KANG Tian-Fang. Au/SnO2 and M-Au (M=Pt, Pd)/SnO2 Bimetallic Catalysts for the Low-Temperature Catalytic Oxidation of CO [J]. Acta Phys. -Chim. Sin., 2011, 27(01): 169-176. |
[7] | LI Lei, ZHAN Ying-Ying, CHEN Chong-Qi, SHE Yu-Sheng, LIN Xing-Yi, ZHENG Qi. Effect of CeO2 Support Preparaed with Different Methods on the Activity and Stability of CuO/CeO2 Catalysts for the Water-Gas Shift Reaction [J]. Acta Phys. -Chim. Sin., 2009, 25(07): 1397-1404. |
[8] | DENG Zheng-Hua; LI Ren-Gui; WANG Lu; DENG Jia-Min; GAO Jian-Dong; MA Zhi-Gang; DU Hong-Chang; SUO Ji-Shuan. Research and Development of Separators for Lithium-ion Battery [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 90-93. |
[9] | Wang Hai-Shui;Wang Yi-Bing;Xi Shi-Quan. A Review for the Preparation and Structural Characterization of Thin Films of Charge-Transfer Complexes [J]. Acta Phys. -Chim. Sin., 2004, 20(10): 1281-1286. |
[10] | Li Jing,Wang Jing-Chun,Dou Bo-Sheng,Wu Yue. Preparation of Cu-Co Catalyst for Alcohols Synthesis [J]. Acta Phys. -Chim. Sin., 1997, 13(03): 278-282. |
|