Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2103046.doi: 10.3866/PKU.WHXB202103046
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Zhou Xia1, Yuanlong Shao1,2,*()
Received:
2021-03-22
Accepted:
2021-04-23
Published:
2021-04-29
Contact:
Yuanlong Shao
E-mail:ylshao@suda.edu.cn
About author:
Yuanlong Shao, Email: ylshao@suda.edu.cnSupported by:
MSC2000:
Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications[J].Acta Phys. -Chim. Sin., 2022, 38(9): 2103046.
Fig 1
The development history of carbonaceous fibers7: carbon fibers8, 9, carbon nanotube (CNT) fibers21, 23-25, and graphene fibers27-33. Copyright 1971, Nature Publishing Group; Copyright 1998, John Wiley and Sons; Copyright 2000, Science; Copyright 2004, Science; Copyright 2013, Science; Copyright 2018, Nature Publishing Group; Copyright 2011, Nature Publishing Group; Copyright 2013 Wiley-VCH; Copyright 2015, Science; Copyright 2016, Wiley-VCH; Copyright 2019, Nature Publishing Group."
Fig 3
The dispersion structure of graphene and GO in spinning liquid27, 30, 64. (a) The schematic illustration of graphene dispersion structure30; Copyright 2020 Wiley-VCH. (b) Polarized optical microscopy observations of GO non-aqueous and aqueous dispersions27, 64; Copyright 2011, Nature Publishing Group; Copyright 2019, Elsevier."
Fig 4
Various optimization method of graphene fiber spinning slurry28, 31, 69. (a) Schematic of graphene fibers based on the large-sized and small-sized GO31; Copyright 2015, Science. (b) Schematic of calcium ion crosslinking28; Copyright 2013 Wiley-VCH. (c) Schematic of phenolic carbon bonding69; Copyright 2016, American Chemical Society."
Fig 5
The optimization approaches for graphene fiber wet spinning process32, 33, 71. (a) Schematic illustration of continuous stretching of graphene fibers32; Copyright 2016 Wiley-VCH. (b) Morphology of graphene fiber with different stretching rates71; Copyright 2018, Science. (c) Morphology of columnar fiber produced from a tubular33; Copyright 2019, Nature Publishing Group. (d) Morphology of layer structure fiber produced from a flat channel32. Copyright 2019, Nature Publishing Group."
Fig 6
Structure analysis of high temperature thermal reduction graphene fiber32, 72, 80. (a) Schematic illustration of graphene oxide72; Copyright 1998, Elsevier Science. (b) Schematic illustration of reduced graphene oxide72; Copyright 1998, Elsevier Science. (c) Structural model of GO at different stages of reduction by thermal annealing80; Copyright 2012 Wiley-VCH. (d) Amorphous laminates of defective graphene sheets32; (e) highly crystalline laminates of high-quality graphene sheets32; (f) Graphitization device32; (g) Typical tensile stress curves of graphene single fibers32; Copyright 2013 Wiley-VCH."
Fig 8
Various approaches to enhance the electrical properties of graphene fibers31, 82, 85. (a) Dirac cone model of graphene82 Copyright 2009, AMER PHYSICAL SOC. (b) The transmission path of electrons in graphene; (c) Polarized Raman spectra from the optimized graphene fibers in different directions31; (d) Electrical conductivity of graphene fibers31; Copyright 2015, Science. (e) Schematic diagram of the preparation of chemically doped GFs via a two-zone85; Copyright 2016 Wiley-VCH."
Fig 10
Various Graphene fibers applications: ultralight conductive cable33, 85, energy storage devices109, 112, sensors113 and bioelectrodes114. (a) Photograph of the a digital device connected by a graphene fiber-based USB cable85, Copyright 2016 Wiley-VCH; (b) a spinning motor (at 500 r·min?1) with GFs yarns of filaments (0.55 g) as a rotator coil instead of copper wire (4.4 g)33; (c) voltammetry curves of the diode device connected by gold wire (black one) and GFs (red one), respectively33, Copyright 2016 Wiley-VCH; (d) GCD curves of two-ply, all-solid-state, freestanding yarn supercapacitors bended with different angles at the current density of 0.1 mA·cm?2109; (e) view of a two-ply yarn supercapacitors109; Copyright 2014, Nature Publishing Group; (f) schematic of cable lithium-sulfur batteries112; Copyright 2017 Wiley-VCH; (g) programmable writing of GO/RGO fibers for sensible networks113; Copyright 2014, American Chemical Society; (h) A schematic drawing of the DBS–fMRI study using GF bipolar microelectrodes114; (i) a schematic section showing the placement of the GF bipolar stimulating electrodes at the STN ipsilateral to the 6-OHDA lesion114, Copyright 2020, Nature Publishing Group."
1 |
Geim A. K. ; Novoselov K.S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
2 |
Xu Z. ; Gao C. Mater. Today 2015, 18, 480.
doi: 10.1016/j.mattod.2015.06.009 |
3 |
Meng F. ; Lu W. ; Li Q. ; Byun J. H. ; Oh Y. ; Chou T. W. Adv Mater. 2015, 27, 5113.
doi: 10.1002/adma.201501126 |
4 |
Xu Z. ; Gao C. Acc. Chem. Res. 2014, 47, 1267.
doi: 10.1021/ar4002813 |
5 |
Cheng H. ; Hu C. ; Zhao Y. ; Qu L. NPG Asia Mater. 2014, 6, e113.
doi: 10.1038/am.2014.48 |
6 |
Li Q. W. ; Li Y. ; Zhang X. F. ; Chikkannanavar S. B. ; Zhao Y. H. ; Dangelewicz A. M. ; Zhu Y. T. Adv. Mater. 2007, 19, 3358.
doi: 10.1002/adma.200602966 |
7 | Zhu, M. F. Application of carbon-based fibers in wearable energy storage devices, Energy Frontier Forum, Shanghai, March 30, 2020. |
朱美芳. 碳基纤维在可穿戴能源储存器件中的应用, 能源前沿论坛; 上海: 2020年3月30日. | |
8 |
Jeffries R. Nature 1971, 232, 304.
doi: 10.1038/232304a0 |
9 |
Ko T. H. ; Huang L. C. J. Appl. Polymer Sci. 1998, 70, 2409.
doi: 10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.3.CO;2-S |
10 |
Diefendorf R. J. ACS Symp. Ser. 1976, 21, 315.
doi: 10.1021/bk-1976-0021.ch022 |
11 | Yang J. L. Acta Phys. -Chim. Sin. 2019, 35, 1043. |
杨金龙. 物理化学学报, 2019, 35, 1043.
doi: 10.3866/PKU.WHXB201903011 |
|
12 | Cheng H. M. Acta Phys. -Chim. Sin. 2020, 36, 1909042. |
成会明. 物理化学学报, 2020, 36, 1909042.
doi: 10.3866/PKU.WHXB201909042 |
|
13 |
Ago H. ; Imamoto K. ; Ishigami N. ; Ohdo R. ; Ikeda K. I. ; Tsuji M. Appl. Phys. Lett. 2007, 90, 123112.
doi: 10.1063/1.2715031 |
14 | Wang K. X. ; Shi L. R. ; Wang M. Z. ; Yang H. ; Liu Z. F. ; Peng H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112. |
王可心; 史刘嵘; 王铭展; 杨皓; 刘忠范; 彭海琳. 物理化学学报, 2019, 35, 1112.
doi: 10.3866/PKU.WHXB201805032 |
|
15 | Zhang S. C. ; Zhang N. ; Zhang J. Acta Phys. -Chim. Sin. 2020, 36, 1907021. |
张树辰; 张娜; 张锦. 物理化学学报, 2020, 36, 1907021.
doi: 10.3866/PKU.WHXB201907021 |
|
16 |
Cheng H. M. ; Li F. ; Su G. ; Pan H. Y. ; He L. L. ; Sun X. ; Dresselhaus M. S. Appl. Phy. Lett. 1998, 72, 3282.
doi: 10.1063/1.121624 |
17 |
Wu A. S. ; Chou T. W. Mater. Today 2012, 15, 302.
doi: 10.1016/s1369-7021(12)70135 |
18 | Xia K. L ; Jian M. Q. ; Zhang Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427. |
夏凯伦; 蹇木强; 张莹莹. 物理化学学报, 2016, 32, 2427.
doi: 10.3866/PKU.WHXB201607261 |
|
19 |
Zhang M. ; Atkinson K. R. ; Baughman R. H. Science 2004, 306, 1358.
doi: 10.1126/science.1104276 |
20 | Wang H. M. ; He M. S. ; Zhang Y. Y. Acta Phys. -Chim. Sin. 2019, 35, 1207. |
王灏珉; 何茂帅; 张莹莹. 物理化学学报, 2019, 35, 1207.
doi: 10.3866/PKU.WHXB201811011 |
|
21 |
Vigolo B. ; Penicaud A. ; Coulon C. ; Sauder C. ; Pailler R. ; Journet C. ; Poulin P. Science 2000, 290, 1331.
doi: 10.1126/science.290.5495.1331 |
22 |
Jiang K. L. ; Li Q. Q. ; Fan S. S. Nature 2002, 419, 801.
doi: 10.1038/419801a |
23 |
Ericson L. M. ; Fan H. ; Peng H. ; Davis V. A. ; Zhou W. ; Sulpizio J. ; Smalley R. E. Science 2004, 305, 1447.
doi: 10.1126/science.1101398 |
24 |
Behabtu N. ; Young C. C. ; Tsentalovich D. E. ; Kleinerman O. ; Wang X. ; Ma A. W. ; Pasquali M. Science 2013, 339, 182.
doi: 10.1126/science.1228061 |
25 |
Bai Y. ; Zhang R. ; Ye X. ; Zhu Z. ; Xie H. ; Shen B. ; Cai D. ; Liu B. ; Zhang C. ; Jia Z. ; et al Nat. Nanotechnol. 2018, 13, 589.
doi: 10.1038/s41565-018-0141-z |
26 |
Zhang X. H. ; Lu W. B. ; Zhou G.H. ; Li Q. W. Adv. Mater. 2020, 32, 1902028.
doi: 10.1002/adma.201902028 |
27 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
28 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
29 |
Xiang C. ; Young C. C. ; Wang X. ; Yan Z. ; Hwang C. C. ; Cerioti G. ; Tour J. M. Adv. Mater. 2013, 25, 4592.
doi: 10.1002/adma.201301065 |
30 |
Jalili; R. ; Aboutalebi S. H. ; Esrafilzadeh D. ; Shepherd R. L. ; Chen J. ; Aminorroaya-Yamini S. ; Wallace G. G. Adv. Funct. Mater. 2013, 23, 5345.
doi: 10.1002/adfm.201300765 |
31 |
Xin G. Q. ; Yao T. K. ; Sun H. T. ; Scott S. M. ; Shao D. L ; Wang G. K. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
32 |
Xin G. Q. ; Zhu W. G. ; Deng Y. X. ; Cheng J. ; Zhagn L. T. ; Chung A. J. ; De S. ; Lian J. Nat. Nanotechnol. 2019, 14, 168.
doi: 10.1038/s41565-018-0330-9 |
33 |
Xu Z. ; Liu Y. ; Zhao X. ; Peng L. ; Sun H. ; Xu Y. ; Gao C. Adv. Mater. 2016, 28, 6449.
doi: 10.1002/adma.201506426 |
34 |
Li P. ; Liu Y. ; Shi S. ; Xu Z. ; Ma W. ; Wang Z. ; Gao C. Adv. Funct. Mater. 2020, 30, 52.
doi: 10.1002/adfm.202006584 |
35 |
Huang G. ; Hou C. ; Shao Y. ; Wang H. ; Zhang Q. ; Li Y. ; Zhu M. Sci. Rep. 2014, 4, 4248.
doi: 10.1038/srep04248 |
36 |
Tian Q. ; Xu Z. ; Liu Y. ; Fang B. ; Peng L. ; Xi J. ; Gao C. Nanoscale 2017, 9, 12335.
doi: 10.1039/c7nr03895j |
37 |
Feng L. ; Chang Y. ; Zhong J. ; Jia D. C. Sci. Rep. 2018, 8, 10803.
doi: 10.1038/s41598-018-29157-4 |
38 |
Xiang C. S. ; Behabtu N. ; Liu Y. D. ; Chae H. G. ; Young C. C. ; Genorio B. ; Tsentalovich D. E. ; Zhang C. G. ; Kosynkin D. V. ; Lomeda J. R. ; et al ACS Nano 2013, 7, 1628.
doi: 10.1021/nn305506s |
39 |
Jang Y. ; Carretero G. J. ; Choi A. ; Kim W. J. ; Kozlov E. M. ; Kim T. ; Kang T. J. ; Beak S. J. ; Kim D. W. ; Peak Y. W. Nanotechnology 2012, 23, 235601.
doi: 10.1088/0957-4484/23/23/235601 |
40 |
Dong Z. ; Jiang C. ; Cheng H. ; Zhao Y. ; Shi G. ; Jiang L. ; Qu L. Adv. Mater. 2012, 24, 1856.
doi: 10.1002/adma.201200170 |
41 |
Meng Y. ; Zhao Y. ; Hu C. ; Cheng H. ; Hu Y. ; Zhang Z. ; Qu L. Adv. Mater. 2013, 25, 2326.
doi: 10.1002/adma.201300132 |
42 |
Hu C. ; Zhao Y. ; Cheng H. ; Wang Y. ; Dong Z. ; Jiang C. ; Qu L. Nano Lett. 2012, 12, 5879.
doi: 10.1021/nl303243h |
43 |
Rodolfo C. S. ; Aaron M. G. ; Hyung-ick K. ; Hong-kyu J. ; Ferdinando T. ; Sofia V. D. ; Lakshmy P. R. ; Ana L. E. ; Nestor P. L. ; Jonghwan S. ; et al ACS Nano 2014, 8, 5959.
doi: 10.1021/nn501098d |
44 |
Wang R. ; Xu Z. ; Zhuang J. ; Liu Z. ; Peng L. ; Li Z. ; Gao C. Adv. Electron. Mater. 2017, 3, 1600425.
doi: 10.1002/aelm.201600425 |
45 |
Carretero G. J. ; Castillo M. E. ; Dias L. M. ; Acik M. ; Rogers D. M. ; Sovich J. ; Baughman R. H. Adv. Mater. 2012, 24, 5695.
doi: 10.1002/adma.201201602 |
46 |
Sun Y. ; Wang Y. ; Hua C. ; Ge Y. ; Hou S. ; Shang Y. ; Cao A. Carbon 2018, 132, 394.
doi: 10.1016/j.carbon.2018.02.086 |
47 |
Zheng B. ; Gao W. ; Liu Y. ; Wang R. ; Li Z. ; Xu Z. ; Gao C. Carbon 2020, 158, 157.
doi: 10.1016/j.carbon.2019.11.072 |
48 |
Li X. ; Zhao T. ; Wang K. ; Yang Y. ; Wei J. ; Kang F. ; Zhu H. Langmuir 2011, 27, 12164.
doi: 10.1021/la202380g |
49 |
Wang H. ; Wang C. ; Jian M. ; Wang Q. ; Xia K. ; Yin Z. ; Zhang Y. Nano Res. 2018, 11, 2347.
doi: 10.1007/s12274-017-1782-1 |
50 |
Chen T. ; Dai L. Angew. Chem. Int. Ed. 2015, 54, 14947.
doi: 10.1002/anie.201507246 |
51 |
Wang X. ; Qiu Y. ; Cao W. ; Hu P. Chem. Mater. 2015, 27, 6969.
doi: 10.1021/acs.chemmater.5b02098 |
52 |
Chen K. ; Shi L. ; Zhang Y. ; Liu Z. Chem. Soc. Rev. 2018, 47, 3018.
doi: 10.1039/c7cs00852j |
53 |
Zeng J. ; Ji X. ; Ma Y. ; Zhang Z. ; Wang S. ; Ren Z. ; Yu J. Adv. Mater. 2018, 30, 1705380.
doi: 10.1002/adma.201705380 |
54 |
Chen K. ; Zhou X. ; Cheng X. ; Qiao R. ; Cheng Y. ; Liu C. ; Liu Z. Nat. Photon. 2019, 13, 754.
doi: 10.1038/s41566-019-0492-5 |
55 |
Chen Z. ; Qi Y. ; Chen X. ; Zhang Y. ; Liu Z. Adv. Mater. 2019, 31, e1803639.
doi: 10.1002/adma.201803639 |
56 |
Deng B. ; Liu Z. ; Peng H. Adv. Mater. 2019, 31, 1800996.
doi: 10.1002/adma.201800996 |
57 |
Deng B. ; Xin Z. ; Xue R. ; Zhang S. ; Xu X. ; Gao J. ; Peng H. Sci. Bull. 2019, 64, 659.
doi: 10.1016/j.scib.2019.04.030 |
58 |
Lin L. ; Peng H. ; Liu Z. Nat. Mater. 2019, 18, 520.
doi: 10.1038/s41563-019-0341-4 |
59 |
Cui G. ; Cheng Y. ; Liu C. ; Huang K. ; Li J. ; Wang P. ; Liu Z. ACS Nano 2020, 14, 5938.
doi: 10.1021/acsnano.0c01298 |
60 | Cheng Y. ; Wang K. ; Qi Y. ; Liu Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2006046. |
程熠; 王坤; 亓月; 刘忠范. 物理化学学报, 2022, 38, 2006046.
doi: 10.3866/PKU.WHXB202006046 |
|
61 |
Suter L. J. ; Sinclair C. R. ; Coveney V. P. Adv. Mater. 2020, 32, e2003213.
doi: 10.1002/adma.202003213 |
62 |
Xu Z. ; Zhang Y. ; Li P. G. ; Gao C. ACS Nano 2012, 6, 7103.
doi: 10.1021/nn3021772 |
63 |
Jalili R. ; Aboutalebi S. H. ; Esrafilzadeh D. ; Konstantinov K. ; Razal J. M. ; Moulton S. E. ; Wallace G. G. Mater. Horiz. 2014, 1, 87.
doi: 10.1039/c3mh00050h |
64 |
Chen S. ; Ma W. ; Cheng Y. ; Weng Z. ; Sun B. ; Wang L. ; Cheng H. M. Nano Energy 2015, 15, 642.
doi: 10.1016/j.nanoen.2015.05.004 |
65 |
Chen L. ; He Y. ; Chai S. ; Qiang H. ; Chen F. ; Fu Q. Nanoscale 2013, 5, 5809.
doi: 10.1039/c3nr01083j |
66 |
Shin M. K. ; Lee B. ; Kim S. H. ; Lee J. A. ; Spinks G. M. ; Gambhir S. ; Kim S. J. Nat. Commun. 2012, 3, 65.
doi: 10.1038/ncomms1661 |
67 |
Ma T. ; Gao H. L. ; Cong H. P. ; Yao H. B. ; Wu L. ; Yu Z. Y. ; Yu S. H. Adv. Mater. 2018, 30, e1706435.
doi: 10.1002/adma.201706435 |
68 |
Kim I. H. ; Yun T. ; Kim J. E. ; Yu H. ; Sasikala S. P. ; Lee K. E. ; Kim S. O. Adv. Mater. 2018, 30, e1803267.
doi: 10.1002/adma.201803267 |
69 |
Li M. ; Zhang X. ; Wang X. ; Ru Y. ; Qiao J. Nano Lett. 2016, 16, 6511.
doi: 10.1021/acs.nanolett.6b03108 |
70 |
Zhen X. ; Chao G. ACS Nano 2011, 5, : 2908.
doi: 10.1021/nn200069w |
71 |
Park H. ; Lee K. H. ; Kim Y. B. ; Ambade S. B. ; Noh S. H. ; Eom W. ; Hwang J. Y. ; Lee W. J. ; Huang J. ; Han T. H. Sci. Adv. 2018, 4, eaau2014.
doi: 10.1126/sciadv.aau2104 |
72 |
He H. Y. ; Klinowski J. ; Forster M. ; Lerf A. Chem. Phys. Lett. 1998, 287, 53.
doi: 10.1016/s0009-2614(98)00144-4 |
73 |
Schniepp H. C. ; Li J. L. ; McAllister M. J. ; Sai H. ; Herrera-Alonso M. ; Adamson D. H. ; Prud'homme R. K. ; Car R. ; Saville D. A. ; Aksay I. A. J. Phys. Chem. B 2006, 110, 8535.
doi: 10.1021/jp060936f |
74 |
Moon I. K. ; Lee J. ; Ruoff R. S. ; Lee H. Nat. Commun. 2010, 1, 73.
doi: 10.1038/ncomms1067 |
75 |
Yang D. ; Velamakanni A. ; Bozoklu G. ; Park S. ; Stoller M. ; Piner R. D. ; Stankovich S. ; Jung I. ; Field D. A. ; Ventrice C. A. ; et al Carbon 2009, 47, 145.
doi: 10.1016/j.carbon.2008.09.045 |
76 |
Kotov N. A. ; Dekany I. ; Fendler J. H. Adv. Mater. 1996, 8, 8.
doi: 10.1002/adma.19960080806 |
77 |
Sun W. ; Wang L. ; Yang Z. ; Zhu T. ; Wu T. ; Dong C. ; Liu G. Chem. Mater. 2018, 30, 7473.
doi: 10.1021/acs.chemmater.8b01902 |
78 |
Zhou M. ; Wang Y. ; Zhai Y. ; Zhai J. ; Ren W. ; Wang F. ; Dong S. Chem. Eur. J. 2009, 15, 6116.
doi: 10.1002/chem.200900596 |
79 |
Bagri A. ; Mattevi C. ; Acik M. ; Chabal Y. J. ; Chhowalla M. ; Shenoy V. B. Nat. Chem. 2010, 2, 581.
doi: 10.1038/nchem.686 |
80 |
Pei S ; Cheng H. M. Carbon 2012, 50, 3210.
doi: 10.1016/j.carbon.2011.11.010 |
81 |
Chae H. G. ; Kumar S. Mater. Sci. 2014, 319, 908.
doi: 10.1126/science.1153911 |
82 |
Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
doi: 10.1103/RevModPhys.81.109 |
83 |
Liu Y. ; Liang H. ; Xu Z. ; Xi J. ; Chen G. ; Gao W. ; Gao C. ACS Nano 2017, 11, 4301.
doi: 10.1021/acsnano.7b01491 |
84 |
Xu Z. ; Sun H. ; Gao C. Adv. Mater. 2013, 25, 3249.
doi: 10.1002/adma.201300774 |
85 |
Liu Y. ; Xu Z. ; Zhan J. ; Li P. ; Gao C. Adv. Mater. 2016, 28, 7941.
doi: 10.1002/adma.201602444 |
86 |
Fang B. ; Chang D. ; Xu Z. ; Gao C. Adv. Mater. 2020, 32, 1902664.
doi: 10.1002/adma.201902664 |
87 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
88 | Zhang L. Y. ; He S. J. ; Chen S. L. ; Guo Q. H. ; Hou H. Q. Acta Phys. -Chim. Sin. 2010, 26, 3181. |
张雷勇; 何水剑; 陈水亮; 郭乔辉; 侯豪情. 物理化学学报, 2010, 26, 3181.
doi: 10.3866/PKU.WHXB20101135 |
|
89 | Tian D. ; Lu X. F. ; Li W. M. ; Li Y. ; Wang C. Acta Phys. -Chim. Sin. 2020, 36, 1904056. |
田地; 卢晓峰; 李闱墨; 李悦; 王策. 物理化学学报;, 2020, 36, 1904056.
doi: 10.3866/PKU.WHXB201904056 |
|
90 |
Li Z. ; Xu Z. ; Liu Y. ; Wang R. ; Gao C. Nat. Commun. 2016, 7, 13684.
doi: 10.1038/ncomms13684 |
91 |
Seyedin S. ; Romano M. S. ; Minett A. I. ; Razal J. M. Sci. Rep. 2015, 5, 14946.
doi: 10.1038/srep14946 |
92 |
Fang B. ; Peng L. ; Xu Z. ; Gao C. ACS Nano 2015, 9, 5214.
doi: 10.1021/acsnano.5b00616 |
93 |
Jang J. S. ; Yu H. ; Choi S. J. ; Koo W. T. ; Lee J. ; Kim D. H. ; Kim I. D. ACS Appl. Mater. Inter. 2019, 11, 10208.
doi: 10.1021/acsami.8b22015 |
94 |
Fang B. ; Xiao Y. ; Xu Z. ; Chang D. ; Wang B. ; Gao W. ; Gao C. Mater. Horiz. 2019, 6, 1207.
doi: 10.1039/c8mh01647j |
95 |
Peng Y. ; Lin D. ; Gooding J. J. ; Xue Y. ; Dai L. Carbon 2018, 136, 329.
doi: 10.1016/j.carbon.2018.05.004 |
96 |
Choi S. J. ; Yu H. ; Jang J. S. ; Kim M. H. ; Kim S. J. ; Jeong H. S. ; Kim I. D. Small 2018, 14, e1703934.
doi: 10.1002/smll.201703934 |
97 |
Shi Q. ; Li J. ; Hou C. ; Shao Y. ; Zhang Q. ; Li Y. ; Wang H. Chem. Commun. 2017, 53, 11118.
doi: 10.1039/c7cc03408c |
98 |
Hua C. ; Shang Y. ; Li X. ; Hu X. ; Wang Y. ; Wang X. ; Cao A. Nanoscale 2016, 8, 10659.
doi: 10.1039/c6nr02111e |
99 |
Cheng H. ; Hu Y. ; Zhao F. ; Dong Z. ; Wang Y. ; Chen N. ; Qu L. Adv. Mater. 2014, 26, 2909.
doi: 10.1002/adma.201305708 |
100 |
Cheng H. H. ; Liu J. ; Zhao Y. ; Hu C. G. ; Zhang Z. P. ; Chen N. ; Jiang L. ; Qu L. Angew. Chem. Int. Ed. 2013, 125, 10676.
doi: 10.1002/anie.201304358 |
101 |
Cheng H. ; Liu J. ; Zhao Y. ; Hu C. ; Zhang Z. ; Chen N. ; Qu L. Angew. Chem. Int. Ed. 2013, 52, 10482.
doi: 10.1002/anie.201304358 |
102 |
Liang Y. ; Zhao F. ; Cheng Z. ; Zhou Q. ; Shao H. ; Jiang L. ; Qu L. Nano Energy 2017, 32, 329.
doi: 10.1016/j.nanoen.2016.12.062 |
103 |
Shao Y. ; Wang H. ; Zhang Q. ; Li Y. J. Mater. Chem. C 2013, 1, 1245.
doi: 10.1039/c2tc00235c |
104 |
Shao Y. ; El-Kady M. F. ; Wang L. J. ; Zhang Q. ; Li Y. ; Wang H. ; Mousavi M. F. ; Kaner R. B. Chem. Soc. Rev. 2015, 44, 3639.
doi: 10.1039/c4cs00316k |
105 |
Shao Y. ; Li J. ; Li Y. ; Wang H. ; Zhang Q. ; Kaner R. B. Mater. Horiz. 2017, 4, 1145.
doi: 10.1039/c7mh00441a |
106 |
Shao Y. ; Wang H. ; Zhang Q. ; Li Y. NPG Asia Mater. 2014, 6, 119.
doi: 10.1038/am.2014.59 |
107 |
Huang G. ; Hou C. ; Shao Y. ; Zhu B. ; Jia B. ; Wang H. ; Zhang Q. ; Li Y. Nano Energy 2015, 12, 26.
doi: 10.1016/j.nanoen.2014.11.056 |
108 |
El-Kady M. F. ; Shao Y. ; Kaner R. B. Nat. Rev. Mater. 2016, 1, 16033.
doi: 10.1038/natrevmats.2016.33 |
109 |
Kou L. ; Huang T. ; Zheng B. ; Han Y. ; Zhao X. ; Gopalsamy K. ; Gao C. Nat. Commun. 2014, 5, 3754.
doi: 10.1038/ncomms4754 |
110 |
Cai S. ; Huang T. ; Chen H. ; Salman M. ; Gopalsamy K. ; Gao C. J. Mater. Chem. A 2017, 5, 22489.
doi: 10.1039/c7ta07937k |
111 |
Hoshide T. ; Zheng Y. ; Hou J. ; Wang Z. ; Li Q. ; Zhao Z. ; Geng F. Nano Lett. 2017, 17, 3543.
doi: 10.1021/acs.nanolett.7b00623 |
112 |
Chong W. G. ; Huang J.-Q. ; Xu Z.-L. ; Qin X. ; Wang X. ; Kim J.-K. Adv. Funct. Mater. 2017, 27, 1604815.
doi: 10.1002/adfm.201604815 |
113 |
Cao J. ; Zhang Y. Y. ; Men C. L. ; Sun Y. Y. ; Wang Z. N. ; Zhang X. T. ; Li Q. W. ACS Nano 2014, 8, 4325.
doi: 10.1021/nn4059488 |
114 |
Zhao S. Y. ; Li G. ; Tong C. J. ; Chen W. J. ; Wang P. X. ; Dai J. K. ; Fu X. F. ; Xu Z. ; Liu X. J. ; Liang Z. F. ; et al Nat. Commun. 2020, 11, 1788.
doi: 10.1038/s41467-020-15570-9 |
[1] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[2] | Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206035-0. |
[3] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[4] | Hang Zhou, Kun Jiao. Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2111041-. |
[5] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[6] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[7] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[8] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[9] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[10] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[11] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[12] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[13] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[14] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[15] | Lei Wang, Tantan Sun, Nana Yan, Xiaona Liu, Chao Ma, Shutao Xu, Peng Guo, Peng Tian, Zhongmin Liu. Acid Properties of SAPO-34 Molecular Sieves with Different Si Contents Templated by Various Organic Structure-Directing Agents [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003046-. |
|