Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (6): 2106003.doi: 10.3866/PKU.WHXB202106003
Special Issue: Surface and Interface Engineering for Electrochemical Energy Storage and Conversion
• REVIEW • Previous Articles Next Articles
Mingjun Ma1, Zhichao Feng1, Xiaowei Zhang1, Chaoyue Sun1, Haiqing Wang1,*(), Weijia Zhou1, Hong Liu1,2,*(
)
Received:
2021-06-02
Accepted:
2021-07-15
Published:
2021-07-23
Contact:
Haiqing Wang,Hong Liu
E-mail:ifc_wanghq@ujn.edu.cn;ifc_liuh@ujn.edu.cn
About author:
Hong Liu, Email: ifc_liuh@ujn.edu.cn (H.L.)Supported by:
MSC2000:
Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates[J].Acta Phys. -Chim. Sin., 2022, 38(6): 2106003.
Fig 3
(a) Taking GOC@NPBC as the composite material synthesis process diagram; (b) the formation mechanism of DPARH; (c) in situ preparation of Co2P-Co3P4/RGO/C; (d) synthesis of Geobacter/RGO complex. (a) Adapted from American Chemical Society 30. (b) Adapted from American Association for the Advancement of Science 31. (c) Adapted from Royal Society of Chemistry publisher 32. (d) Adapted from Elsevier publisher 33."
Fig 4
(a) Schematic diagram of synthetic method of porous biomass derived carbon sponge and three-dimensional mixed foam; (b) schematic diagram of Aspergillus Niger cell bioleaching and MS/NCF synthesis; (c) Co-Co2P@NPC/rGO composite image; (d) Ru-Ru2PΦNPC and NPC@RuO2 composite scheme. (a) Adapted from Royal Society of Chemistry publisher 35. (b) Adapted from American Chemical Society 36. (c, d) Adapted from Wiley publisher [37.38]."
Fig 5
(a) Synthesis process of HPSCA; (b) schematic diagram of conversion of diatoms to carbon-based silicon nanoparticles; (c) schematic diagram of preparation of layered porous carbon; (d) synthesis of three algal biomass carbon doped with cobalt. (a) Adapted from Elsevier publisher 44. (b) Adapted from Royal Society of Chemistry publisher 45. (c) Adapted from Wiley publisher 46. (d) Adapted from Molecular Diversity Preservation International 47."
Fig 6
(a) Synthesis steps of metal nanoparticles/M13 virus template manganese oxide nanowires; (b) synthesis of multi-component transition metal (Co, Mn) oxide nanowires mediated by M13 virus; (c) PD-TMV polyethylene glycol-based microspheres were prepared by template method; (d) M13 phage mediated synthesis of Pt-Ni (OH)2 nanowires. (a) Adapted from Nature Publishing Group 49. (b, c) Adapted from American Chemical Society 50, 53. (d) Adapted from Elsevier publisher 52."
Fig 7
(a) SEM images of staphylococcus cells and SA900ZC; (b) the LSV polarization curves and (c) the corresponding Tafel plot of the Staphylococcus aureus carbon catalyst with reduced GO and NG; (d) comparison of Tafel slope and overpotential at 10 mA·cm-2 current density between Staphylococcus aureus carbon catalyst and other metal-free HER catalyst; (e) LSV curve of SA900ZC before and after 5000 CV cycle; (f) SEM, TEM and HRTEM images of CO2P-C; (g) Co2P-C and corresponding LSV curves; (h) CO2P-C and corresponding Tafel diagrams; (i) stability of Co2P-C; (j) current density and scanning rate of CO2P-C. (a–e) Adapted from Royal Society of Chemistry publisher 59. (f–j) Adapted from American Chemical Society 60."
Fig 8
(a) SEM and TEM images of Ni(Fe)OOH-FeSx; (b) activation CV curve of Ni(Fe)OH-FeSx; (c) CV curve, (d) polarization curve, (e) Tafel diagram corresponding to different electrodes; (f) SEM and TEM images of Co/DOPA-phages (g) Co/DOPA-phages and corresponding OER cyclic voltammetry curves; (h) Co/DOPA-phages Tafel figure; (i) CV diagram of Co/DOPA-phages at different Ph; (j) diagram of pH versus overpotential. (a–e) Adapted from Nature Publishing Group 64. (f–j) Adapted from Wiley publisher 65."
Fig 9
(a) SEM, TEM and HRTEM images of Fe@BC-800; (b) ORR polarization curves of different samples; (c) Fe@BC-800 ORR polarization curves at different rotating speeds; (d) the Koutecky-Levich graph of Fe@BC-800; (e) the electron transfer number of Fe@BC-800, P and Pt/C; (f) SEM, TEM and HRTEM images of Fe2P@BC; (g) Fe2P@BC and corresponding ORR polarization curves; (h) Fe2P@BC ORR polarization curves at different rotating speeds; (i) Fe2P @BC Koutecky-Levich figure; (j) number of electron transfers for all samples; (k) Fe2P@BC long-term stability and (l) methanol tolerance. (a–l) Adapted from Elsevier publisher 72, 74."
Fig 10
(a) Schematic diagram of silver nanoring synthesized by pyrotechnic wild virus; (b) local and global TEM images of Ag NPs; (c) CO2 reduction cathode LSV results; (d) Faraday efficiency (FEs) of CO at different application potentials; (e) Co-FEs at fixed potential of -1.028 V; (f) CO partial current density. (a–f) Adapted from Royal Society of Chemistry publisher 89."
Fig 11
(a) SEM image of carbonaceous rGO/ Escherichia coli; (b) carbonaceous rGO/ Escherichia coli CV curve; (c) constant current charge-discharge curve of carbonaceous rGO/ Escherichia coli at 0.5C current density; (d) cyclicity and coulombic efficiency of carbonaceous rGO/ Escherichia coli; (e) the difference of rate properties of carbonaceous rGO/ Escherichia coli at different charge amounts; (f) SEM and TEM images of SC/Ni2P/S; (g) SC/Ni2P/S and corresponding Nenquist diagrams; (h) charge/discharge curve at 0.1C; (i) SC/Ni2P/S and corresponding CV curves; (j) SC/Ni2P/S and cyclic stability of the parallel. (a–e) Adapted from Royal Society of Chemistry publisher 103. (f–j) Adapted from Wiley publisher 97."
1 |
Peng P. ; Zhou Z. ; Guo J. ; Xiang Z. ACS Energy Lett. 2017, 2 (6), 1308.
doi: 10.1021/acsenergylett.7b00267 |
2 |
Xiao W. ; Lei W. ; Gong M. ; Xin H. L. ; Wang D. ACS Catal. 2018, 8 (4), 3237.
doi: 10.1021/acscatal.7b04420 |
3 |
Grigoriev S. A. ; Mamat M. S. ; Dzhus K. A. ; Walker G. S. ; Millet P. Int. J. Hydrogen Energ. 2011, 36 (6), 4143.
doi: 10.1016/j.ijhydene.2010.07.013 |
4 |
Bard A. J. J. Am. Chem. Soc. 2010, 132 (22), 7559.
doi: 10.1021/ja101578m |
5 |
Zhao S. ; Wang D. W. ; Amal R. ; Dai L. Adv. Mater. 2019, 31 (9), 1801526.
doi: 10.1002/adma.201801526 |
6 |
Ma Y. ; Guan G. ; Hao X. ; Cao J. Renew. Sust. Energ. Rev. 2017, 75, 1101.
doi: 10.1016/j.rser.2016.11.092 |
7 |
Li Y. ; Dong Z. ; Jiao L. Adv. Energy Mater. 2020, 10 (11), 1902104.
doi: 10.1002/aenm.201902104 |
8 |
Logan S. R. ; Moss R. L. ; Kemball C. Trans. Faraday Soc. 1958, 54, 922.
doi: 10.1039/TF9585400922 |
9 |
Alexander A. M. ; Hargreaves J. S. J. Chem. Soc. Rev. 2010, 39 (11), 4388.
doi: 10.1039/B916787K |
10 | Min H. Microbiology Hangzhou: Zhejiang University Press, 2005. |
闵航. 微生物学, 杭州: 浙江大学, 2005. | |
11 | Alberts B. ; Bray D. ; Hopkins K. ; Johnson A. ; Lewis J. ; Raff M. ; Roberts K. ; Walter P. Essential Cell Biology Shrewsbury: Garland Press, 1998. |
12 | Zhai Z. H. ; Wang X. Z. ; Ding M. X. Cell Biology Beijing: Higher Education Press, 2011. |
翟中和; 王喜忠; 丁明孝.细胞生物学. 细胞生物学, 北京: 高等教育出版社, 2011. | |
13 |
Anam M. B. ; Istiaq A. ; Kariya R. ; Kudo M. ; Ishtiyaq Ahmad S. A. ; Ito N. ; Okada S. ; Ohta K. Biochem. Biophys. Rep. 2021, 26, 100946.
doi: 10.1016/j.bbrep.2021.100946 |
14 |
Wang Q. ; Yang J. ; Zhou X. ; Tang J. ; Zhong H. ; Jia M. ; Cui M. ; Jiang M. ; Wang H. J. Electrochem. Soc. 2019, 166 (4), A704.
doi: 10.1149/2.0901904jes |
15 |
Guo Z. ; Ren G. ; Jiang C. ; Lu X. ; Zhu Y. ; Jiang L. ; Dai L. Sci. Rep. 2015, 5 (1), 17064.
doi: 10.1038/srep17064 |
16 |
Varman A. M. ; He L. ; You L. ; Hollinshead W. ; Tang Y. J. Microb. Cell Fact. 2014, 13 (1), 42.
doi: 10.1186/1475-2859-13-42 |
17 |
Zhou W. J. ; Xiong T. L. ; Shi C. H. ; Zhou J. ; Zhou K. ; Zhu N. W. ; Li L. G. ; Tang Z. H. ; Chen S. W. Angew. Chem. Int. Edit. 2016, 55 (29), 8416.
doi: 10.1002/anie.201602627 |
18 |
Markou G. ; Mitrogiannis D. ; Çelekli A. ; Bozkurt H. ; Georgakakis D. ; Chrysikopoulos C. V. Chem. Eng. J. 2015, 259, 806.
doi: 10.1016/j.cej.2014.08.037 |
19 |
Zhang X. R. Acta Microbiol. Sin. 2011, (03), 12.
doi: 10.3969/j.issn.1003-1634.2008.04.011 |
20 |
Heuer-Jungemann A. ; Feliu N. ; Bakaimi I. ; Hamaly M. ; Alkilany A. ; Chakraborty I. ; Masood A. ; Casula M. F. ; Kostopoulou A. ; Oh E. ; et al Chem. Rev. 2019, 119 (8), 4819.
doi: 10.1021/acs.chemrev.8b00733 |
21 |
Gahlawat G. ; Choudhury A. R. RSC Adv. 2019, 9 (23), 12944.
doi: 10.1039/C8RA10483B |
22 |
Lee L. A. ; Nguyen H. G. ; Wang Q. Org. Biomol. Chem. 2011, 9 (18), 6189.
doi: 10.1039/C1OB05700F |
23 |
Heldal M. ; Norland S. ; Tumyr O. Appl. Environ. Microb. 1985, 50 (5), 1251.
doi: 10.1128/aem.50.5.1251-1257.1985 |
24 |
Klaus-Joerger T. ; Joerger R. ; Olsson E. ; Granqvist C. G. Trends Biotechnol. 2001, 19 (1), 15.
doi: 10.1016/S0167-7799(00)01514-6 |
25 |
Russo E. Nature 2003, 421 (6921), 456.
doi: 10.1038/nj6921-456a |
26 | Faramarzi, M. A.; Sadighi, A. Adv. Colloid Interfaces 2013, 189–190, 1. doi: 10.1016/j.cis.2012.12.001 |
27 |
Trevors J. T. Ation. Leeuw. Int. J. G. 1997, 71 (3), 257.
doi: 10.1023/A:1000175217677 |
28 |
Beveridge T. J. ; Murray R. G. J. Bacteriol. 1980, 141 (2), 876.
doi: 10.1128/jb.141.2.876-887.1980 |
29 |
Srivastava S. K. ; Constanti M. J. Nanopart. Res. 2012, 14 (4), 831.
doi: 10.1007/s11051-012-0831-7 |
30 |
Wang T. ; Zhu J. ; Wei Z. ; Yang H. ; Ma Z. ; Ma R. ; Zhou J. ; Yang Y. ; Peng L. ; Fei H. ; Lu B. ; Duan X. Nano Lett. 2019, 19 (7), 4384.
doi: 10.1021/acs.nanolett.9b00996 |
31 |
Liu J. ; Zheng Y. ; Hong Z. ; Cai K. ; Zhao F. ; Han H. Sci. Adv. 2016, 2 (9), e1600858.
doi: 10.1126/sciadv.1600858 |
32 |
Guo X. ; Qian C. ; Wan X. ; Zhang W. ; Zhu H. ; Zhang J. Nanoscale 2020, 12 (7), 4374.
doi: 10.1039/c9nr10785a |
33 |
Kalathil S. ; Katuri K. P. ; Alazmi A. S. ; Pedireddy S. ; Kornienko N. ; Costa P. M. F. J. ; Saikaly P. E. Chem. Mater. 2019, 31 (10), 3686.
doi: 10.1021/acs.chemmater.9b00394 |
34 |
Singh P. ; Kim Y. J. ; Zhang D. ; Yang D. C. Trends Biotechnol. 2016, 34 (7), 588.
doi: 10.1016/j.tibtech.2016.02.006 |
35 |
Li Q. ; Lin B. ; Zhang S. ; Deng C. J. Mater. Chem. A 2016, 4 (15), 5719.
doi: 10.1039/C6TA01465H |
36 |
Li J. ; Wang L. ; Li L. ; Lv C. ; Zatovsky I. V. ; Han W. ACS Appl. Mater. Inter. 2019, 11 (8), 8072.
doi: 10.1021/acsami.8b21976 |
37 |
Li G. X. ; Yu J. Y. ; Jia J. ; Yang L. J. ; Zhao L. L ; Zhou W. J. ; Liu H. Adv. Funct. Mater. 2018, 28, 1801332.
doi: 10.1002/adfm.201801332 |
38 |
Yu J. Y. ; Li G. X. ; Liu H. ; Zhao L. L ; Wang A.Z. ; Liu Z. ; Li H. D. ; Liu H. ; Hu Y. Y. ; Zhou W. J. Adv. Funct. Mater. 2019, 29, 1901154.
doi: 10.1002/adfm.201901154 |
39 |
Li G. ; Wang J. ; Yu J. ; Liu H. ; Cao Q. ; Du J. ; Zhao L. ; Jia J. ; Liu H. ; Zhou W. Appl. Catal. B-Environ. 2020, 261, 118147.
doi: 10.1016/j.apcatb.2019.118147 |
40 |
Li G. ; Yu J. ; Yu W. ; Yang L. ; Zhang X. ; Liu X. ; Liu H. ; Zhou W. Small 2020, 16, 2001980.
doi: 10.1002/smll.202001980 |
41 |
Sharma A. ; Sharma S. ; Sharma K. ; Chetri S. P. K. ; Vashishtha A. ; Singh P. ; Kumar R. ; Rathi B. ; Agrawal V. J. Appl. Phycol. 2016, 28 (3), 1759.
doi: 10.1007/s10811-015-0715-1 |
42 |
MubarakAli D. ; Gopinath V. Mater. Lett. 2012, 74, 8.
doi: 10.1016/j.matlet.2012.01.026 |
43 |
Abboud Y. ; Saffaj T. ; Chagraoui A. ; El Bouari A. ; Brouzi K. ; Tanane O. ; Ihssane B. Appl. Nanosci. 2014, 4 (5), 571.
doi: 10.1007/s13204-013-0233-x |
44 |
Li D. ; Chang G. ; Zong L. ; Xue P. ; Wang Y. ; Xia Y. ; Lai C. ; Yang D. Energy Storage Mater. 2019, 17, 22.
doi: 10.1016/j.ensm.2018.08.004 |
45 |
Chandrasekaran S. ; Sweetman M. J. ; Kant K. ; Skinner W. ; Losic D. ; Nann T. ; Voelcker N. H. Chem. Commun. 2014, 50 (72), 10441.
doi: 10.1039/C4CC04470C |
46 |
Cui J. ; Xi Y. ; Chen S. ; Li D. ; She X. ; Sun J. ; Han W. ; Yang D. ; Guo S. Adv. Funct. Mater. 2016, 26 (46), 8487.
doi: 10.1002/adfm.201603933 |
47 |
Li Y. ; Liu X. ; Wang J. ; Li Y ; Chen X. ; Zhang P. Catalysts 2019, 9, 730.
doi: 10.3390/catal9090730 |
48 |
Wen A. M. ; Steinmetz N. F. Chem. Soc. Rev. 2016, 45 (15), 4074.
doi: 10.1039/C5CS00287G |
49 |
Oh D. ; Qi J. ; Lu Y. C. ; Zhang Y. ; Shao-Horn Y. ; Belcher A. M. Nat. Commun. 2013, 4 (1), 2756.
doi: 10.1038/ncomms3756 |
50 |
Oh D. ; Qi J. ; Han B. ; Zhang G. ; Carney T. J. ; Ohmura J. ; Zhang Y. ; Shao-Horn Y. ; Belcher A. M. Nano Lett. 2014, 14 (8), 4837.
doi: 10.1021/nl502078m |
51 |
Records W. C. ; Yoon Y. ; Ohmura J. F. ; Chanut N. ; Belcher A. M. Nano Energy 2019, 58, 167.
doi: 10.1016/j.nanoen.2018.12.083 |
52 |
Yang C. ; Choi C. H. ; Lee C. S. ; Yi H. ACS Nano 2013, 7 (6), 5032.
doi: 10.1021/nn4005582 |
53 |
Aljabali A. A. A. ; Sainsbury F. ; Lomonossoff G. P. ; Evans D. J. Small 2010, 6 (7), 818.
doi: 10.1002/smll.200902135 |
54 |
Sicard C. ; Brayner R. ; Margueritat J. ; Hémadi M. ; Couté A. ; Yéprémian C. ; Djediat C. ; Aubard J. ; Fiévet F. ; Livage J. ; et al J. Mater. Chem 2010, 20 (42), 9342.
doi: 10.1039/C0JM01735C |
55 |
Niu S. ; Cai J. ; Wang G. Nano Res. 2021, 14 (6), 1985.
doi: 10.1007/s12274-020-3249-z |
56 |
Hua W. ; Sun H. H. ; Xu F. ; Wang J. G. Rare Met. 2020, 39 (4), 335.
doi: 10.1007/s12598-020-01384-7 |
57 |
Wang J. ; Gao Y. ; Kong H. ; Kim J. ; Choi S. ; Ciucci F. ; Hao Y. ; Yang S. ; Shao Z. ; Lim J. Chem. Soc. Rev. 2020, 49 (24), 9154.
doi: 10.1039/D0CS00575D |
58 |
Shinozaki K. ; Zack J. W. ; Richards R. M. ; Pivovar B. S. J. Electrochem. Soc. 2015, 162 (10), F1144.
doi: 10.1149/2.1071509jes |
59 |
Wei L. ; Karahan H. E. ; Goh K. ; Jiang W. ; Yu D. ; Birer Ö. ; Jiang R. ; Chen Y. J. Mater. Chem. A 2015, 3 (14), 7210.
doi: 10.1039/C5TA00966A |
60 |
Zhang T. Q. ; Liu J. ; Huang L. B. ; Zhang X. D. ; Sun Y. G. ; Liu X. C. ; Bin D. S. ; Chen X. ; Cao A. M. ; Hu J. S. ; et al J. Am. Chem. Soc. 2017, 139 (32), 11248.
doi: 10.1021/jacs.7b06123 |
61 |
Pan Y. ; Mauzeroll J. Joule 2020, 4 (4), 712.
doi: 10.1016/j.joule.2020.03.015 |
62 |
Dau H. ; Limberg C. ; Reier T. ; Risch M. ; Roggan S. ; Strasser P. ChemCatChem 2010, 2 (7), 724.
doi: 10.1002/cctc.201000126 |
63 |
Ma X. ; Zhang X. Y. ; Yang M. ; Xie J. Y. ; Lv R. Q. ; Chai Y. M. ; Dong B. Rare Met. 2021, 40 (5), 1048.
doi: 10.1007/s12598-020-01704-x |
64 |
Yang H. ; Gong L. ; Wang H. ; Dong C. ; Wang J. ; Qi K. ; Liu H. ; Guo X. ; Xia B. Y. Nat. Commun. 2020, 11 (1), 5075.
doi: 10.1038/s41467-020-18891-x |
65 |
Rho J. ; Lim S. Y. ; Hwang I. ; Yun J. ; Chung T. D. ChemCatChem 2018, 10 (1), 165.
doi: 10.1002/cctc.201701111 |
66 |
Suh W. k. ; Ganesan P. ; Son B. ; Kim H. ; Shanmugam S. Int. J. Hydrogen Energ. 2016, 41 (30), 12983.
doi: 10.1016/j.ijhydene.2016.04.090 |
67 |
Gómez-Marín A. ; Feliu J. ; Edson T. ACS Catal. 2018, 8 (9), 7931.
doi: 10.1021/acscatal.8b01291 |
68 |
Ding R. ; Liu Y. ; Rui Z. ; Li J. ; Liu J. ; Zou Z. Nano Res. 2020, 13 (6), 1519.
doi: 10.1007/s12274-020-2768-y |
69 |
Wang Y. ; Wang D. ; Li Y. SmartMat 2021, 2 (1), 56.
doi: 10.1002/smm2.1023 |
70 |
Liu X. ; Liu H. ; Chen C. ; Zou L. ; Li Y. ; Zhang Q. ; Yang B. ; Zou Z. ; Yang H. Nano Res. 2019, 12 (7), 1651.
doi: 10.1007/s12274-019-2415-7 |
71 |
Chen H. ; Liang X. ; Liu Y. ; Ai X. ; Asefa T. ; Zou X. Adv. Mater. 2020, 32 (44), 2002435.
doi: 10.1002/adma.202002435 |
72 |
Ma X. ; Lei Z. ; Feng W. ; Ye Y. ; Feng C. Carbon 2017, 123, 481.
doi: 10.1016/j.carbon.2017.07.091 |
73 |
Ferrero G. A. ; Preuss K. ; Marinovic A. ; Jorge A. B. ; Mansor N. ; Brett D. J. L. ; Fuertes A. B. ; Sevilla M. ; Titirici M. M. ACS Nano 2016, 10 (6), 5922.
doi: 10.1021/acsnano.6b01247 |
74 |
Ye Y. ; Duan W. ; Yi X. ; Lei Z. ; Li G. ; Feng C. J. Power Sources 2019, 435, 226770.
doi: 10.1016/j.jpowsour.2019.226770 |
75 |
Stolarczyk J. K. ; Bhattacharyya S. ; Polavarapu L. ; Feldmann J. ACS Catal. 2018, 8 (4), 3602.
doi: 10.1021/acscatal.8b00791 |
76 |
Corbin N. ; Zeng J. ; Williams K. ; Manthiram K. Nano Res. 2019, 12 (9), 2093.
doi: 10.1007/s12274-019-2403-y |
77 |
Yang C. H. ; Nosheen F. ; Zhang Z. C. Rare Met. 2021, 40 (6), 1412.
doi: 10.1007/s12598-020-01600-4 |
78 |
Kuang M. ; Guan A. ; Gu Z. ; Han P. ; Qian L. ; Zheng G. Nano Res. 2019, 12 (9), 2324.
doi: 10.1007/s12274-019-2396-6 |
79 |
Chen G. Z. ; Chen K. J. ; Fu J. W. ; Liu M. Rare Met. 2020, 39 (6), 607.
doi: 10.1007/s12598-020-01416-2 |
80 |
Leitner W. Angew. Chem. Int. Edit. 1995, 34 (20), 2207.
doi: 10.1002/anie.199522071 |
81 |
Benson E. E. ; Kubiak C. P. ; Sathrum A. J. ; Smieja J. M. Chem. Soc. Rev. 2009, 38 (1), 89.
doi: 10.1039/B804323J |
82 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4 (11), 1700194.
doi: 10.1002/advs.201700194 |
83 | Song Y. K. ; Xie W. F. ; Shao M. F. Acta Phys. -Chim. Sin. 2022, 38, 2101028. |
宋雨珂; 谢文富; 邵明飞. 物理化学学报, 2022, 38, 2101028.
doi: 10.3866/PKU.WHXB202101028 |
|
84 | Hao L. D. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009033. |
郝磊端; 孙振宇. 物理化学学报, 2021, 37 (7), 2009033.
doi: 10.3866/PKU.WHXB202009033 |
|
85 |
Li L. ; Zhang C. W. ; Chen G. Y. J. ; Zhu B. ; Chai C. ; Xu Q. H. ; Tan E. K. ; Zhu Q. ; Lim K. L. ; Yao S. Q. Nat. Commun. 2014, 5 (1), 3276.
doi: 10.1038/ncomms4276 |
86 |
Marques Mota F. ; Nguyen D. L. T. ; Lee J. E. ; Piao H. ; Choy J. H. ; Hwang Y. J. ; Kim D. H. ACS Catal. 2018, 8 (5), 4364.
doi: 10.1021/acscatal.8b00647 |
87 |
Bosque I. ; Bach T. ACS Catal. 2019, 9 (10), 9103.
doi: 10.1021/acscatal.9b01039 |
88 |
Rosen J. ; Hutchings G. S. ; Lu Q. ; Rivera S. ; Zhou Y. ; Vlachos D. G. ; Jiao F. ACS Catal. 2015, 5 (7), 4293.
doi: 10.1021/acscatal.5b00840 |
89 |
Pan Y. ; Paschoalino W. J. ; Bayram S. S. ; Blum A. S. ; Mauzeroll J. Nanoscale 2019, 11 (40), 18595.
doi: 10.1039/C9NR04464G |
90 |
Ai G. ; Dai Y. ; Mao W. ; Zhao H. ; Fu Y. ; Song X. ; En Y. ; Battaglia V. S. ; Srinivasan V. ; Liu G. Nano Lett. 2016, 16 (9), 5365.
doi: 10.1021/acs.nanolett.6b01434 |
91 |
Wu M. ; Li Y. ; Liu X. ; Yang S. ; Ma J. ; Dou S. SmartMat 2021, 2 (1), 5.
doi: 10.1002/smm2.1015 |
92 |
Xia L. ; Zhou Y. ; Ren J. ; Wu H. ; Lin D. ; Xie F. ; Jie W. ; Lam K. H. ; Xu C. ; Zheng Q. Energ. Fuel. 2018, 32 (9), 9997.
doi: 10.1021/acs.energyfuels.8b01453 |
93 | Su Y. F. ; Zhang Q. Y. ; Chen L. ; Bao L. Y. ; Lu Y. ; Chen S. ; Wu F. Acta Phys. -Chim. Sin. 2021, 37 (3), 2005062. |
苏岳锋; 张其雨; 陈来; 包丽颖; 卢赟; 陈实; 吴锋. 物理化学学报, 2021, 37 (3), 2005062.
doi: 10.3866/PKU.WHXB202005062 |
|
94 | Zhang S. D. ; Liu Y. ; Qi M. Y. ; Cao A. M. Acta Phys. -Chim. Sin. 2021, 37 (11), 2011007. |
张思东; 刘园; 祁慕尧; 曹安民. 物理化学学报, 2021, 37 (11), 2011007.
doi: 10.3866/PKU.WHXB202011007 |
|
95 |
Hu G. ; Sun Z. ; Shi C. ; Fang R. ; Chen J. ; Hou P. ; Liu C. ; Cheng H. M. ; Li F. Adv. Mater. 2017, 29 (11), 1603835.
doi: 10.1002/adma.201603835 |
96 |
Hao J. N. ; Huang Y. J. ; He C. ; Xu W. J. ; Yuan L. B. ; Shu D. ; Song X. N. ; Meng T. Sci. Rep. 2018, 8 (1), 562.
doi: 10.1038/s41598-017-18895-6 |
97 |
Zhong Y. ; Xia X. ; Deng S. ; Xie D. ; Shen S. ; Zhang K. ; Guo W. ; Wang X. ; Tu J. Adv. Mater. 2018, 30 (46), 1805165.
doi: 10.1002/adma.201805165 |
98 |
Gao S. ; Fan H. ; Zhang S. J. Mater. Chem. A 2014, 2 (43), 18263.
doi: 10.1039/C4TA03558E |
99 |
Zhang C. ; Shen L. ; Shen J. ; Liu F. ; Chen G. ; Tao R. ; Ma S. ; Peng Y. ; Lu Y. Adv. Mater. 2019, 31 (21), 1808338.
doi: 10.1002/adma.201808338 |
100 |
Xie Y. ; Fang L. ; Cheng H. ; Hu C. ; Zhao H. ; Xu J. ; Fang J. ; Lu X. ; Zhang J. J. Mater. Chem. A 2016, 4 (40), 15612.
doi: 10.1039/C6TA06164H |
101 |
Zhou L. ; Fu P. ; Wang Y. ; Sun L. ; Yuan Y. J. Mater. Chem. A 2016, 4 (19), 7222.
doi: 10.1039/C6TA01662F |
102 |
Shen S. ; Zhou R. ; Li Y. ; Liu B. ; Pan G. ; Liu Q. ; Xiong Q. ; Wang X. ; Xia X. ; Tu J. Small Methods 2019, 3 (12), 1900596.
doi: 10.1002/smtd.201900596 |
103 |
Wang X. ; Ai W. ; Li N. ; Yu T. ; Chen P. J. Mater. Chem. A 2015, 3 (24), 12873.
doi: 10.1039/C5TA01987G |
104 |
Wei L. ; Karahan H. E. ; Zhai S. ; Yuan Y. ; Qian Q. ; Goh K. ; Ng A. K. ; Chen Y. J. Energy Chem. 2016, 25 (2), 191.
doi: 10.1016/j.jechem.2015.12.001 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[4] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[5] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[6] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[7] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[8] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[9] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[10] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[11] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[12] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[13] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[14] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[15] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
|