Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2106034.doi: 10.3866/PKU.WHXB202106034
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Kunjie Wu1,2, Yongyi Zhang1,2,3,*(), Zhenzhong Yong1,2,*(
), Qingwen Li1,3
Received:
2021-06-24
Accepted:
2021-07-26
Published:
2021-08-02
Contact:
Yongyi Zhang,Zhenzhong Yong
E-mail:yyzhang2011@sinano.ac.cn;zzyong2008@sinano.ac.cn
About author:
Email: zzyong2008@sinano.ac.cn (Z.Y.)Supported by:
MSC2000:
Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers[J].Acta Phys. -Chim. Sin., 2022, 38(9): 2106034.
Fig 7
Effects of the CNT structure on the mechanical performance of CNT fibers. (a) Effect of catalyst content on the wall number of CNT and the strength of fiber 67; (b) HRTEM image of a CNT bundle with collapsed double-wall CNTs greater than 5 nm 69; (c) tensile strength versus aspect ratio for CNT fibers by wet spinning 72; (d) specific strength distribution of CNT fibers for different gauge lengths 63."
Fig 8
Mechanical enhancement of CNT fibers by stretching treatment. (a) Schematic of multi-step stretching of CNT/BMI composite fiber, (b) typical stress-strain curves for CNT/BMI composite fibers prepared by different stretching methods 86; (c) schematic representation of fast stretching and densification processes of CNT fibers using chlorosulfonic acid, (d) stress-strain curves of stretched CNT fibers 89."
Fig 9
Mechanical enhancement of CNT fibers by densification treatment. (a) A schematic of the system for rolling CNT fiber, (b) SEM image of the CNT fiber after rolling 47; (c) schematic of the diamond wire drawing dies used to align and densify CNT fibers, (d, e) microphotographs of CNT fibers after being pulled through diamond dies 98."
Fig 10
Mechanical enhancement of CNT fibers by promoting inter-tube interaction. (a) Setup for applying incandescent tension annealing process to CNT fibers and the cross-section SEM images before and after treatment, (b) comparison of specific strength and specific modulus of CNT fibers after incandescent annealing under different applied stresses 107; (c) a schematic illustration of the reinforcement of the CNT fibers by mussel-mimetic, catechol-containing adhesives, (d) SEM image of treated CNT fiber 115; (e) schematic and TEM images of a CNT fiber, (f) a PDA-CNT fiber and (g) a py-PDA-CNT fiber 116."
Table 1
Summary of the efficient enhancement methods for mechanical property of CNTFs."
Enhancement methods for mechanical property of CNT fibers | Strength (GPa) | Specific strength (N?tex?1) | Ref. |
FCCVD CNT fibers | |||
CNT alignment by high collecting speed, controlling the gauge length | – | 9 | |
CNT alignment by high collecting speed, densification by mechanical rolling | 9.6 | – | |
Controlling the CNT length and alignment during FCCVD process | – | 3.1 | |
Stretching with the aid of chlorosulfonic acid | 4.08 | – | |
Controlling the growth condition of FCCVD, stretching with the aid of chlorosulfonic acid | – | 6.4 | |
Combining with BMI resin, mechanical stretching | 3.08 | – | |
Combining with polymer and in-situ cross-linking under tension | – | 3.5 | |
Combining with BMI resin, multi-step stretching | 6.94 | – | |
Mechanical densification, combining with epoxy resin | 5.2 | – | |
Densification by mechanical rolling | 5.53 | – | |
Densification by twisting | 3.7 | – | |
CNT bonding by Joule heating under tension | 3.2 | – | |
Covalent bonding between CNTs with small molecules | – | 3.7 | |
Array spinning CNT fibers | |||
Spinning from ultra-long CNT arrays | 1.068 | – | |
Controlling wall number and diameter of CNT | 1.23 | – | |
Controlling the alignment and length of CNT array | 3.3 | – | |
Controlling waviness morphology of CNT array | 1.3 | – | |
Twisting, mechanical stretching | 1.1 | – | |
Alignment and densification by evaporation of solvent under tension | 3.2 | – | |
Alignment by “Microcombing” | 3.2 | – | |
Infiltrating with adhesive polymer, heat-induced crosslinking | 2.2 | – | |
Forming CNT/C composite by infiltrating with poly-dopamine, pyrolysis | 4.04 | – | |
Combining with Al/Cu by sputtering, heat-induced diffusion | 6.6 | – | |
Wet spinning CNT fibers | |||
Spinning from liquid crystal CNT dope, using long CNT | 4.2 | – | |
Spinning from liquid crystal CNT dope, controlling CNT aspect ratio | 2.4 | – | |
Spinning from liquid crystal CNT dope | 1 | – | |
Combining with PVA, hot stretching | 1.4–1.8 | – |
Fig 12
Electrical conductivity enhancement of CNT fibers by inter-tube conductive material filling. (a) Schematic depict for synthesis of PIS-cross linked CNT fiber by aryl radical coupling reaction 158; (b) schematic diagram of continuously produced hybrid CNT/graphene yarn 159; (c) schematic illustrations of the preparation process of the Py-PDA/CNT/C composite fiber 160."
Fig 13
Electrical conductivity enhancement of CNT fibers by doping. (a) Elemental mapping of iodine for I2 doped CNT fiber, (b) comparison in specific conductivity among raw, doped CNT fibers and several metals 170; (c) schematic illustration for the fabrication of highly conductive and macroscopic CNT sheets, including mechanical stretching, chemical doping, and dip-coating processes 149."
Fig 14
Electrical conductivity enhancement of CNT fibers by compositing with metal. (a) Schematic representation of various steps for CNT-Cu composite fabrication, (b) variation of resistivity with current density for CNT-Cu composite, (c) comparison of specific conductivity of CNT-Cu with different metals 184; (d–f) morphologies and Cu element mapping of CNT/Al-Cu composite fibers 112."
Table 2
Summary of the efficient enhancement methods for conductivity of CNTFs."
Enhancement methods for conductivity of CNT fibers | Conductivity (S?m?1) | Specific conductivity (S?m2?kg?1) | Ref. |
FCCVD CNT fibers | |||
Stretching with the aid of chlorosulfonic acid | – | 2270 | |
Densification by twisting | 1.2 × 106 | – | |
Densification by mechanical pressing (using a spatula) | 1.2 × 106 | – | |
Densification by liquid induced shrink, mechanical rolling | 2.24 × 106 | – | |
Densification by drawing through tungsten carbide dies, doping with KAuBr4 | 1.3 × 106 | – | |
Alignment by stretching, doping with I2, capping with conducting polymer | 1.3 × 106 | – | |
Removing Fe catalyst impurities, doping with I2 | 6.7 × 106 | 1.96 × 104 | |
Doping with Br2 gas | 1.63 × 106 | 1390 | |
Combining with Cu by physical vapor deposition, densification by drawing through a series of dies | 1.37 × 107 | – | |
Array spinning CNT fibers | |||
Densification by twisting, shrinking induced by solvent evaporation | 9.1 × 104 | – | |
Alignment by “Microcombing” | 1.8 × 105 | – | |
Combining with GO | 9.0 × 104 | – | |
Forming CNT/C composite by infiltrating with poly-dopamine, pyrolysis | 4.9 × 105 | – | |
Doping with H2O2 | 3.6 × 105 | – | |
Combining with Cu through organic electrodeposition and aqueous electrodeposition | 4.7 × 107 | 8300 | |
Combining with Al/Cu by sputtering, heat-induced diffusion | 1.8 × 107 | – | |
Combining with Cu by continuous anodization and electrodeposition | 1.84 × 107 | – | |
Wet spinning CNT fibers | |||
Spinning from liquid crystal CNT dope, doping with I2 | 5.0 × 106 | – | |
Spinning from liquid crystal CNT dope, using long CNT | 1.09 × 107 | – |
1 | Zhang, J.; Zhang, Y. Y. Carbon Nanotubes: Growth Mechanism and Structural Control. Beijing: Science Press, 2019. |
张锦, 张莹莹 碳纳米管的结构控制生长, 北京: 科学出版社, 2019. | |
2 |
Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z.; et al. Nat. Nanotechnol. 2018, 13, 589.
doi: 10.1038/s41565-018-0141-z |
3 |
Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Nat. Nanotechnol. 2008, 3, 626.
doi: 10.1038/nnano.2008.211 |
4 |
Ebbesen, T.; Lezec, H.; Hiura, H.; Bennett, J.; Ghaemi, H.; Thio, T. Nature 1996, 382, 54.
doi: 10.1038/382054a0 |
5 |
Purewal, M. S.; Hong, B. H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Phys. Rev. Lett. 2007, 98, 186808.
doi: 10.1103/PhysRevLett.98.186808 |
6 |
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Nature 2003, 424, 654.
doi: 10.1038/nature01797 |
7 |
Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Appl. Phys. Lett. 2001, 79, 1172.
doi: 10.1063/1.1396632 |
8 |
Yao, Z.; Kane, C. L.; Dekker, C. Phys. Rev. Lett. 2000, 84, 2941.
doi: 10.1103/PhysRevLett.84.2941 |
9 |
Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Adv. Mater. 2020, 32, 1902028.
doi: 10.1002/adma.201902028 |
10 |
Lu, W.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. Adv. Mater. 2012, 24, 1805.
doi: 10.1002/adma.201104672 |
11 |
Li, Q. W.; Zhao, J. N.; Zhang, X. H. J. Textile Res. 2018, 39, 145.
doi: 10.13475/j.fzxb.20180806607 |
李清文, 赵静娜, 张骁骅 纺织学报, 2018, 39, 145.
doi: 10.13475/j.fzxb.20180806607 |
|
12 |
Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Science 2000, 290, 1331.
doi: 10.1126/science.290.5495.1331 |
13 |
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801.
doi: 10.1038/419801a |
14 |
Li, Y. L.; Kinloch, I. A.; Windle, A. H. Science 2004, 304, 276.
doi: 10.1126/science.1094982 |
15 |
Wang, H. M.; He, M. S.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2019, 35, 1207.
doi: 10.3866/PKU.WHXB201811011 |
王灏珉, 何茂帅, 张莹莹 物理化学学报, 2019, 35, 1207.
doi: 10.3866/PKU.WHXB201811011 |
|
16 |
Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. Nano Lett. 2016, 16, 946.
doi: 10.1021/acs.nanolett.5b03863 |
17 |
Taylor, L. W.; Dewey, O. S.; Headrick, R. J.; Komatsu, N.; Peraca, N. M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Carbon 2021, 171, 689.
doi: 10.1016/j.carbon.2020.07.058 |
18 | Li, Q. W.; Lv, W. B.; Zhang, X. H.; Zhang, Y. Y. Carbon Nanotube Fiber. Beijing: National Defense Industry Press, 2018. |
李清文, 吕卫帮, 张骁骅, 张永毅 碳纳米管纤维, 北京: 国防工业出版社, 2018. | |
19 |
Xie, D.; Zhang, J. S.; Pan, G. X.; Li, H. G.; Xie, S. L.; Wang, S. S.; Fan, H. B.; Cheng, F. L.; Xia, X. H. ACS Appl. Mater. Interfaces. 2019, 11, 18662.
doi: 10.1021/acsami.9b05667 |
20 |
Lu, Q.; Zou, X.; Liao, K.; Ran, R.; Zhou, W.; Ni, M.; Shao, Z. Carbon Energy 2020, 2, 461.
doi: 10.1002/cey2.50 |
21 |
Liang, X. Q.; Chen, M. H.; Pan, G. X.; Wu, J. B.; Xia, X. H. Funct. Mater. Lett. 2019, 12, 1950049.
doi: 10.1142/s1793604719500498 |
22 |
Cai, W.; Zhang, Y.; Jia, Y.; Yan, J. Carbon Energy 2020, 2, 472.
doi: 10.1002/cey2.46 |
23 |
Liu, L.; Ma, W.; Zhang, Z. Small 2011, 7, 1504.
doi: 10.1002/smll.201002198 |
24 |
Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; et al. Science 2004, 305, 1447.
doi: 10.1126/science.1101398 |
25 |
Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E.; et al. Science 2013, 339, 182.
doi: 10.1126/science.1228061 |
26 |
Meng, J.; Zhang, Y.; Song, K.; Minus, M. L. Macromol. Mater. Eng. 2014, 299, 144.
doi: 10.1002/mame.201300025 |
27 |
Jiang, K.; Wang, J.; Li, Q.; Liu, L.; Liu, C.; Fan, S. Adv. Mater. 2011, 23, 1154.
doi: 10.1002/adma.201003989 |
28 |
Miao, M. Particuology 2013, 11, 378.
doi: 10.1016/j.partic.2012.06.017 |
29 |
Liu, K.; Sun, Y.; Chen, L.; Feng, C.; Feng, X.; Jiang, K.; Zhao, Y.; Fan, S. Nano Lett. 2008, 8, 700.
doi: 10.1021/nl0723073 |
30 |
Ye, Y. T.; Zhang, X. H.; Meng, F. C.; Zhao, J. N.; Li, Q. W. J. Mater. Chem. C. 2013, 1, 2009.
doi: 10.1039/c3tc00539a |
31 |
Liu, K.; Sun, Y. H.; Zhou, R. F.; Zhu, H. Y.; Wang, J. P.; Liu, L.; Fan, S. S.; Jiang, K. L. Nanotechnology. 2010, 21, 045708.
doi: 10.1088/0957-4484/21/4/045708 |
32 |
Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358.
doi: 10.1126/science.1104276 |
33 |
Li, Q.; Zhang, X.; DePaula, R. F.; Zheng, L.; Zhao, Y.; Stan, L.; Holesinger, T. G.; Arendt, P. N.; Peterson, D. E.; Zhu, Y. T. Adv. Mater. 2006, 18, 3160.
doi: 10.1002/adma.200601344 |
34 |
Zhang, X.; Li, Q.; Holesinger, T. G.; Arendt, P. N.; Huang, J.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X.; Zhao, Y.; et al. Adv. Mater. 2007, 19, 4198.
doi: 10.1002/adma.200700776 |
35 |
Di, J.; Hu, D.; Chen, H.; Yong, Z.; Chen, M.; Feng, Z.; Zhu, Y.; Li, Q. ACS Nano 2012, 6, 5457.
doi: 10.1021/nn301321j |
36 |
Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Science 2005, 309, 1215.
doi: 10.1126/science.1115311 |
37 |
Inoue, Y.; Suzuki, Y.; Minami, Y.; Muramatsu, J.; Shimamura, Y.; Suzuki, K.; Ghemes, A.; Okada, M.; Sakakibara, S.; Mimura, F.; Naito, K. Carbon 2011, 49, 2437.
doi: 10.1016/j.carbon.2011.02.010 |
38 |
Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Angew. Chem. Int. Edit. 2011, 50, 1815.
doi: 10.1002/anie.201003870 |
39 |
Zhao, J.; Zhang, X.; Di, J.; Xu, G.; Yang, X.; Liu, X.; Yong, Z.; Chen, M.; Li, Q. Small 2010, 6, 2612.
doi: 10.1002/smll.201001120 |
40 |
Li, S.; Zhang, X.; Zhao, J.; Meng, F.; Xu, G.; Yong, Z.; Jia, J.; Zhang, Z.; Li, Q. Compos. Sci. Technol. 2012, 72, 1402.
doi: 10.1016/j.compscitech.2012.05.013 |
41 |
Zhong, X. H.; Li, Y. L.; Liu, Y. K.; Qiao, X. H.; Feng, Y.; Liang, J.; Jin, J.; Zhu, L.; Hou, F.; Li, J. Y. Adv. Mater. 2010, 22, 692.
doi: 10.1002/adma.200902943 |
42 |
Janas, D.; Koziol, K. K. Nanoscale 2016, 8, 19475.
doi: 10.1039/c6nr07549e |
43 |
Smail, F.; Boies, A.; Windle, A. Carbon 2019, 152, 218.
doi: 10.1016/j.carbon.2019.05.024 |
44 |
Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Appl. Phys. Lett. 1998, 72, 3282.
doi: 10.1063/1.121624 |
45 |
Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Science 2002, 296, 884.
doi: 10.1126/science.1066996 |
46 | Feng, J. M. Fabrication of Continuous Carbon Nanotube Fibers by a Safe CVD Method. Ph. D. Dissertation, Tianjin University, Tianjin, 2012 |
冯建民. 安全化学气相法制备连续碳纳米管纤维[D]. 天津: 天津大学, 2012. | |
47 |
Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. Nat. Commun. 2014, 5, 3848.
doi: 10.1038/ncomms4848 |
48 |
Zhou, T.; Niu, Y.; Li, Z.; Li, H.; Yong, Z.; Wu, K.; Zhang, Y.; Li, Q. Mater. Design. 2021, 203, 109557.
doi: 10.1016/j.matdes.2021.109557 |
49 |
Yadav, M. D.; Dasgupta, K.; Patwardhan, A. W.; Joshi, J. B. Ind. Eng. Chem. Res. 2017, 56, 12407.
doi: 10.1021/acs.iecr.7b02269 |
50 |
Jung, Y.; Cho, Y. S.; Lee, J. W.; Oh, J. Y.; Park, C. R. Compos. Sci. Technol. 2018, 166, 95.
doi: 10.1016/j.compscitech.2018.02.010 |
51 |
Xu, Z. C.; Wu, L. L.; Chen, T. China Textile Leader. 2019, 67
doi: 10.16481/j.cnki.ctl.2019.06.013 |
徐子超, 吴丽莉, 陈廷 纺织导报, 2019, 67
doi: 10.16481/j.cnki.ctl.2019.06.013 |
|
52 |
Bai, Y.; Yue, H.; Wang, J.; Shen, B.; Sun, S.; Wang, S.; Wang, H.; Li, X.; Xu, Z.; Zhang, R.; Wei, F. Science 2020, 369, 1104.
doi: 10.1126/science.aay5220 |
53 |
Berber, S.; Kwon, Y. K.; Tomanek, D. Phys. Rev. Lett. 2000, 84, 4613.
doi: 10.1103/PhysRevLett.84.4613 |
54 |
Pop, E.; Mann, D.; Wang, Q.; Goodson, K. E.; Dai, H. J. Nano Lett. 2006, 6, 96.
doi: 10.1021/nl052145f |
55 |
Vilatela, J. J.; Elliott, J. A.; Windle, A. H. ACS Nano 2011, 5, 1921.
doi: 10.1021/nn102925a |
56 | Zhao, J. N. Study of Mechanical Properties of Various Assembled Carbon Nanotube Fibers. Ph. D. Dissertation, Soochow University, Suzhou, 2016 |
赵静娜. 碳纳米管纤维的组装结构调控及其力学性能研究[D]. 苏州: 苏州大学, 2016. | |
57 |
Wu, K.; Niu, Y.; Zhang, Y.; Yong, Z.; Li, Q. Compos. Part A. 2021, 144, 106359.
doi: 10.1016/j.compositesa.2021.106359 |
58 |
Jia, J.; Zhao, J.; Xu, G.; Di, J.; Yong, Z.; Tao, Y.; Fang, C.; Zhang, Z.; Zhang, X.; Zheng, L.; Li, Q. Carbon 2011, 49, 1333.
doi: 10.1016/j.carbon.2010.11.054 |
59 |
Weller, L.; Smail, F. R.; Elliott, J. A.; Windle, A. H.; Boies, A. M.; Hochgreb, S. Carbon 2019, 146, 789.
doi: 10.1016/j.carbon.2019.01.091 |
60 |
Jung, D. W.; Lee, K. H.; Kim, J. H.; Burk, D.; Overzet, L. J.; Lee, G. S.; Kong, S. H. J. Nanosci. Nanotechnol. 2012, 12, 5663.
doi: 10.1166/jnn.2012.6349 |
61 |
Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 54.
doi: 10.3866/PKU.WHXB201907021 |
张树辰, 张娜, 张锦 物理化学学报, 2020, 36, 54.
doi: 10.3866/PKU.WHXB201907021 |
|
62 |
Aleman, B.; Reguero, V.; Mas, B.; Vilatela, J. J. ACS Nano 2015, 9, 7392.
doi: 10.1021/acsnano.5b02408 |
63 |
Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. Science 2007, 318, 1892.
doi: 10.1126/science.1147635 |
64 |
Beese, A. M.; Wei, X.; Sarkar, S.; Ramachandramoorthy, R.; Roenbeck, M. R.; Moravsky, A.; Ford, M.; Yavari, F.; Keane, D. T.; Loutfy, R. O.; et al. ACS Nano 2014, 8, 11454.
doi: 10.1021/nn5045504 |
65 |
Liu, Q. L.; Li, M.; Gu, Y. Z.; Zhang, Y. Y.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Nanoscale 2014, 6, 4338.
doi: 10.1039/c3nr06704a |
66 |
Vigolo, B.; Poulin, P.; Lucas, M.; Launois, P.; Bernier, P. Appl. Phys. Lett. 2002, 81, 1210.
doi: 10.1063/1.1497706 |
67 |
Motta, M.; Li, Y. L.; Kinloch, I.; Windle, A. Nano Lett. 2005, 5, 1529.
doi: 10.1021/nl050634+ |
68 |
Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Phys. Rev. Lett. 2004, 92, 095501.
doi: 10.1103/PhysRevLett.92.095501 |
69 |
Motta, M.; Moisala, A.; Kinloch, I. A.; Windle, A. H. Adv. Mater. 2007, 19, 3721.
doi: 10.1002/adma.200700516 |
70 |
Zhang, X.; Li, Q. ACS Nano 2010, 4, 312.
doi: 10.1021/nn901515j |
71 |
Gadagkar, V.; Maiti, P. K.; Lansac, Y.; Jagota, A.; Sood, A. K. Phys. Rev. B. 2006, 73, 085402.
doi: 10.1103/PhysRevB.73.085402 |
72 |
Tsentalovich, D. E.; Headrick, R. J.; Mirri, F.; Hao, J.; Behabtu, N.; Young, C. C.; Pasquali, M. ACS Appl. Mater. Interfaces. 2017, 9, 36189.
doi: 10.1021/acsami.7b10968 |
73 |
Fang, S. L.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. J. Phys. -Condens. Mat. 2010, 22, 334221.
doi: 10.1088/0953-8984/22/33/334221 |
74 |
Zhang, X.; Li, Q.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L.; Zhao, Y.; Jia, Q.; Peterson, D. E.; Zhu, Y. Small 2007, 3, 244.
doi: 10.1002/smll.200600368 |
75 |
Ghemes, A.; Minami, Y.; Muramatsu, J.; Okada, M.; Mimura, H.; Inoue, Y. Carbon 2012, 50, 4579.
doi: 10.1016/j.carbon.2012.05.043 |
76 |
Shaffer, M. S. P.; Windle, A. H. Macromolecules 1999, 32, 6864.
doi: 10.1021/ma990095t |
77 |
Cheng, Q.; Bao, J.; Park, J.; Liang, Z.; Zhang, C.; Wang, B. Adv. Funct. Mater. 2009, 19, 3219.
doi: 10.1002/adfm.200900663 |
78 |
Zhang, L.; Wang, X.; Xu, W.; Zhang, Y.; Li, Q.; Bradford, P. D.; Zhu, Y. Small 2015, 11, 3830.
doi: 10.1002/smll.201500111 |
79 |
Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; et al. Nat. Nanotechnol. 2009, 4, 830.
doi: 10.1038/nnano.2009.302 |
80 |
Zhou, W.; Vavro, J.; Guthy, C.; Winey, K. I.; Fischer, J. E.; Ericson, L. M.; Ramesh, S.; Saini, R.; Davis, V. A.; Kittrell, C.; et al. J. Appl. Phys. 2004, 95, 649.
doi: 10.1063/1.1627457 |
81 |
Zheng, L.; Sun, G.; Zhan, Z. Small 2010, 6, 132.
doi: 10.1002/smll.200900954 |
82 |
Wang, J. J.; Zhao, J. N.; Qiu, L.; Li, F. C.; Xu, C. L.; Wu, K. J.; Wang, P. F.; Zhang, X. H.; Li, Q. W. RSC Adv. 2020, 10, 18715.
doi: 10.1039/d0ra02675a |
83 |
Wang, X.; Bradford, P. D.; Liu, W.; Zhao, H.; Inoue, Y.; Maria, J. P.; Li, Q.; Yuan, F. G.; Zhu, Y. Compos. Sci. Technol. 2011, 71, 1677.
doi: 10.1016/j.compscitech.2011.07.023 |
84 |
Cheng, Q.; Wang, B.; Zhang, C.; Liang, Z. Small 2010, 6, 763.
doi: 10.1002/smll.200901957 |
85 |
Downes, R.; Wang, S.; Haldane, D.; Moench, A.; Liang, R. Adv. Eng. Mater. 2015, 17, 349.
doi: 10.1002/adem.201400045 |
86 |
Han, Y.; Zhang, X.; Yu, X.; Zhao, J.; Li, S.; Liu, F.; Gao, P.; Zhang, Y.; Zhao, T.; Li, Q. Sci. Rep. 2015, 5, 11533.
doi: 10.1038/srep11533 |
87 |
Miaudet, P.; Badaire, S.; Maugey, M.; Derre, A.; Pichot, V.; Launois, P.; Poulin, P.; Zakri, C. Nano Lett. 2005, 5, 2212.
doi: 10.1021/nl051419w |
88 |
Liu, J.; Gong, W.; Yao, Y.; Li, Q.; Jiang, J.; Wang, Y.; Zhou, G.; Qu, S.; Lu, W. Compos. Sci. Technol. 2018, 164, 290.
doi: 10.1016/j.compscitech.2018.06.003 |
89 |
Lee, J.; Lee, D. M.; Jung, Y.; Park, J.; Lee, H. S.; Kim, Y. K.; Park, C. R.; Jeong, H. S.; Kim, S. M. Nat. Commun. 2019, 10, 2962.
doi: 10.1038/s41467-019-10998-0 |
90 |
Wang, S.; Liu, Q.; Li, M.; Li, T.; Gu, Y.; Li, Q.; Zhang, Z. Compos. Part A. 2017, 103, 106.
doi: 10.1016/j.compositesa.2017.10.002 |
91 |
Cho, H.; Lee, H.; Oh, E.; Lee, S. H.; Park, J.; Park, H. J.; Yoon, S. B.; Lee, C. H.; Kwak, G. H.; Lee, W. J.; et al. Carbon 2018, 136, 409.
doi: 10.1016/j.carbon.2018.04.071 |
92 |
Oh, E.; Cho, H.; Kim, J.; Kim, J. E.; Yi, Y.; Choi, J.; Lee, H.; Im, Y. H.; Lee, K. H.; Lee, W. J. ACS Appl. Mater. Interfaces. 2020, 12, 13107.
doi: 10.1021/acsami.9b19861 |
93 |
Zhang, L.; Wang, X.; Li, R.; Li, Q.; Bradford, P. D.; Zhu, Y. Compos. Sci. Technol. 2016, 123, 92.
doi: 10.1016/j.compscitech.2015.12.012 |
94 |
Han, B. S.; Xue, X.; Zhao, Z. Y.; Niu, T.; Qu, H. T.; Xu, Y. J.; Hou, H. L. J. Mater. Eng. 2018, 46, 37.
doi: 10.11868/j.issn.1001-4381.2016.001159 |
韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮 材料工程, 2018, 46, 37.
doi: 10.11868/j.issn.1001-4381.2016.001159 |
|
95 | Wu, T. An Investigation of the Preparation and Properties of High Performance Carbon Nanotube Fiber. Ph. D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2017 |
武桐. 高性能碳纳米管纤维的制备及性能研究[D]. 上海: 上海交通大学, 2017. | |
96 |
Alvarenga, J.; Jarosz, P. R.; Schauerman, C. M.; Moses, B. T.; Landi, B. J.; Cress, C. D.; Raffaelle, R. P. Appl. Phys. Lett. 2010, 97, 182106.
doi: 10.1063/1.3506703 |
97 |
Han, B. S.; Xue, X.; Xu, Y. J.; Zhao, Z. Y.; Guo, E. Y.; Liu, C.; Luo, L. S.; Hou, H. L. Carbon 2017, 122, 496.
doi: 10.1016/j.carbon.2017.04.072 |
98 |
Liu, G.; Zhao, Y.; Deng, K.; Liu, Z.; Chu, W.; Chen, J.; Yang, Y.; Zheng, K.; Huang, H.; Ma, W.; et al. Nano Lett. 2008, 8, 1071.
doi: 10.1021/nl073007o |
99 |
Shang, Y.; Wang, Y.; Li, S.; Hua, C.; Zou, M.; Cao, A. Carbon 2017, 119, 47.
doi: 10.1016/j.carbon.2017.03.101 |
100 |
Wang, Y.; Li, M.; Gu, Y.; Zhang, X.; Wang, S.; Li, Q.; Zhang, Z. Nanoscale 2015, 7, 3060.
doi: 10.1039/c4nr06401a |
101 |
Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Carbon 2016, 99, 407.
doi: 10.1016/j.carbon.2015.12.048 |
102 |
Hou, G.; Wang, G.; Deng, Y.; Zhang, J.; Nshimiyimana, J. P.; Chi, X.; Hu, X.; Chu, W.; Dong, H.; Zhang, Z.; Liu, L.; Sun, L. RSC Adv. 2016, 6, 97012.
doi: 10.1039/c6ra21238g |
103 |
Qiu, J.; Terrones, J.; Vilatela, J. J.; Vickers, M. E.; Elliott, J. A.; Windle, A. H. ACS Nano 2013, 7, 8412.
doi: 10.1021/nn401337m |
104 |
Kis, A.; Csanyi, G.; Salvetat, J. P.; Lee, T. N.; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forro, L. Nat. Mater. 2004, 3, 153.
doi: 10.1038/nmat1076 |
105 |
Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Adv. Mater. 2011, 23, 2855.
doi: 10.1002/adma.201100547 |
106 |
Miller, S. G.; Williams, T. S.; Baker, J. S.; Sola, F.; Lebion-Colon, M.; McCorkle, L. S.; Wilmoth, N. G.; Gaier, J.; Chen, M.; Meador, M. A. ACS Appl. Mater. Interfaces. 2014, 6, 6120.
doi: 10.1021/am4058277 |
107 |
Di, J. T.; Fang, S. L.; Moura, F. A.; Galvao, D. S.; Bykova, J.; Aliev, A.; de Andrade, M. J.; Lepro, X.; Li, N.; Haines, C.; et al. Adv. Mater. 2016, 28, 6598.
doi: 10.1002/adma.201600628 |
108 |
Fang, C.; Zhao, J.; Jia, J.; Zhang, Z.; Zhang, X.; Li, Q. Appl. Phys. Lett. 2010, 97, 181906.
doi: 10.1063/1.3511451 |
109 |
Han, Y.; Li, S.; Chen, F.; Zhao, T. Mater. Today Commun. 2016, 6, 56.
doi: 10.1016/j.mtcomm.2015.12.002 |
110 |
Lin, X. Y.; Zhao, W.; Zhou, W. B.; Liu, P.; Luo, S.; Wei, H. M.; Yang, G. Z.; Yang, J. H.; Cui, J.; Yu, R. C.; et al. ACS Nano 2017, 11, 1257.
doi: 10.1021/acsnano.6b04855 |
111 |
Nam, K. H.; Im, Y. O.; Park, H. J.; Lee, H.; Park, J.; Jeong, S.; Kim, S. M.; You, N. H.; Choi, J. H.; Han, H.; et al. Compos. Sci. Technol. 2017, 153, 136.
doi: 10.1016/j.compscitech.2017.10.014 |
112 |
Wang, G. J.; Cai, Y. P.; Ma, Y. J.; Tang, S. C.; Syed, J. A.; Cao, Z. H.; Meng, X. K. Nano Lett. 2019, 19, 6255.
doi: 10.1021/acs.nanolett.9b02332 |
113 |
Wang, Y.; Colas, G.; Filleter, T. Carbon 2016, 98, 291.
doi: 10.1016/j.carbon.2015.11.008 |
114 |
Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Nat. Commun. 2012, 3, 650.
doi: 10.1038/ncomms1661 |
115 |
Ryu, S.; Lee, Y.; Hwang, J. W.; Hong, S.; Kim, C.; Park, T. G.; Lee, H.; Hong, S. H. Adv. Mater. 2011, 23, 1971.
doi: 10.1002/adma.201004228 |
116 |
Ryu, S.; Chou, J. B.; Lee, K.; Lee, D.; Hong, S. H.; Zhao, R.; Lee, H.; Kim, S. G. Adv. Mater. 2015, 27, 3250.
doi: 10.1002/adma.201500914 |
117 |
Mulvihill, D. M.; O'Brien, N. P.; Curtin, W. A.; McCarthy, M. A. Carbon 2016, 96, 1138.
doi: 10.1016/j.carbon.2015.10.055 |
118 |
Song, Y. H.; Di, J. T.; Zhang, C.; Zhao, J. N.; Zhang, Y. Y.; Hu, D. M.; Li, M.; Zhang, Z. G.; Wei, H. Z.; Li, Q. W. Nanoscale 2019, 11, 13909.
doi: 10.1039/c9nr03400e |
119 |
Liu, W.; Zhang, X.; Xu, G.; Bradford, P. D.; Wang, X.; Zhao, H.; Zhang, Y.; Jia, Q.; Yuan, F. G.; Li, Q.; et al. Carbon 2011, 49, 4786.
doi: 10.1016/j.carbon.2011.06.089 |
120 |
Liu, K.; Sun, Y.; Lin, X.; Zhou, R.; Wang, J.; Fan, S.; Jiang, K. ACS Nano 2010, 4, 5827.
doi: 10.1021/nn1017318 |
121 |
Jung, Y.; Kim, T.; Park, C. R. Carbon 2015, 88, 60.
doi: 10.1016/j.carbon.2015.02.065 |
122 |
Guo, W.; Liu, C.; Sun, X.; Yang, Z.; Kia, H. G.; Peng, H. J. Mater. Chem. 2012, 22, 903.
doi: 10.1039/c1jm13769g |
123 |
Boncel, S.; Sundaram, R. M.; Windle, A. H.; Koziol, K. K. K. ACS Nano 2011, 5, 9339.
doi: 10.1021/nn202685x |
124 |
Kim, J. W.; Siochi, E. J.; Carpena-Nunez, J.; Wise, K. E.; Connell, J. W.; Lin, Y.; Wincheski, R. A. ACS Appl. Mater. Interfaces. 2013, 5, 8597.
doi: 10.1021/am402077d |
125 |
Cheng, Q.; Li, M.; Jiang, L.; Tang, Z. Adv. Mater. 2012, 24, 1838.
doi: 10.1002/adma.201200179 |
126 |
Ma, W.; Liu, L.; Zhang, Z.; Yang, R.; Liu, G.; Zhang, T.; An, X.; Yi, X.; Ren, Y.; Niu, Z.; et al. Nano Lett. 2009, 9, 2855.
doi: 10.1021/nl901035v |
127 |
Park, O. K.; Choi, H.; Jeong, H.; Jung, Y.; Yu, J.; Lee, J. K.; Hwang, J. Y.; Kim, S. M.; Jeong, Y.; Park, C. R.; et al. Carbon 2017, 118, 413.
doi: 10.1016/j.carbon.2017.03.079 |
128 |
Beese, A. M.; Sarkar, S.; Nair, A.; Naraghi, M.; An, Z.; Moravsky, A.; Loutfy, R. O.; Buehler, M. J.; Nguyen, S. T.; Espinosa, H. D. ACS Nano 2013, 7, 3434.
doi: 10.1021/nn400346r |
129 |
Min, J.; Cai, J. Y.; Sridhar, M.; Easton, C. D.; Gengenbach, T. R.; McDonnell, J.; Humphries, W.; Lucas, S. Carbon 2013, 52, 520.
doi: 10.1016/j.carbon.2012.10.004 |
130 |
Tran, T. Q.; Fan, Z.; Mikhalchan, A.; Liu, P.; Duong, H. M. ACS Appl. Mater. Interfaces. 2016, 8, 7948.
doi: 10.1021/acsami.5b09912 |
131 |
Ventura, D. N.; Stone, R. A.; Chen, K. S.; Hariri, H. H.; Riddle, K. A.; Fellers, T. J.; Yun, C. S.; Strouse, G. F.; Kroto, H. W.; Acquah, S. F. A. Carbon 2010, 48, 987.
doi: 10.1016/j.carbon.2009.11.016 |
132 |
Zhou, Z.; Wang, X.; Faraji, S.; Bradford, P. D.; Li, Q. W.; Zhu, Y. T. Carbon 2014, 75, 307.
doi: 10.1016/j.carbon.2014.04.008 |
133 |
Lee, J.; Kim, T.; Jung, Y.; Jung, K.; Park, J.; Lee, D. M.; Jeong, H. S.; Hwang, J. Y.; Park, C. R.; Lee, K. H.; Kim, S. M. Nanoscale 2016, 8, 18972.
doi: 10.1039/c6nr06479e |
134 |
Li, M.; Song, Y. H.; Zhang, C.; Yong, Z. Z.; Qiao, J.; Hu, D. M.; Zhang, Z. G.; Wei, H. Z.; Di, J. T.; Li, Q. W. Carbon 2019, 146, 627.
doi: 10.1016/j.carbon.2019.02.059 |
135 |
Jarosz, P. R.; Shaukat, A.; Schauerman, C. M.; Cress, C. D.; Kladitis, P. E.; Ridgley, R. D.; Landi, B. J. ACS Appl. Mater. Interfaces. 2012, 4, 1103.
doi: 10.1021/am201729g |
136 |
Kurzepa, L.; Lekawa-Raus, A.; Patmore, J.; Koziol, K. Adv. Funct. Mater. 2014, 24, 619.
doi: 10.1002/adfm.201302497 |
137 |
Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Adv. Funct. Mater. 2014, 24, 3661.
doi: 10.1002/adfm.201303716 |
138 |
Jarosz, P.; Schauerman, C.; Alvarenga, J.; Moses, B.; Mastrangelo, T.; Raffaelle, R.; Ridgley, R.; Landi, B. Nanoscale 2011, 3, 4542.
doi: 10.1039/c1nr10814j |
139 |
Zhang, S. L.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J. G.; Liang, R. Adv. Electron. Mater. 2019, 5, 1800811.
doi: 10.1002/aelm.201800811 |
140 |
Sun, H.; Zhang, Y.; Zhang, J.; Sun, X. M.; Peng, H. S. Nat. Rev. Mater. 2017, 2, 17023.
doi: 10.1038/natrevmats.2017.23 |
141 |
Kaiser, A. B.; Dusberg, G.; Roth, S. Phys. Rev. B. 1998, 57, 1418.
doi: 10.1103/PhysRevB.57.1418 |
142 |
Li, Q.; Li, Y.; Zhang, X.; Chikkannanavar, S. B.; Zhao, Y.; Dangelewicz, A. M.; Zheng, L.; Doorn, S. K.; Jia, Q.; Peterson, D. E.; et al. Adv. Mater. 2007, 19, 3358.
doi: 10.1002/adma.200602966 |
143 |
Chen, G.; Futaba, D. N.; Sakurai, S.; Yumura, M.; Hata, K. Carbon 2014, 67, 318.
doi: 10.1016/j.carbon.2013.10.001 |
144 |
Rossi, J. E.; Cress, C. D.; Goodman, S. M.; Cox, N. D.; Puchades, I.; Bucossi, A. R.; Merrill, A.; Landi, B. J. J. Phys. Chem. C. 2016, 120, 15488.
doi: 10.1021/acs.jpcc.6b04881 |
145 |
Lee, J.; Stein, I. Y.; Devoe, M. E.; Lewis, D. J.; Lachman, N.; Kessler, S. S.; Buschhorn, S. T.; Wardle, B. L. Appl. Phys. Lett. 2015, 106, 053110.
doi: 10.1063/1.4907608 |
146 |
Wang, X.; Jiang, Q.; Xu, W.; Cai, W.; Inoue, Y.; Zhu, Y. Carbon 2013, 53, 145.
doi: 10.1016/j.carbon.2012.10.041 |
147 |
Guo, F. M.; Li, C.; Wei, J. Q.; Xu, R. Q.; Zhang, Z. L.; Cui, X.; Wang, K. L.; Wu, D. H. Mater. Res. Express. 2015, 2, 095604.
doi: 10.1088/2053-1591/2/9/095604 |
148 |
Bucossi, A. R.; Cress, C. D.; Schauerman, C. M.; Rossi, J. E.; Puchades, I.; Landi, B. J. ACS Appl. Mater. Interfaces. 2015, 7, 27299.
doi: 10.1021/acsami.5b08668 |
149 |
Zhang, S.; Park, J. G.; Nam, N.; Jolowsky, C.; Hao, A.; Liang, R. Carbon 2017, 125, 649.
doi: 10.1016/j.carbon.2017.09.089 |
150 |
Miao, M. Carbon 2011, 49, 3755.
doi: 10.1016/j.carbon.2011.05.008 |
151 |
Chen, I. W. P.; Liang, R.; Zhao, H.; Wang, B.; Zhang, C. Nanotechnology. 2011, 22, 485708.
doi: 10.1088/0957-4484/22/48/485708 |
152 |
Wang, H.; Lu, W. B.; Di, J. T.; Li, D.; Zhang, X. H.; Li, M.; Zhang, Z. G.; Zheng, L. X.; Li, Q. W. Adv. Funct. Mater. 2017, 27, 1606220.
doi: 10.1002/adfm.201606220 |
153 |
Zhao, J. N.; Li, Q. S.; Gao, B.; Wang, X. H.; Zou, J. Y.; Cong, S.; Zhang, X. H.; Pan, Z. J.; Li, Q. W. Carbon 2016, 101, 114.
doi: 10.1016/j.carbon.2016.01.085 |
154 |
Yi, Q. H.; Dai, X.; Zhao, J.; Sun, Y. H.; Lou, Y. H.; Su, X. D.; Li, Q. W.; Sun, B. Q.; Zheng, H. H.; Shen, M. R.; et al. Nanoscale 2013, 5, 6923.
doi: 10.1039/c3nr01857a |
155 |
Do, J. W.; Estrada, D.; Xie, X.; Chang, N. N.; Mallek, J.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W. Nano Lett. 2013, 13, 5844.
doi: 10.1021/nl4026083 |
156 |
Allen, R.; Pan, L.; Fuller, G. G.; Bao, Z. ACS Appl. Mater. Interfaces. 2014, 6, 9966.
doi: 10.1021/am5019995 |
157 |
Ma, Y.; Cheung, W.; Wei, D.; Bogozi, A.; Chiu, P. L.; Wang, L.; Pontoriero, F.; Mendelsohn, R.; He, H. ACS Nano 2008, 2, 1197.
doi: 10.1021/nn800201n |
158 |
Park, O. K.; Lee, W.; Hwang, J. Y.; You, N. H.; Jeong, Y.; Kim, S. M.; Ku, B. C. Compos. Part A. 2016, 91, 222.
doi: 10.1016/j.compositesa.2016.10.016 |
159 |
Foroughi, J.; Spinks, G. M.; Antiohos, D.; Mirabedini, A.; Gambhir, S.; Wallace, G. G.; Ghorbani, S. R.; Peleckis, G.; Kozlov, M. E.; Lima, M. D.; Baughman, R. H. Adv. Funct. Mater. 2014, 24, 5859.
doi: 10.1002/adfm.201401412 |
160 |
Zhang, S.; Hao, A.; Nam, N.; Oluwalowo, A.; Liu, Z.; Dessureault, Y.; Park, J. G.; Liang, R. Carbon 2019, 144, 628.
doi: 10.1016/j.carbon.2018.12.091 |
161 |
Faraji, S.; Stano, K.; Rost, C.; Maria, J. P.; Zhu, Y. T.; Bradford, P. D. Carbon 2014, 79, 113.
doi: 10.1016/j.carbon.2014.07.049 |
162 |
Tonkikh, A. A.; Tsebro, V. I.; Obraztsova, E. A.; Suenaga, K.; Kataura, H.; Nasibulin, A. G.; Kauppinen, E. I.; Obraztsova, E. D. Carbon 2015, 94, 768.
doi: 10.1016/j.carbon.2015.07.062 |
163 |
Dettlaff-Weglikowska, U.; Skakalova, V.; Graupner, R.; Jhang, S. H.; Kim, B. H.; Lee, H. J.; Ley, L.; Park, Y. W.; Berber, S.; Tomanek, D.; Roth, S. J. Am. Chem. Soc. 2005, 127, 5125.
doi: 10.1021/ja046685a |
164 |
Janas, D.; Boncel, S.; Koziol, K. K. K. Carbon 2014, 73, 259.
doi: 10.1016/j.carbon.2014.02.062 |
165 |
Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Carbon 2014, 73, 225.
doi: 10.1016/j.carbon.2014.02.058 |
166 |
Janas, D.; Milowska, K. Z.; Bristowe, P. D.; Koziol, K. K. K. Nanoscale 2017, 9, 3212.
doi: 10.1039/c7nr00224f |
167 |
Puchades, I.; Lawlor, C. C.; Schauerman, C. M.; Bucossi, A. R.; Rossi, J. E.; Cox, N. D.; Landi, B. J. J. Mater. Chem. C. 2015, 3, 10256.
doi: 10.1039/c5tc02053k |
168 |
Wang, P.; Liu, D.; Zou, J.; Ye, Y.; Hou, L.; Zhao, J.; Men, C.; Zhang, X.; Li, Q. Mater. Design. 2018, 159, 138.
doi: 10.1016/j.matdes.2018.08.030 |
169 |
Morelos-Gomez, A.; Fujishige, M.; Vega-Diaz, S. M.; Ito, I.; Fukuyo, T.; Cruz-Silva, R.; Tristan-Lopez, F.; Fujisawa, K.; Fujimori, T.; Futamura, R.; et al. J. Mater. Chem. A. 2016, 4, 74.
doi: 10.1039/c5ta06662j |
170 |
Zhao, Y.; Wei, J.; Vajtai, R.; Ajayan, P. M.; Barrera, E. V. Sci. Rep. 2011, 1, 83.
doi: 10.1038/srep00083 |
171 |
Jackson, R.; Domercq, B.; Jain, R.; Kippelen, B.; Graham, S. Adv. Funct. Mater. 2008, 18, 2548.
doi: 10.1002/adfm.200800324 |
172 |
Zhang, S.; Leonhardt, B. E.; Nam, N.; Oluwalowo, A.; Jolowsky, C.; Hao, A.; Liang, R.; Park, J. G. RSC Adv. 2018, 8, 12692.
doi: 10.1039/c8ra01212a |
173 |
Sundaram, R. M.; Sekiguchi, A.; Sekiya, M.; Yamada, T.; Hata, K. R. Soc. Open. Sci. 2018, 5, 180814.
doi: 10.1098/rsos.180814 |
174 |
Randeniya, L. K.; Bendavid, A.; Martin, P. J.; Tran, C. D. Small 2010, 6, 1806.
doi: 10.1002/smll.201000493 |
175 |
Zou, J. Y.; Zhao, J. N.; Zhang, X. H.; Zhang, Y. Y.; Huang, Y. Y.; Li, Q. W. Mater. Rep. 2014, 28, 30.
doi: 10.11896/j.issn.1005-023X.2014.21.006 |
邹菁云, 赵静娜, 张骁骅, 张永毅, 黄玉耀, 李清文 材料导报, 2014, 28, 30.
doi: 10.11896/j.issn.1005-023X.2014.21.006 |
|
176 |
Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Sci. Rep. 2017, 7, 9267.
doi: 10.1038/s41598-017-09279-x |
177 |
Rho, H.; Park, M.; Park, M.; Park, J.; Han, J.; Lee, A.; Bae, S.; Kim, T. W.; Ha, J. S.; Kim, S. M.; et al. NPG Asia Mater. 2018, 10, 146.
doi: 10.1038/s41427-018-0028-3 |
178 |
Subramaniam, C.; Sekiguchi, A.; Yamada, T.; Futaba, D. N.; Hata, K. Nanoscale 2016, 8, 3888.
doi: 10.1039/c5nr03762j |
179 | Chai, Y.; Chan, P. C. H. In IEEE International Electron Devices Meeting 2008, Technical Digest 2008, p. 607. |
180 |
Hannula, P. M.; Peltonen, A.; Aromaa, J.; Janas, D.; Lundström, M.; Wilson, B. P.; Koziol, K.; Forsén, O. Carbon 2016, 107, 281.
doi: 10.1016/j.carbon.2016.06.008 |
181 |
Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Mater. Today Commun. 2017, 13, 119.
doi: 10.1016/j.mtcomm.2017.09.003 |
182 |
Wang, G. J.; Ma, Y. J.; Cai, Y. P.; Cao, Z. H.; Meng, X. K. Carbon 2019, 146, 293.
doi: 10.1016/j.carbon.2019.01.111 |
183 |
Han, B.; Guo, E.; Xue, X.; Zhao, Z.; Luo, L.; Qu, H.; Niu, T.; Xu, Y.; Hou, H. Carbon 2017, 123, 593.
doi: 10.1016/j.carbon.2017.08.004 |
184 |
Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. Nat. Commun. 2013, 4, 2202.
doi: 10.1038/ncomms3202 |
185 |
Hannula, P. M.; Aromaa, J.; Wilson, B. P.; Janas, D.; Koziol, K.; Forsen, O.; Lundstrom, M. Electrochim. Acta. 2017, 232, 495.
doi: 10.1016/j.electacta.2017.03.006 |
186 |
Xu, G.; Zhao, J.; Li, S.; Zhang, X.; Yong, Z.; Li, Q. Nanoscale 2011, 3, 4215.
doi: 10.1039/c1nr10571j |
187 |
Zou, J. Y.; Liu, D. D.; Zhao, J. N.; Hou, L. G.; Liu, T.; Zhang, X. H.; Zhao, Y. H.; Zhu, Y. T. T.; Li, Q. W. ACS Appl. Mater. Interfaces. 2018, 10, 8197.
doi: 10.1021/acsami.7b19012 |
188 |
Milowska, K. Z.; Ghorbani-Asl, M.; Burda, M.; Wolanicka, L.; Catic, N.; Bristowe, P. D.; Koziol, K. K. K. Nanoscale 2017, 9, 8458.
doi: 10.1039/c7nr02142a |
189 |
Zhong, X. H.; Wang, R.; Wen, Y. Y. Phys. Chem. Chem. Phys. 2013, 15, 3861.
doi: 10.1039/c3cp44085k |
190 |
Ganguli, S.; Reed, A.; Jayasinghe, C.; Sprengard, J.; Roy, A. K.; Voevodin, A. A.; Muratore, C. Carbon 2013, 59, 479.
doi: 10.1016/j.carbon.2013.03.042 |
[1] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 0, (): 2203043-. |
[2] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 0, (): 2205012-. |
[3] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[4] | Chong Cao, Pei Zhang, Lidong Cao, Mingxin Liu, Yuying Song, Peng Chen, Qiliang Huang, Buxing Han. Experimental and Molecular Dynamic Simulation of Droplet Deposition on Superhydrophobic Plant Leaf Surfaces [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2207006-. |
[5] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[6] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[7] | Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103034-. |
[8] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[9] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[10] | Hongwei Yu, Shi Li, Jinlong Li, Shaohua Zhu, Chengzhen Sun. Interfacial Mass Transfer Characteristics and Molecular Mechanism of the Gas-Oil Miscibility Process in Gas Flooding [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006061-. |
[11] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[12] | Jiuxiang Dai, Zhongmiao Gong, Shitong Xu, Yi Cui, Meiyi Yao. In Situ Study on the Initial Oxidation Behavior of Zirconium Alloys with Near-Ambient Pressure XPS [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003026-. |
[13] | Mingkai Chang, Na Hu, Yao Li, Dongfan Xian, Wanqiang Zhou, Jingyi Wang, Yanlin Shi, Chunli Liu. Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003031-. |
[14] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[15] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
|