Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (7): 2111021.doi: 10.3866/PKU.WHXB202111021
Special Issue: Heterojunction Photocatalytic Materials
• ARTICLE • Previous Articles Next Articles
Zhuang Xiong1, Yidong Hou1, Rusheng Yuan1, Zhengxin Ding1,*(), Wee-Jun Ong2,3,*(
), Sibo Wang1,*(
)
Received:
2021-11-15
Accepted:
2021-12-15
Published:
2021-12-20
Contact:
Zhengxin Ding,Wee-Jun Ong,Sibo Wang
E-mail:zxding@fzu.edu.cn;weejun.ong@xmu.edu.my;sibowang@fzu.edu.cn
About author:
Email: sibowang@fzu.edu.cn; Tel.: +86-18950496079 (S.W.)Supported by:
MSC2000:
Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production[J].Acta Phys. -Chim. Sin., 2022, 38(7): 2111021.
1 |
Maeda K. ; Teramura K. ; Lu D. ; Takata T. ; Saito N. ; Inoue Y. ; Domen K. Nature 2006, 440, 295.
doi: 10.1038/440295a |
2 |
Maeda K. ; Higashi M. ; Lu D. ; Abe R. ; Domen K. J. Am. Chem. Soc. 2010, 132, 5858.
doi: 10.1021/ja1009025 |
3 |
Chen A. ; Yang M. ; Wang S. ; Qian Q. Front. Nanotechnol. 2021, 3, 723120.
doi: 10.3389/fnano.2021.723120 |
4 |
Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45, 2603.
doi: 10.1039/C5CS00838G |
5 |
Du P. ; Eisenberg R. Energy Environ. Sci. 2012, 5, 6012.
doi: 10.1039/C2EE03250C |
6 |
Dong H. ; Xiao M. ; Yu S. ; Wu H. ; Wang Y. ; Sun J. ; Chen G. ; Li C. ACS Catal. 2020, 10, 458.
doi: 10.1021/acscatal.9b04671 |
7 |
Yu J. ; Zhang T. ; Wu N. Solar RRL 2021, 5, 2100037.
doi: 10.1002/solr.202100037 |
8 |
Tian L. ; Min S. ; Wang F. Appl. Catal., B 2019, 259, 118029.
doi: 10.1016/j.apcatb.2019.118029 |
9 |
Zuo G. ; Wang Y. ; Teo W. L. ; Xie A. ; Guo Y. ; Dai Y. ; Zhou W. ; Jana D. ; Xian Q. ; Dong W. ; et al Angew. Chem. Int. Ed. 2020, 59, 11287.
doi: 10.1002/anie.202002136 |
10 |
Liang Z. ; Shen R. ; Ng Y. H. ; Zhang P. ; Xiang Q. ; Li X. J. Mater. Sci. Technol. 2020, 56, 89.
doi: 10.1016/j.jmst.2020.04.032 |
11 |
Habisreutinger S. N. ; Schmidt-Mende L. ; Stolarczyk J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
doi: 10.1002/anie.201207199 |
12 |
Wen J. ; Li X. ; Liu W. ; Fang Y. ; Xie J. ; Xu Y. Chin. J. Catal. 2015, 36, 2049.
doi: 10.1016/S1872-2067(15)60999-8 |
13 | Yu J. ; Xu L. ; Ong W. J. ; Zhang L. Acta Phys. -Chim. Sin. 2021, 37, 2012043. |
余家国; 李鑫; 王伟俊; 张留洋; 物理化学学报, 2021, 37, 2012043.
doi: 10.3866/PKU.WHXB202012043 |
|
14 |
Ran J. ; Zhang J. ; Yu J. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2014, 43, 7787.
doi: 10.1039/C3CS60425J |
15 |
Hisatomi T. ; Kubota J. ; Domen K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/C3CS60378D |
16 |
Peng J. ; Xu J. ; Wang Z. ; Ding Z. ; Wang S. Phys. Chem. Chem. Phys. 2017, 19, 25919.
doi: 10.1039/C7CP05147F |
17 |
Xia Y. ; Zhang L. ; Hu B. ; Yu J. ; Al-Ghamdi A. A. ; Wageh S. Chem. Eng. J. 2021, 421, 127732.
doi: 10.1016/j.cej.2020.127732 |
18 |
Bie C. ; Yu H. ; Cheng B. ; Ho W. ; Fan J. ; Yu J. Adv. Mater. 2021, 33, 2003521.
doi: 10.1002/adma.202003521 |
19 |
Xia Y. ; Yu J. Chem 2020, 6, 1039.
doi: 10.1016/j.chempr.2020.02.015 |
20 | He R. ; Cao S. ; Yu J. Acta Phys. -Chim. Sin. 2016, 32, 2841. |
赫荣安; 曹少文; 余家国; 物理化学学报, 2016, 32, 2841.
doi: 10.3866/PKU.WHXB201611021 |
|
21 | Li H. ; Li F. ; Yu J. ; Cao S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. |
李瀚; 李芳; 余家国; 曹少文; 物理化学学报, 2021, 37, 2010073.
doi: 10.3866/PKU.WHXB202010073 |
|
22 | Yu J. ; Zhao X. ; Chen W. ; Li L. ; Zhang A. Acta Phys. -Chim. Sin. 2001, 17, 261. |
余家国; 赵修建; 陈文梅; 林立; 张艾丽; 物理化学学报, 2001, 17, 261.
doi: 10.3866/PKU.WHXB20010316 |
|
23 |
Wang S. ; Wang X. Small 2015, 11, 3097.
doi: 10.1002/smll.201500084 |
24 |
Lu Y. ; Yin W. ; Peng K. ; Wang K. ; Hu Q. ; Selloni A. ; Chen F. ; Liu L. ; Sui M. Nat. Commun. 2018, 9, 2752.
doi: 10.1038/s41467-018-05144-1 |
25 |
Lee J. ; Kim H. ; Lee T. ; Jang W. ; Lee K. H. ; Soon A. Chem. Mater. 2019, 31, 9148.
doi: 10.1021/acs.chemmater.9b03539 |
26 |
Yang W. ; Zhang L. ; Xie J. ; Zhang X. ; Liu Q. ; Yao T. ; Wei S. ; Zhang Q. ; Xie Y. Angew. Chem. Int. Ed. 2016, 55, 6716.
doi: 10.1002/anie.201602543 |
27 |
Zhang G. ; Chen D. ; Li N. ; Xu Q. ; Li H. ; He J. ; Lu J. Angew. Chem. Int. Ed. 2020, 59, 8255.
doi: 10.1002/anie.202000503 |
28 |
Zhang S. ; Liu X. ; Liu C. ; Luo S. ; Wang L. ; Cai T. ; Zeng Y. ; Yuan J. ; Dong W. ; Pei Y. ; et al ACS Nano 2018, 12, 751.
doi: 10.1021/acsnano.7b07974 |
29 |
Gao F. ; Zhao Y. ; Zhang L. ; Wang B. ; Wang Y. ; Huang X. ; Wang K. ; Feng W. ; Liu P. J. Mater. Chem. A 2018, 6, 18979.
doi: 10.1039/C8TA06029K |
30 |
Peng X. ; Ye L. ; Ding Y. ; Yi L. ; Zhang C. ; Wen Z. Appl. Catal. B 2020, 260, 118152.
doi: 10.1016/j.apcatb.2019.118152 |
31 |
Ye L. ; Li Z. Appl. Catal. B 2014, 160, 552.
doi: 10.1016/j.apcatb.2014.06.012 |
32 |
Zhong W. ; Gao D. ; Yu H. ; Fan J. ; Yu J. Chem. Eng. J. 2021, 419, 129652.
doi: 10.1016/j.cej.2021.129652 |
33 |
Meng A. ; Zhang L. ; Cheng B. ; Yu J. Adv. Mater. 2019, 31, 1807660.
doi: 10.1002/adma.201807660 |
34 |
Hu P. ; Ngaw C. K. ; Yuan Y. ; Bassi P. S. ; Loo S. C. J. ; Tan T. T. Y. Nano Energy 2016, 26, 577.
doi: 10.1016/j.nanoen.2016.06.006 |
35 |
Shen R. ; Xie J. ; Xiang Q. ; Chen X. ; Jiang J. ; Li X. Chin. J. Catal. 2019, 40, 240.
doi: 10.1016/S1872-2067(19)63294-8 |
36 | Wang J. ; Wu N. ; Liu T. ; Cao S. ; Yu J. Acta Phys. -Chim. Sin. 2020, 36, 1907072. |
王玖; 吴南石; 刘涛; 曹少文; 余家国; 物理化学学报, 2020, 36, 1907072.
doi: 10.3866/PKU.WHXB201907072 |
|
37 |
Guan B. Y. ; Yu L. ; Wang X. ; Song S. ; Lou X. W. Adv. Mater. 2017, 6, 1605051.
doi: 10.1002/adma.201605051 |
38 |
Li S. ; Xu P. ; Aslam M. K. ; Chen C. ; Rashid A. ; Wang G. ; Zhang L. ; Mao B. Energy Storage Mater. 2020, 27, 51.
doi: 10.1016/j.ensm.2020.01.017 |
39 |
Zhao Q. ; Sun J. ; Li S. ; Huang C. ; Yao W. ; Chen W. ; Zeng T. ; Wu Q. ; Xu Q. ACS Catal. 2018, 12, 11863.
doi: 10.1021/acscatal.8b03737 |
40 |
Wang S. ; Guan B. Y. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2018, 140, 15145.
doi: 10.1021/jacs.8b07721 |
41 |
Wang S. ; Wang Y. ; Zhang S. ; Zang S. ; Lou X. W. Adv. Mater. 2019, 31, 1970291.
doi: 10.1002/adma.201970291 |
42 |
Lin X. ; Xie Z. ; Su B. ; Zheng M. ; Dai W. ; Hou Y. ; Ding Z. ; Lin W. ; Fang Y. ; Wang S. Nanoscale 2021, 13, 18070.
doi: 10.1039/D1NR04812K |
43 |
Zheng D. ; Cao X. ; Wang X. Angew. Chem. Int. Ed. 2016, 55, 11512.
doi: 10.1002/anie.201606102 |
44 |
Sun J. ; Zhang J. ; Zhang M. ; Antonietti M. ; Fu X. ; Wang X. Nat. Commun. 2012, 3, 1139.
doi: 10.1038/ncomms2152 |
45 | In, S. -I.; Vaughn Ii, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi: 10.1002/anie.201108936 |
46 |
Shi H. ; Li Y. ; Wang X. ; Yu H. ; Yu J. Appl. Catal. B 2021, 297, 120414.
doi: 10.1016/j.apcatb.2021.120414 |
47 |
Liu T. ; Zhang L. ; You W. ; Yu J. Small 2018, 14, 1702407.
doi: 10.1002/smll.201702407 |
48 |
Wang S. ; Guan B. Y. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2018, 140, 15145.
doi: 10.1021/jacs.8b07721 |
49 |
Wang S. ; Wang Y. ; Zhang S. L. ; Zang S. ; Lou X. W. Adv. Mater. 2019, 31, 1903404.
doi: 10.1002/adma.201903404 |
50 |
Shen L. ; Yu L. ; Wu H. B. ; Yu X. Y. ; Zhang X. ; Lou X. W. Nat. Commun. 2015, 6, 6694.
doi: 10.1038/ncomms7694 |
51 |
Wang S. ; Guan B. Y. ; Lou X. W. J. Am. Chem. Soc. 2018, 140, 5037.
doi: 10.1021/jacs.8b02200 |
52 |
Wang P. ; Li C. ; Dong S. ; Ge X. ; Zhang P. ; Miao X. ; Wang R. ; Zhang Z. ; Yin L. Adv. Energy Mater. 2019, 9, 1900788.
doi: 10.1002/aenm.201900788 |
53 |
Qiu B. ; Zhu Q. ; Du M. ; Fan L. ; Xing M. ; Zhang J. Angew. Chem. Int. Ed. 2017, 56, 2684.
doi: 10.1002/anie.201612551 |
54 |
Wang H. ; Zhang H. ; Wang J. ; Gao Y. ; Fa F. ; Wu K. ; Zong X. ; Li C. Angew. Chem. Int. Ed. 2021, 60, 7376.
doi: 10.1002/anie.202014623 |
55 |
Wang J. ; Zhang Y. ; Wang X. ; Su W. Appl. Catal. B 2020, 268, 118444.
doi: 10.1016/j.apcatb.2019.118444 |
56 |
Yuan L. ; Weng B. ; Colmenares J. C. ; Sun Y. ; Xu Y. Small 2017, 13, 1702253.
doi: 10.1002/smll.201702253 |
57 |
Su B. ; Huang L. ; Xiong Z. ; Yang Y. ; Hou Y. ; Ding Z. ; Wang S. J. Mater. Chem. A 2019, 7, 26877.
doi: 10.1039/C9TA10470D |
58 |
Xiong Z. ; Huang L. ; Peng J. ; Hou Y. ; Ding Z. ; Wang S. ChemCatChem 2019, 11, 5513.
doi: 10.1002/cctc.201901379 |
59 |
Li A. ; Chang X. ; Huang Z. ; Li C. ; Wei Y. ; Zhang L. ; Wang T. ; Gong J. Angew. Chem. Int. Ed. 2016, 55, 1.
doi: 10.1002/anie.201510990 |
60 |
Li H. ; Shang J. ; Ai Z. ; Zhang L. J. Am. Chem. Soc. 2015, 137, 6393.
doi: 10.1021/jacs.5b03105 |
61 |
Jiao X. ; Chen Z. ; Li X. ; Sun Y. ; Gao S. ; Yan W. ; Wang C. ; Zhang Q. ; Lin Y. ; Luo Y. ; et al J. Am. Chem. Soc. 2017, 139, 7586.
doi: 10.1021/jacs.7b02290 |
62 |
Zhang Z. ; Huang Y. ; Liu K. ; Guo L. ; Yuan Q. ; Dong B. Adv. Mater. 2015, 27, 5906.
doi: 10.1002/adma.201502203 |
63 |
Wang L. ; Zhu Bi. ; Cheng B. ; Zhang J. ; Zhang L. ; Yu J. Chin. J. Catal. 2021, 42, 1648.
doi: 10.1016/S1872-2067(21)63805-6 |
64 |
Gao Y. ; Chen F. ; Chen Z. ; Shi H. J. Mater. Sci. Technol. 2020, 56, 227.
doi: 10.1016/j.jmst.2020.02.050 |
65 |
Han X. ; Chen Q. ; Zhang H. ; Ni Y. ; Zhang L. Chem. Eng. J. 2019, 368, 513.
doi: 10.1016/j.cej.2019.02.138 |
66 |
Hojamberdiev M. ; Cai Y. ; Vequizo J. J. M. ; Khan M. M. ; Vargas R. ; Yubuta K. ; Yamakata A. ; Teshimaf K. ; Hasegawaa M. Green Chem. 2018, 20, 3845.
doi: 10.1039/C8GC01746H |
67 |
Vattikuti S. V. P. ; Police A. K. R. ; Shim J. ; Byon C. Sci. Rep. 2018, 8, 4194.
doi: 10.1038/s41598-018-22622-0 |
[1] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[2] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[3] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[4] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[5] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[6] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[7] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[8] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[9] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[10] | Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009102-. |
[11] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[12] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[13] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[14] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[15] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
|