Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (9): 2111041.doi: 10.3866/PKU.WHXB202111041
Special Issue: Carbonene Fiber and Smart Textile
• REVIEW • Previous Articles Next Articles
Received:
2021-11-30
Accepted:
2022-01-10
Published:
2022-01-20
Contact:
Kun Jiao
E-mail:jiaokun-cnc@pku.edu.cn
About author:
Kun Jiao, Email: jiaokun-cnc@pku.edu.cn; Tel.: +86-15101147258Supported by:
MSC2000:
Hang Zhou, Kun Jiao. Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications[J].Acta Phys. -Chim. Sin., 2022, 38(9): 2111041.
Fig 2
Functionalization of graphene. (a) Functionalization of GO through the esterification reaction33. Adapted with permission from Ref. 33. Copyright 2014, Elsevier. (b) Functionalization of GO through the atom-transfer addition reaction34. Adapted with permission from Ref. 34. Copyright 2014, Wiley Periodicals, Inc. (c) Synthetic of amino-functionalized GO35. Adapted with permission from Ref. 35. Copyright 2012, Wiley Periodicals, Inc. (d) Synthetic route of Nr-GO36. Adapted with permission from Ref. 36. Copyright 2014, Elsevier. (e) Synthetic route of B-GNRs37. Adapted with permission from Ref. 37. Copyright 2014, Royal Society of Chemistry. (f) Functionalization of graphene by cycloaddition reactions39. Adapted with permission from Ref. 39. Copyright 2017, American Chemical Society. (g) Functionalization of graphene through thiyl-radical mediated reaction41. Adapted with permission from Ref. 41. Copyright 2014, Royal Society of Chemistry. (h) Functionalization of graphene through Diels–Alder cycloaddition reaction42. Adapted with permission from Ref. 42. Copyright 2016, Springer Nature. (i) Synthesis of arylated graphene47. Adapted with permission from Ref. 47. Copyright 2013, American Chemical Society."
Table 1
Usual dispersion agents for carbonene materials."
Interactions | Dispersion agents | Ref. |
π–π | Pyrenoids, Benzophenanthrene, Dinaphthalene-inbenzene, p-phenylacetylene oligomer, Diazaperopyrenium double cation, Porphyrin, Tetrathiofulvarene | |
Ionic bond | Sodium dodecyl benzene sulfonate, Sodium cholate hydrate | |
Hydrogen bond | Flavin mononucleotide | |
Static electricity | KOH | |
Coating | SiO2, Sodium p-styrenesulfonate |
Fig 3
Mechanisms of carbonene modified polymers. (a) Schematic showing the steps involved in the fabrication of GNP/UHMWPE nanocomposites70. Adapted with permission from Ref. 70. Copyright 2019, Elsevier. (b) Mechanical properties of MWNT/UHMWPE composite fiber71. Adapted with permission from Ref. 71. Copyright 2006, Elsevier. (c) In situ polymerization process of the PMMA-rGO/SAN composite72. Adapted with permission from Ref. 72. Copyright 2020, Elsevier. (d) Synthesis of FG-PA6 composites by in situ polymerization of e-caprolactam in the presence of FG9. Adapted with permission from Ref. 9. Copyright 2012, Springer Nature. (e) Mechanical properties of GO/PMMA composite with and without covalent bond connection81. Adapted with permission from Ref. 81. Copyright 2016, Elsevier. (f) Illustration of graphene coated aramid fiber83. Adapted with permission from Ref. 83. Copyright 2021, Elsevier. (g) Mechanical properties of CNT coated Kevlar85. Adapted with permission from Ref. 85. Copyright 2012, American Chemical Society."
Fig 4
Mechanisms of reinforcement of carbonene/polymer compsites. (a) Deformation patterns for a discontinuous nanoplatelet in a polymer matrix under stress108. Adapted with permission from Ref. 108. Copyright 2018, Elsevier. (b) The strain distribution in a filler (either 1D or 2D) along the strain direction for various filler lengths109. Adapted with permission from Ref. 109. Copyright 2010, John Wiley and Sons. (c) Random orientation of GNPs within an epoxy resin, oriented GNPs along within an epoxy resin114. Adapted with permission from Ref. 114. Copyright 2015, Elsevier. (d) The taxonomy of individual GNP flakes as obtained from X-ray computed tomography in an epoxy/GNP composite81. Adapted with permission from Ref. 81. Copyright 2019, Elsevier. (e) POM images of neat PLLA and its nanocomposites12. Adapted with permission from Ref. 12. Copyright 2012, Elsevier. (f) Template effect of CNT in polymer126. Adapted with permission from Ref. 126. Copyright 2014, American Chemical Society."
Table 2
Mechanical properties of carbonene materials modified high-performance polymer fibers."
Addition (w/%) | Modulus (GPa) | Improvement (%) | Strength (GPa) | Improvement (%) | Preparation | Ref. | |
Aramid | |||||||
G/PPTA | 1 | 0.06 | 300 | Mixture | |||
CNT/PPTA | 163.5 | ?2.6 | 2.31 | 19.1 | Simulation | ||
GO/PPTA | 3.5 | 129 | 4.0 | 3.85 | 8.5 | Coating | |
PBO | |||||||
CNT/PBO | 5 | 156 | 13.0 | 3.2 | 23.1 | Mixture | |
10 | 167 | 21.0 | 4.2 | 61.5 | |||
CNT/PBO | 1 | 95.16 | 76 | 1.56 | 38 | In situ | |
CNT/PBO | 0.54 | 99.8 | 11.1 | 1.51 | 23.8 | In situ | |
G/PBO | 1.5 | 145 | 39.4 | 3.4 | 54.5 | In situ | |
G/PBO | 0.2 | 94.9 | 178.3 | 2.34 | 81.4 | In situ | |
PI | |||||||
SWCNT/PI | 1 | 3.2 | 45.4 | 0.105 | 0 | Mixture | |
G/PI | 0.8 | 123 | 123 | 2.5 | 60 | In situ | |
PIPD | |||||||
MWCNT/PIPD | 6.56 | ?3 | Coating | ||||
UHMWPE | |||||||
MWCNT/UHMWPE | 5 | 136.8 | 11.6 | 4.17 | 18.8 | Mixture |
Fig 5
Electric conductivity mechanisms of carbon/polymer composites. (a) Schematic view of a representative 3D element with randomly dispersed CNTs139. Adapted with permission from Ref. 139. Copyright 2008, Taylor & Francis Group. (b) Schematically simulated visualization of particle distribution in a graphene-polymer nanocomposite and graph/network representation of the actual nanocomposite140. Adapted with permission from Ref. 140. Copyright 2014, Taylor & Francis Group. (c) Electrical conductivity of CNF-PI films as a function of the weight fraction of CNFs142. Adapted with permission from Ref. 142. Copyright 2014, Springer Nature. (d) Electrical conductivity of GNP filled PMMA nanocomposites as a function of volume140. Adapted with permission from Ref. 140. Copyright 2014, Taylor & Francis Group."
1 | Zhu M. F. ; Zhou Z. High Performance Fiber Beijing: China Railway Publishing House, 2017, p. 1 |
朱美芳; 刘哲. 高性能纤维, 北京: 中国铁道出版社, 2017, 1 | |
2 |
Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442 (7100), 282.
doi: 10.1038/nature04969 |
3 |
Spitalsky Z. ; Tasis D. ; Papagelis K. ; Galiotis C. Prog. Polym. Sci. 2010, 35 (3), 357.
doi: 10.1016/j.progpolymsci.2009.09.003 |
4 |
Berber S. ; Kwon Y.-K. ; Tománek D. Phys. Rev. Lett. 2000, 84 (20), 4613.
doi: 10.1103/PhysRevLett.84.4613 |
5 |
Ren Y. ; Ren L. ; Li J. ; Lv R. ; Wei L. ; An D. ; Maqbool M. ; Bai S. ; Wong C.-P. Compos. Sci. Technol. 2020, 199, 108340.
doi: 10.1016/j.compscitech.2020.108340 |
6 |
Fu X. ; Zhao X. ; Li L. ; Zhou C. ; Dong X. ; Wang D. ; Yang G. Composites Part C 2020, 2, 100043.
doi: 10.1016/j.jcomc.2020.100043 |
7 |
Li S. ; Zhang J. ; Liu M. ; Wang R. ; Wu L. Polym. Bull. 2020, 78 (11), 6493.
doi: 10.1007/s00289-020-03439-2 |
8 |
Lee S. ; Hong J.-Y. ; Jang J. Polym. Int. 2013, 62 (6), 901.
doi: 10.1002/pi.4370 |
9 |
Liu H. ; Hou L. ; Peng W. ; Zhang Q. ; Zhang X. J. Mater. Sci. 2012, 47 (23), 8052.
doi: 10.1007/s10853-012-6695-5 |
10 |
Han P. ; Fan J. ; Jing M. ; Zhu L. ; Shen X. ; Pan T. J. Compos. Mater. 2014, 48 (6), 659.
doi: 10.1177/0021998313476526 |
11 |
Fim F. ; de C. ; Basso N. R. S. ; Graebin A. P. ; Azambuja D. S. ; Galland G. B. J. Appl. Polym. Sci. 2013, 128 (5), 2630.
doi: 10.1002/app.38317 |
12 |
Wang H. ; Qiu Z. Thermochim. Acta 2012, 527, 40.
doi: 10.1016/j.tca.2011.10.004 |
13 |
Morales-Zamudio L. ; Lozano T. ; Caballero-Briones F. ; Zamudio M. A. M. ; Angeles-San Martin M. E. ; de Lira-Gomez P. ; Martinez-Colunga G. ; Rodriguez-Gonzalez F. ; Neira G. ; Sanchez-Valdes S. Mater. Chem. Phys. 2021, 261, 124180.
doi: 10.1016/j.matchemphys.2020.124180 |
14 |
Bansal S. A. ; Singh S. ; Srivastava A. ; Singh A. P. ; Kumar S. Polymer 2021, 213, 123195.
doi: 10.1016/j.polymer.2020.123195 |
15 |
Kim H. ; Kobayashi S. ; AbdurRahim M. A. ; Zhang M. J. ; Khusainova A. ; Hillmyer M. A. ; Abdala A. A. ; Macosko C. W. Polymer 2011, 52 (8), 1837.
doi: 10.1016/j.polymer.2011.02.017 |
16 |
Song P. ; Cao Z. ; Cai Y. ; Zhao L. ; Fang Z. ; Fu S. Polymer 2011, 52 (18), 4001.
doi: 10.1016/j.polymer.2011.06.045 |
17 |
Yu W. ; Zhang X. ; Gao X. ; Liu H. ; Zhang X. J. Mater. Sci. 2020, 55 (21), 8940.
doi: 10.1007/s10853-020-04652-0 |
18 |
Li J. ; Chen X. ; Li X. ; Cao H. ; Yu H. ; Huang Y. Polym. Int. 2006, 55 (4), 456.
doi: 10.1002/pi.1998 |
19 |
Bahrami H. ; Ramazani S. A., A. ; Kheradmand A. ; Shafiee M. ; Baniasadi H. Adv. Polym. Technol. 2015, 34 (4), 21508.
doi: 10.1002/adv.21508 |
20 |
Li C. ; Li Z. ; Cao L. ; Cheng B. Ind. Eng. Chem. Res. 2016, 55 (41), 10860.
doi: 10.1021/acs.iecr.6b01706 |
21 |
El Achaby M. ; Qaiss A. Mater. Des. 2013, 44, 81.
doi: 10.1016/j.matdes.2012.07.065 |
22 |
Tai Z. ; Chen Y. ; An Y. ; Yan X. ; Xue Q. Tribol. Lett. 2012, 46 (1), 55.
doi: 10.1007/s11249-012-9919-6 |
23 |
Korayem A. H. ; Barati M. R. ; Chen S. J. ; Simon G. P. ; Zhao X. L. ; Duan W. H. Powder Technol. 2015, 284, 541.
doi: 10.1016/j.powtec.2015.07.023 |
24 |
Yuan W. ; Che J. ; Chan-Park M. B. Chem. Mater. 2011, 23 (18), 4149.
doi: 10.1021/cm200909x |
25 |
Paredes J. I. ; Villar-Rodil S. ; Martínez-Alonso A. ; Tascón J. M. D. Langmuir 2008, 24 (19), 10560.
doi: 10.1021/la801744a |
26 |
Tang L.-C. ; Wan Y.-J. ; Yan D. ; Pei Y.-B. ; Zhao L. ; Li Y.-B. ; Wu L.-B. ; Jiang J.-X. ; Lai G.-Q. Carbon 2013, 60, 16.
doi: 10.1016/j.carbon.2013.03.050 |
27 |
Jing G. ; Ye Z. ; Li C. ; Cui J. ; Wang S. ; Cheng X. New Carbon Mater. 2019, 34 (6), 569.
doi: 10.1016/S1872-5805(19)60032-6 |
28 |
Jargalsaikhan B. ; Bor A. ; Lee J. ; Choi H. Adv. Powder Technol. 2020, 31 (5), 1957.
doi: 10.1016/j.apt.2020.02.031 |
29 |
Krause B. ; Villmow T. ; Boldt R. ; Mende M. ; Petzold G. ; Pötschke P. Compos. Sci. Technol. 2011, 71 (8), 1145.
doi: 10.1016/j.compscitech.2011.04.004 |
30 |
Zhou L. ; Zhang H. ; Zhang H. ; Zhang Z. Particuology 2013, 11 (4), 441.
doi: 10.1016/j.partic.2013.01.001 |
31 |
Janowska I. ; Chizari K. ; Ersen O. ; Zafeiratos S. ; Soubane D. ; Costa V. D. ; Speisser V. ; Boeglin C. ; Houllé M. ; Bégin D. ; et al Nano Res. 2010, 3 (2), 126.
doi: 10.1007/s12274-010-1017-1 |
32 |
Zhang S.-P. ; Liu B. ; Li C.-Y. ; Chen W. ; Yao Z.-J. ; Yao D.-T. ; Yu R.-B. ; Song H.-O. Chin. Chem. Lett. 2014, 25 (2), 355.
doi: 10.1016/j.cclet.2013.11.018 |
33 |
Zhang Q. ; Li Q.-L. ; Xiang S. ; Wang Y. ; Wang C. ; Jiang W. ; Zhou H. ; Yang Y.-W. ; Tang J. Polymer 2014, 55 (23), 6044.
doi: 10.1016/j.polymer.2014.09.049 |
34 |
Peng K. ; Wang K. ; Hsu K. ; Liu Y. J. Polym. Sci. Part A: Polym. Chem. 2014, 52 (11), 1588.
doi: 10.1002/pola.27154 |
35 |
Lee D. ; Choi M.-C. ; Ha C.-S. J. Polym. Sci. A: Polym. Chem. 2012, 50 (8), 1611.
doi: 10.1002/pola.25932 |
36 |
Lee C.-H. ; Yun J.-M. ; Lee S. ; Jo S. M. ; Yoo S. J. ; Cho E. A. ; Khil M.-S. ; Joh H.-I. Mater. Res. Bull. 2014, 59, 145.
doi: 10.1016/j.materresbull.2014.07.015 |
37 |
Xing M. ; Fang W. ; Yang X. ; Tian B. ; Zhang J. Chem. Commun. 2014, 50 (50), 6637.
doi: 10.1039/C4CC01341G |
38 |
Hadad C. ; Ke X. ; Carraro M. ; Sartorel A. ; Bittencourt C. ; Van Tendeloo G. ; Bonchio M. ; Quintana M. ; Prato M. Chem. Commun. 2014, 50 (7), 885.
doi: 10.1039/C3CC47056C |
39 |
Daukiya L. ; Mattioli C. ; Aubel D. ; Hajjar-Garreau S. ; Vonau F. ; Denys E. ; Reiter G. ; Fransson J. ; Perrin E. ; Bocquet M.-L. ; et al ACS Nano 2017, 11 (1), 627.
doi: 10.1021/acsnano.6b06913 |
40 |
Giofrè S. ; Tiecco M. ; Celesti C. ; Patanè S. ; Triolo C. ; Gulino A. ; Spitaleri L. ; Scalese S. ; Scuderi M. ; Iannazzo D. Nanomaterials 2020, 10 (12), 2549.
doi: 10.3390/nano10122549 |
41 |
Liras M. ; García O. ; Quijada-Garrido I. ; Ellis G. ; Salavagione H. J. J. Mater. Chem. C 2014, 2 (9), 1723.
doi: 10.1039/c3tc32136c |
42 |
Zhang J. ; Wang W. ; Peng H. ; Qian J. ; Ou E. ; Xu W. J. Iran Chem. Soc. 2017, 14 (1), 89.
doi: 10.1007/s13738-016-0960-5 |
43 |
Zhang J. ; Hu K. ; Ouyang Q. ; Gui Q. ; Chen X. Front. Mater. Sci. 2020, 14 (2), 198.
doi: 10.1007/s11706-020-0501-0 |
44 |
Seo J.-M. ; Baek J.-B. Chem. Commun. 2014, 50 (93), 14651.
doi: 10.1039/C4CC07173E |
45 |
Englert J. M. ; Dotzer C. ; Yang G. ; Schmid M. ; Papp C. ; Gottfried J. M. ; Steinrück H.-P. ; Spiecker E. ; Hauke F. ; Hirsch A. Nat. Chem. 2011, 3 (4), 279.
doi: 10.1038/nchem.1010 |
46 |
Dasler D. ; Schäfer R. A. ; Minameyer M. B. ; Hitzenberger J. F. ; Hauke F. ; Drewello T. ; Hirsch A. J. Am. Chem. Soc. 2017, 139 (34), 11760.
doi: 10.1021/jacs.7b04122 |
47 |
Englert J. M. ; Vecera P. ; Knirsch K. C. ; Schäfer R. A. ; Hauke F. ; Hirsch A. ACS Nano 2013, 7 (6), 5472.
doi: 10.1021/nn401481h |
48 |
Wepasnick K. A. ; Smith B. A. ; Schrote K. E. ; Wilson H. K. ; Diegelmann S. R. ; Fairbrother D. H. Carbon 2011, 49 (1), 24.
doi: 10.1016/j.carbon.2010.08.034 |
49 |
Yan X. ; Tay B. K. ; Yang Y. J. Phys. Chem. B 2006, 110 (51), 25844.
doi: 10.1021/jp065434g |
50 |
Bourlinos A. B. ; Georgakilas V. ; Tzitzios V. ; Boukos N. ; Herrera R. ; Giannelis E. P. Small 2006, 2 (10), 1188.
doi: 10.1002/smll.200600221 |
51 |
Chen Y. ; Haddon R. C. ; Fang S. ; Rao A. M. ; Eklund P. C. ; Lee W. H. ; Dickey E. C. ; Grulke E. A. ; Pendergrass J. C. ; Chavan A. ; et al J. Mater. Res. 1998, 13 (9), 2423.
doi: 10.1557/JMR.1998.0337 |
52 |
Li Y. ; Duan Q. ; Li Y. ; Hu Z. ; Li J. ; Song Y. ; Huang Y. RSC Adv. 2016, 6 (89), 86245.
doi: 10.1039/C6RA16541A |
53 |
Paiva M. C. ; Zhou B. ; Fernando K. A. S. ; Lin Y. ; Kennedy J. M. ; Sun Y.-P. Carbon 2004, 42 (14), 2849.
doi: 10.1016/j.carbon.2004.06.031 |
54 |
Mata D. ; Amaral M. ; Fernandes A. J. S. ; Colaço B. ; Gama A. ; Paiva M. C. ; Gomes P. S. ; Silva R. F. ; Fernandes M. H. Nanoscale 2015, 7 (20), 9238.
doi: 10.1039/C5NR01829C |
55 |
Gobbo P. ; Biesinger M. C. ; Workentin M. S. Chem. Commun. 2013, 49 (27), 2831.
doi: 10.1039/c3cc00050h |
56 |
Qi X. ; Pu K.-Y. ; Li H. ; Zhou X. ; Wu S. ; Fan Q.-L. ; Liu B. ; Boey F. ; Huang W. ; Zhang H. Angew. Chem. Int. Ed. 2010, 49 (49), 9426.
doi: 10.1002/anie.201004497 |
57 |
Mao L. ; Li Y. ; Chi C. ; On Chan H. S. ; Wu J. Nano Energy 2014, 6, 119.
doi: 10.1016/j.nanoen.2014.03.018 |
58 |
Sampath S. ; Basuray A. N. ; Hartlieb K. J. ; Aytun T. ; Stupp S. I. ; Stoddart J. F. Adv. Mater. 2013, 25 (19), 2740.
doi: 10.1002/adma.201205157 |
59 |
Parviz D. ; Das S. ; Ahmed H. S. T. ; Irin F. ; Bhattacharia S. ; Green M. J. ACS Nano 2012, 6 (10), 8857.
doi: 10.1021/nn302784m |
60 |
Yoon W. ; Lee Y. ; Jang H. ; Jang M. ; Kim J. S. ; Lee H. S. ; Im S. ; Boo D. W. ; Park J. ; Ju S.-Y. Carbon 2015, 81, 629.
doi: 10.1016/j.carbon.2014.09.097 |
61 |
Geng J. ; Jung H.-T. J. Phys. Chem. C 2010, 114 (18), 8227.
doi: 10.1021/jp1008779 |
62 |
Das S. ; Irin F. ; Tanvir Ahmed H. S. ; Cortinas A. B. ; Wajid A. S. ; Parviz D. ; Jankowski A. F. ; Kato M. ; Green M. J. Polymer 2012, 53 (12), 2485.
doi: 10.1016/j.polymer.2012.03.012 |
63 |
Ghosh A. ; Rao K. V. ; Voggu R. ; George S. J. Chem. Phys. Lett. 2010, 488 (4–6), 19.
doi: 10.1016/j.cplett.2010.02.021 |
64 |
Wojcik A. ; Kamat P. V. ACS Nano 2010, 4 (11), 6697.
doi: 10.1021/nn102185q |
65 |
Chang H. ; Wang G. ; Yang A. ; Tao X. ; Liu X. ; Shen Y. ; Zheng Z. Adv. Funct. Mater. 2010, 20 (17), 2893.
doi: 10.1002/adfm.201000900 |
66 |
Green A. A. ; Hersam M. C. Nano Lett. 2009, 9 (12), 4031.
doi: 10.1021/nl902200b |
67 |
Ayán-Varela M. ; Paredes J. I. ; Guardia L. ; Villar-Rodil S. ; Munuera J. M. ; Díaz-González M. ; Fernández-Sánchez C. ; Martínez-Alonso A. ; Tascón J. M. D. ACS Appl. Mater. Interfaces 2015, 7 (19), 10293.
doi: 10.1021/acsami.5b00910 |
68 |
Park S. ; An J. ; Piner R. D. ; Jung I. ; Yang D. ; Velamakanni A. ; Nguyen S. T. ; Ruoff R. S. Chem. Mater. 2008, 20 (21), 6592.
doi: 10.1021/cm801932u |
69 |
Kou L. ; Gao C. Nanoscale 2011, 3 (2), 519.
doi: 10.1039/C0NR00609B |
70 |
Alam F. ; Choosri M. ; Gupta T. K. ; Varadarajan K. M. ; Choi D. ; Kumar S. Mater. Sci. Eng. B 2019, 241, 82.
doi: 10.1016/j.mseb.2019.02.011 |
71 |
Ruan S. ; Gao P. ; Yu T. X. Polymer 2006, 47 (5), 1604.
doi: 10.1016/j.polymer.2006.01.020 |
72 |
Oh H. ; Kim Y. ; Kim J. Org. Electron. 2020, 85, e105877.
doi: 10.1016/j.orgel.2020.105877 |
73 |
Das S. ; Wajid A. S. ; Shelburne J. L. ; Liao Y.-C. ; Green M. J. ACS Appl. Mater. Interfaces 2011, 3 (6), 1844.
doi: 10.1021/am1011436 |
74 |
Kumar S. ; Dang T. D. ; Arnold F. E. ; Bhattacharyya A. R. ; Min B. G. ; Zhang X. ; Vaia R. A. ; Park C. ; Adams W. W. ; Hauge R. H. ; et al Macromolecules 2002, 35 (24), 9039.
doi: 10.1021/ma0205055 |
75 |
im H.-S. ; Myung S. J. ; Jung R. ; Jin H.-J. Mol. Cryst. Liq. Cryst. 2008, 492 (1), 20.
doi: 10.1080/15421400802333279 |
76 |
Zhou C. ; Wang S. ; Zhang Y. ; Zhuang Q. ; Han Z. Polymer 2008, 49 (10), 2520.
doi: 10.1016/j.polymer.2008.04.003 |
77 |
Li N. ; Hu Z. ; Huang Y. Polym. Compos. 2018, 39 (8), 2969.
doi: 10.1002/pc.24299 |
78 |
Wang C. ; Lan Y. ; Yu W. ; Li X. ; Qian Y. ; Liu H. Appl. Surf. Sci. 2016, 362, 11.
doi: 10.1016/j.apsusc.2015.11.201 |
79 |
Hu N. ; Wei L. ; Wang Y. ; Gao R. ; Chai J. ; Yang Z. ; Kong E. S.-W. ; Zhang Y. J. Nanosci. Nanotech. 2012, 12 (1), 173.
doi: 10.1166/jnn.2012.5144 |
80 |
Liu Z. ; Zhou H. ; Huang Z. ; Wang W. ; Zeng F. ; Kuang Y. J. Mater. Chem. A 2013, 1 (10), 3454.
doi: 10.1039/c3ta01162c |
81 |
Li Z. ; Slater T. J. A. ; Ma X. ; Yu Y. ; Young R. J. ; Burnett T. L. Carbon 2019, 142, 99.
doi: 10.1016/j.carbon.2018.10.043 |
82 |
Chatterjee S. ; Nüesch F. A. ; Chu B. T. T. Chem. Phys. Lett. 2013, 557, 92.
doi: 10.1016/j.cplett.2012.11.091 |
83 |
Salavagione H. J. ; Martínez G. Macromolecules 2011, 44 (8), 2685.
doi: 10.1021/ma102932c |
84 |
Cao C. ; Peng J. ; Liang X. ; Saiz E. ; Wolf S. E. ; Wagner H. D. ; Jiang L. ; Cheng Q. Composites Part A 2021, 140, 106161.
doi: 10.1016/j.compositesa.2020.106161 |
85 |
Xiang C. ; Lu W. ; Zhu Y. ; Sun Z. ; Yan Z. ; Hwang C.-C. ; Tour J. M. ACS Appl. Mater. Interfaces 2012, 4 (1), 131.
doi: 10.1021/am201153b |
86 |
Hao X. Y. ; Hua X. Y. ; Lu J. ; Gai G. S. ; Kong X. M. Adv. Mater. Res. 2012, 454, 67.
doi: 10.4028/www.scientific.net/AMR.454.67 |
87 |
Gong X. ; Liu Y. ; Wang Y. ; Xie Z. ; Dong Q. ; Dong M. ; Liu H. ; Shao Q. ; Lu N. ; Murugadoss V. ; et al Polymer 2019, 168, 131.
doi: 10.1016/j.polymer.2019.02.021 |
88 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321 (5887), 385.
doi: 10.1126/science.1157996 |
89 |
Ruiz-Vargas C. S. ; Zhuang H. L. ; Huang P. Y. ; van der Zande A. M. ; Garg S. ; McEuen P. L. ; Muller D. A. ; Hennig R. G. ; Park J. Nano Lett. 2011, 11 (6), 2259.
doi: 10.1021/nl200429f |
90 |
Nicholl R. J. T. ; Conley H. J. ; Lavrik N. V. ; Vlassiouk I. ; Puzyrev Y. S. ; Sreenivas V. P. ; Pantelides S. T. ; Bolotin K. I. Nat. Commun. 2015, 6 (1), 8789.
doi: 10.1038/ncomms9789 |
91 |
Zandiatashbar A. ; Lee G.-H. ; An S. J. ; Lee S. ; Mathew N. ; Terrones M. ; Hayashi T. ; Picu C. R. ; Hone J. ; Koratkar N. Nat. Commun. 2014, 5 (1), 3186.
doi: 10.1038/ncomms4186 |
92 |
Zhang Y. Y. ; Gu Y. T. Comput. Mater. Sci. 2013, 71, 197.
doi: 10.1016/j.commatsci.2013.01.032 |
93 |
Salvetat J.-P. ; Briggs G. ; Bonard J.-M. ; Bacsa R. ; Kulik A. ; Stöckli T. ; Burnham N. ; Forró L. Phys. Rev. Lett. 1999, 82 (5), 944.
doi: 10.1103/PhysRevLett.82.944 |
94 |
Robertson D. H. ; Brenner D. W. ; Mintmire J. W. Phys. Rev. B 1992, 45 (21), 12592.
doi: 10.1103/PhysRevB.45.12592 |
95 |
Lu J. P. Phys. Rev. Lett. 1997, 79 (7), 1297.
doi: 10.1103/PhysRevLett.79.1297 |
96 |
Cornwell C. F. ; Wille L. T. Solid State Commun. 1997, 101 (8), 555.
doi: 10.1016/S0038-1098(96)00742-9 |
97 |
Gu J. ; Li N. ; Tian L. ; Lv Z. ; Zhang Q. RSC Adv. 2015, 5 (46), 36334.
doi: 10.1039/C5RA03284A |
98 |
Wu X. ; Li H. ; Cheng K. ; Qiu H. ; Yang J. Nanoscale 2019, 11 (17), 8219.
doi: 10.1039/C9NR02117E |
99 |
Ogata S. ; Shibutani Y. Phys. Rev. B 2003, 68 (16), 165409.
doi: 10.1103/PhysRevB.68.165409 |
100 |
Dumitrică T. ; Belytschko T. ; Yakobson B. I. J. Chem. Phys. 2003, 118 (21), 9485.
doi: 10.1063/1.1577540 |
101 |
Samsonidze G. G. ; Samsonidze G. G. ; Yakobson B. I. Phys. Rev. Lett. 2002, 88 (6), 065501.
doi: 10.1103/PhysRevLett.88.065501 |
102 |
Treacy M. M. J. ; Ebbesen T. W. Microsc. Microanal. 1997, 3 (S2), 393.
doi: 10.1017/S1431927600008850 |
103 |
Wong E. W. ; Sheehan P. E. ; Lieber C. M. Science 1997, 277 (5334), 1971.
doi: 10.1126/science.277.5334.1971 |
104 |
Yu M.-F. ; Files B. S. ; Arepalli S. ; Ruoff R. S. Phys. Rev. Lett. 2000, 84 (24), 5552.
doi: 10.1103/PhysRevLett.84.5552 |
105 |
Krishnan A. ; Dujardin E. ; Ebbesen T. W. ; Yianilos P. N. ; Treacy M. M. J. Phys. Rev. B 1998, 58 (20), 14013.
doi: 10.1103/PhysRevB.58.14013 |
106 |
Wagner H. D. ; Lourie O. ; Feldman Y. ; Tenne R. Appl. Phys. Lett. 1998, 72 (2), 188.
doi: 10.1063/1.120680 |
107 |
Marom G. ; Daniel Wagner H. J. Mater. Sci. 2017, 52 (14), 8357.
doi: 10.1007/s10853-017-1113-7 |
108 |
Young R. J. ; Liu M. ; Kinloch I. A. ; Li S. ; Zhao X. ; Vallés C. ; Papageorgiou D. G. Compos. Sci. Technol. 2018, 154, 110.
doi: 10.1016/j.compscitech.2017.11.007 |
109 |
Gong L. ; Kinloch I. A. ; Young R. J. ; Riaz I. ; Jalil R. ; Novoselov K. S. Adv. Mater. 2010, 22 (24), 2694.
doi: 10.1002/adma.200904264 |
110 |
Chao H. ; Riggleman R. A. Polymer 2013, 54 (19), 5222.
doi: 10.1016/j.polymer.2013.07.018 |
111 |
Lu C.-T. ; Weerasinghe A. ; Maroudas D. ; Ramasubramaniam A. Sci. Rep. 2016, 6 (1), 31735.
doi: 10.1038/srep31735 |
112 |
Slipenyuk A. ; Kuprin V. ; Milman Y. ; Spowart J. E. ; Miracle D. B. Mater. Sci. Eng. A 2004, 381 (1–2), 165.
doi: 10.1016/j.msea.2004.04.040 |
113 |
Bai J. B. ; Allaoui A. Composites Part A 2003, 34 (8), 689.
doi: 10.1016/S1359-835X(03)00140-4 |
114 |
Wu S. ; Ladani R. B. ; Zhang J. ; Bafekrpour E. ; Ghorbani K. ; Mouritz A. P. ; Kinloch A. J. ; Wang C. H. Carbon 2015, 94, 607.
doi: 10.1016/j.carbon.2015.07.026 |
115 |
Ramanathan T. ; Abdala A. A. ; Stankovich S. ; Dikin D. A. ; Herrera-Alonso M. ; Piner R. D. ; Adamson D. H. ; Schniepp H. C. ; Chen X. ; Ruoff R. ; et al Nat. Nanotech. 2008, 3 (6), 327.
doi: 10.1038/nnano.2008.96 |
116 |
Liu Y. ; Wu H. ; Chen G. Polym. Compos. 2016, 37 (4), 1190.
doi: 10.1002/pc.23283 |
117 |
Fisher F. Compos. Sci. Technol. 2003, 63 (11), 1689.
doi: 10.1016/S0266-3538(03)00069-1 |
118 |
Bradshaw R. Compos. Sci. Technol. 2003, 63 (11), 1705.
doi: 10.1016/S0266-3538(03)00070-8 |
119 |
Xu J.-Z. ; Chen T. ; Yang C.-L. ; Li Z.-M. ; Mao Y.-M. ; Zeng B.-Q. ; Hsiao B. S. Macromolecules 2010, 43 (11), 5000.
doi: 10.1021/ma100304n |
120 |
Lee G.-W. ; Jagannathan S. ; Chae H. G. ; Minus M. L. ; Kumar S. Polymer 2008, 49 (7), 1831.
doi: 10.1016/j.polymer.2008.02.029 |
121 |
Sandler J. K. W. ; Pegel S. ; Cadek M. ; Gojny F. ; van Es M. ; Lohmar J. ; Blau W. J. ; Schulte K. ; Windle A. H. ; Shaffer M. S. P. Polymer 2004, 45 (6), 2001.
doi: 10.1016/j.polymer.2004.01.023 |
122 |
Probst O. ; Moore E. M. ; Resasco D. E. ; Grady B. P. Polymer 2004, 45 (13), 4437.
doi: 10.1016/j.polymer.2004.04.031 |
123 |
Anand K. A. ; Jose T. S. ; Agarwal U. S. ; Sreekumar T. V. ; Banwari B. ; Joseph R. Inter. J. Polym. Mater. 2010, 59 (6), 438.
doi: 10.1080/00914030903538587 |
124 |
Haggenmueller R. ; Fischer J. E. ; Winey K. I. Macromolecules 2006, 39 (8), 2964.
doi: 10.1021/ma0527698 |
125 |
Yeh J.-T. ; Lai Y.-C. ; Liu H. ; Shu Y.-C. ; Huang C.-Y. ; Huang K.-S. ; Chen K.-N. Polym. Int. 2011, 60 (1), 59.
doi: 10.1002/pi.2911 |
126 |
Liu Y. ; Kumar S. ACS Appl. Mater. Interfaces 2014, 6 (9), 6069.
doi: 10.1021/am405136s |
127 |
Barber A. H. ; Cohen S. R. ; Wagner H. D. Appl. Phys. Lett. 2003, 82 (23), 4140.
doi: 10.1063/1.1579568 |
128 |
Hu Z. X. ; Meng S. ; Lu Q. X. ; Xiang H. X. ; Chen Z. Y. ; Wei P. L. ; Zhu M. F. Mater. Sci. Forum 2017, 898, 2246.
doi: 10.4028/www.scientific.net/MSF.898.2246 |
129 |
Qian P. ; Zhang Y. ; Mao H. ; Wang H. ; Shi H. SN Appl. Sci. 2019, 1 (5), 443.
doi: 10.1007/s42452-019-0466-8 |
130 |
Colonna S. ; Pérez-Camargo R. A. ; Chen H. ; Liu G. ; Wang D. ; Müller A. J. ; Saracco G. ; Fina A. Macromolecules 2017, 50 (23), 9380.
doi: 10.1021/acs.macromol.7b01865 |
131 |
Roberts A. D. ; Kelly P. ; Bain J. ; Morrison J. J. ; Wimpenny I. ; Barrow M. ; Woodward R. T. ; Gresil M. ; Blanford C. ; Hay S. ; et al Chem. Commun. 2019, 55 (78), 11703.
doi: 10.1039/C9CC04548A |
132 |
Mao Z. ; Li T. ; Zhang K. ; Li D. ; Zhou C. ; Ren M. ; Gu Y. ; Wang B. Adv. Theory Simul. 2020, 3 (10), 2000135.
doi: 10.1002/adts.202000135 |
133 |
Zhu J. ; Yuan L. ; Guan Q. ; Liang G. ; Gu A. Chem. Eng. J. 2017, 310, 134.
doi: 10.1016/j.cej.2016.10.099 |
134 |
Hu Z. ; Shao Q. ; Moloney M. G. ; Xu X. ; Zhang D. ; Li J. ; Zhang C. ; Huang Y. Macromolecules 2017, 50 (4), 1422.
doi: 10.1021/acs.macromol.6b02694 |
135 |
Jeong Y. G. ; Baik D. H. ; Jang J. W. ; Min B. G. ; Yoon K. H. Macromol. Res. 2014, 22 (3), 279.
doi: 10.1007/s13233-014-2043-8 |
136 |
Siochi E. J. ; Working D. C. ; Park C. ; Lillehei P. T. ; Rouse J. H. ; Topping C. C. ; Bhattacharyya A. R. ; Kumar S. Composites Part B 2004, 35 (5), 439.
doi: 10.1016/j.compositesb.2003.09.007 |
137 |
Dong J. ; Yin C. ; Zhao X. ; Li Y. ; Zhang Q. Polymer 2013, 54 (23), 6415.
doi: 10.1016/j.polymer.2013.09.035 |
138 |
Taloub N. ; Liu L. ; Rahoui N. ; Hegazy M. ; Huang Y. Polym. Test. 2019, 75, 344.
doi: 10.1016/j.polymertesting.2019.02.016 |
139 |
Hu N. ; Masuda Z. ; Yan C. ; Yamamoto G. ; Fukunaga H. ; Hashida T. Nanotechnology 2008, 19 (21), 215701.
doi: 10.1088/0957-4484/19/21/215701 |
140 |
Mutlay İ. ; Tudoran L. B. Fullerenes, Nanotubes, Carbon Nanostruct. 2014, 22 (5), 413.
doi: 10.1080/1536383X.2012.684186 |
141 |
Last B. J. ; Thouless D. J. Phys. Rev. Lett. 1971, 27 (25), 1719.
doi: 10.1103/PhysRevLett.27.1719 |
142 |
Tian G. ; Zhang H. ; liu J. ; Qi S. ; Wu D. Polym. Sci. Ser. A 2014, 56 (4), 505.
doi: 10.1134/S0965545X14040154 |
143 |
Liu M. ; Du Y. ; Miao Y.-E. ; Ding Q. ; He S. ; Tjiu W. W. ; Pan J. ; Liu T. Nanoscale 2015, 7 (3), 1037.
doi: 10.1039/C4NR06117A |
144 |
Wang K. ; Liu M. ; Song C. ; Shen L. ; Chen P. ; Xu S. Mater. Des. 2018, 148, 167.
doi: 10.1016/j.matdes.2018.03.069 |
145 |
Du F. ; Fischer J. E. ; Winey K. I. J. Polym. Sci. B-Polym. Phys. 2003, 41 (24), 3333.
doi: 10.1002/polb.10701 |
146 |
Pötschke P. ; Brünig H. ; Janke A. ; Fischer D. ; Jehnichen D. Polymer 2005, 46 (23), 10355.
doi: 10.1016/j.polymer.2005.07.106 |
147 |
Joseph J. ; Koroth A. K. ; John D. A. ; Sidpara A. M. ; Paul J. J. Appl. Polym. Sci. 2019, 136 (29), 47792.
doi: 10.1002/app.47792 |
148 |
Yuan B. ; Bao C. ; Qian X. ; Jiang S. ; Wen P. ; Xing W. ; Song L. ; Liew K. M. ; Hu Y. Ind. Eng. Chem. Res. 2014, 53 (3), 1143.
doi: 10.1021/ie403438k |
149 |
Zhang T. ; Ma T. ; Zhang J. C. ; Gao P. G. ; Zhang H. ; Shen F. C. Adv. Mater. Res. 2013, 627, 761.
doi: 10.4028/www.scientific.net/AMR.627.761 |
150 |
Hu Z. ; Hou K. ; Gao J. ; Zhu G. ; Zhou Z. ; Xiang H. ; Qiu T. ; Zhu M. Composites Part A 2020, 129, 105716.
doi: 10.1016/j.compositesa.2019.105716 |
151 |
Ruan F. ; Bao L. Fibers Polym. 2014, 15 (4), 723.
doi: 10.1007/s12221-014-0723-9 |
152 |
Cai H. ; Yan F. ; Xue Q. Mater. Sci. Eng. A 2004, 364 (1–2), 94.
doi: 10.1016/S0921-5093(03)00669-5 |
153 |
Duan G. ; Wang Y. ; Yu J. ; Zhu J. ; Hu Z. Appl. Nanosci. 2019, 9 (8), 1743.
doi: 10.1007/s13204-019-00955-0 |
154 |
Jiang Q. ; Wang X. ; Zhu Y. ; Hui D. ; Qiu Y. Composites Part B 2014, 56, 408.
doi: 10.1016/j.compositesb.2013.08.064 |
155 |
Chen W. X. ; Li F. ; Han G. ; Xia J. B. ; Wang L. Y. ; Tu J. P. ; Xu Z. D. Tribol. Lett. 2003, 15 (3), 27.
doi: 10.1023/A:1024869305259 |
156 |
Wang X. ; Wu J. ; Zhou L. ; Wei X. ; Wang W. Proc. Inst. Mech. Eng. Part J 2018, 232 (11), 1428.
doi: 10.1177/1350650117754000 |
157 |
Patel A. ; Loufakis D. ; Flouda P. ; George I. ; Shelton C. ; Harris J. ; Oka S. ; Lutkenhaus J. L. ACS Appl. Energy Mater. 2020, 3 (12), 11763.
doi: 10.1021/acsaem.0c01926 |
158 |
Flouda P. ; Feng X. ; Boyd J. G. ; Thomas E. L. ; Lagoudas D. C. ; Lutkenhaus J. L. Batteries Supercaps 2019, 2 (5), 464.
doi: 10.1002/batt.201800137 |
159 |
Reddy S. K. ; Kumar S. ; Varadarajan K. M. ; Marpu P. R. ; Gupta T. K. ; Choosri M. Mater. Sci. Eng. C 2018, 92, 957.
doi: 10.1016/j.msec.2018.07.029 |
160 |
Jiang Y. ; He Q. ; Cai J. ; Shen D. ; Hu X. ; Zhang D. ACS Appl. Mater. Interfaces 2020, 12 (52), 58317.
doi: 10.1021/acsami.0c19484 |
161 |
Yu Z. ; Dai T. ; Yuan S. ; Zou H. ; Liu P. ACS Appl. Mater. Interfaces 2020, 12 (27), 30990.
doi: 10.1021/acsami.0c07122 |
162 |
Li Y. ; Pei X. ; Shen B. ; Zhai W. ; Zhang L. ; Zheng W. RSC Adv. 2015, 5 (31), 24342.
doi: 10.1039/C4RA16421K |
163 |
Tang J. ; Ye F. ; Xie Y. ; Liu P. High Perform. Polym. 2020, 32 (10), 1140.
doi: 10.1177/0954008320933322 |
164 |
Tenison N. ; Baena J. C. ; Yu J. ; Peng Z. X. Key Eng. Mater. 2017, 739, 81.
doi: 10.4028/www.scientific.net/KEM.739.81 |
165 |
Gupta T. K. ; Choosri M. ; Varadarajan K. M. ; Kumar S. J. Mater. Sci. 2018, 53 (11), 7939.
doi: 10.1007/s10853-018-2072-3 |
[1] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[2] | Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103034-. |
[3] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[4] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[5] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[6] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[7] | Lei Wang, Tantan Sun, Nana Yan, Xiaona Liu, Chao Ma, Shutao Xu, Peng Guo, Peng Tian, Zhongmin Liu. Acid Properties of SAPO-34 Molecular Sieves with Different Si Contents Templated by Various Organic Structure-Directing Agents [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003046-. |
[8] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[9] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[10] | Ye Fan, Chongmei Cao, Yun Fang, Yongmei Xia. Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002032-. |
[11] | Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007093-. |
[12] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[13] | Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012047-. |
[14] | Tao Liang, Bin Wang. Interlayer Covalently Enhanced Graphene Materials: Construction, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2011059-. |
[15] | Yingjie Ma, Linjie Zhi. Functionalized Graphene Materials: Definition, Classification, and Preparation Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101004-. |
|