Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (7): 2201008.doi: 10.3866/PKU.WHXB202201008
Special Issue: Heterojunction Photocatalytic Materials
• ARTICLE • Previous Articles Next Articles
Wenliang Wang1, Haochun Zhang1, Yigang Chen2,*(), Haifeng Shi1,3,*(
)
Received:
2022-01-05
Accepted:
2022-02-05
Published:
2022-02-10
Contact:
Yigang Chen,Haifeng Shi
E-mail:wuxichen2512@njmu.edu.cn;hfshi@jiangnan.edu.cn
About author:
Email: hfshi@jiangnan.edu.cn; Tel.: +86-15052262655 (H.S.)Supported by:
MSC2000:
Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst[J].Acta Phys. -Chim. Sin., 2022, 38(7): 2201008.
1 |
Shi H. Y. ; Li Y. ; Wang X. F. ; Yu H. G. ; Yu J. G. Appl. Catal. B Environ. 2021, 297, 120414.
doi: 10.1016/j.apcatb.2021.120414 |
2 | Xiong Z. ; Hou Y. D. ; Yuan R. S. ; Ding Z. X. ; Ong W. J. ; Wang S. B. Acta Phys. -Chim. Sin. 2022, 38, 2111021. |
熊壮; 侯乙东; 员汝胜; 丁正新; 王伟俊; 汪思波; 物理化学学报, 2022, 38, 2111021.
doi: 10.3866/PKU.WHXB202111021 |
|
3 |
Shi H. F. ; Chen G. Q. ; Zou Z. G. Appl. Catal. B: Environ. 2014, 156-157, 378.
doi: 10.1016/j.apcatb.2014.03.036 |
4 | Shen R. C. ; Hao L. ; Chen Q. ; Zheng Q. Q. ; Zhang P. ; Li X. Acta Phys. -Chim. Sin. 2022, 38, 2110014. |
沈荣晨; 郝磊; 陈晴; 郑巧清; 张鹏; 李鑫; 物理化学学报, 2022, 38, 2110014.
doi: 10.3866/PKU.WHXB202110014 |
|
5 |
Ye J. W. ; Cheng B. ; Yu J. G. ; Ho W. K. ; Wageh S. ; Al-Ghamdi A.A. Appl. Catal. B Environ. 2022, 430, 132715.
doi: 10.1016/j.cej.2021.132715 |
6 | Liu D. ; Xu Y. M. Acta Phys. -Chim. Sin. 2008, 24, 1584. |
刘鼎; 许宜铭; 物理化学学报, 2008, 24, 1584.
doi: 10.1016/S1872-1508(08)60066-2 |
|
7 |
Fu J. W. ; Xu Q. L. ; Low J. X. ; Jiang C. J. ; Yu J. G. Appl. Catal. B Environ. 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
8 | Liu S. C. ; Wang K. ; Yang M. X. ; Jin Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023. |
刘珊池; 王凯; 杨梦雪; 靳治良; 物理化学学报, 2022, 38, 2109023.
doi: 10.3866/PKU.WHXB202109023 |
|
9 |
Lu M. F. ; Li Q. Q. ; Zhang C. L. ; Fan X. X. ; Li L. ; Dong Y. M. ; Chen G. Q. ; Shi H. F. Carbon 2020, 160, 342.
doi: 10.1016/j.carbon.2020.01.038 |
10 |
Xia B. Q. ; Yang Y. ; Zhang Y. Z. ; Xia Y. ; Jaroniec M. ; Yu J. G. ; Ran J. R. ; Qiao S. Z. Chem. Eng. J. 2022, 431, 133944.
doi: 10.1016/j.cej.2021.133944 |
11 |
Yu Q. N. ; Li G. Q. ; Zhang F. Catal. Sci. Technol. 2019, 9, 5333.
doi: 10.1039/c9cy01482a |
12 |
Vignesh S. ; Eniya P. ; Srinivasan M. ; Sundar J. K. ; Li H. ; Jayavel S. ; Pandiaraman M. ; Manthrammel M. A. ; Shkir M. ; Palanivel B. J. Environ. Chem. Eng. 2021, 9, 105996.
doi: 10.1016/j.jece.2021.105996 |
13 |
Zhong B. ; Kuang P. Y. ; Wang L. X. ; Yu J. G. Appl. Catal. B Environ. 2021, 299, 120668.
doi: 10.1016/j.apcatb.2021.120668 |
14 |
Cao S. W. ; Shen B. J. ; Tong T. ; Fu J. W. ; Yu J. G. Adv. Funct. Mater. 2018, 28, 1800136.
doi: 10.1002/adfm.201800136 |
15 |
Chen X. X. ; Zhang J. ; Huang C. P. ; Wu Q. ; Wu J. ; Xia L. G. ; Xu Q. J. ; Yao W. F. ACS Appl. Mater. Interfaces 2020, 12, 54619.
doi: 10.1021/acsami.0c15236 |
16 |
Nicewicz D. A. ; Nguyen T. M. ACS Catal. 2014, 4, 355.
doi: 10.1021/cs400956a |
17 |
Vignesh S. ; Suganthi S. ; Sundar J. K. ; Raj V. ; Devi P. R. I. Appl. Surf. Sci. 2019, 479, 914.
doi: 10.1016/j.apsusc.2019.02.064 |
18 |
Vignesh S. ; Suganthi S. ; Sundar J. K. ; Raj V. J. Ind. Eng. Chem. 2019, 76, 318.
doi: 10.1016/j.jiec.2019.03.056 |
19 |
Shanmugam V. ; Jeyaperumal K. S. ; Mariappan P. ; Muppudathi A. L. New J. Chem. 2020, 44, 13182.
doi: 10.1039/d0nj02101f |
20 |
Cai P. F. ; Liu T. ; Zhang L. Y. ; Cheng B. ; Yu J. G. Appl. Surf. Sci. 2020, 504, 144501.
doi: 10.1016/j.apsusc.2019.144501 |
21 |
Low J. X. ; Cheng B. ; Yu J. G. Appl. Surf. Sci. 2017, 392, 658.
doi: 10.1016/j.apsusc.2016.09.093 |
22 | Li, B. S.; Lai, C.; Zeng, G. M.; Qin, L.; Yi, H.; Huang, D. L.; Zhou, C. Y.; Liu, X. G.; Cheng, M.; Huang, F. L.; et al. Y. ACS Appl. Mater. Interfaces 2018, 10, 18824. doi: 10.1021/acsami.8b06128 |
23 |
Fan K. ; Chen H. ; He B. W. ; Yu J. G. Chem. Eng. J. 2020, 392, 123744.
doi: 10.1016/j.cej.2019.123744 |
24 |
Wu H. Y. ; Peng J. H. ; Sun H. C. ; Ruan Q. S. ; Dong H. F. ; Jin Y. H. ; Sun Z. M. ; Hu Y. H. Chem. Eng. J. 2022, 432, 134339.
doi: 10.1016/j.cej.2021.134339 |
25 |
Pan J. ; Li Y. J. ; Guo G. X. ; Zh ao ; Yu X. F. ; J.; Li Z. ; Xu S. C. ; Man B. Y. ; Wei D. M. ; Zhang C. Appl. Surf. Sci. 2022, 577, 151811.
doi: 10.1016/j.apsusc.2021.151811 |
26 |
Shi H. F. ; Li X. K. ; Wang D. F. ; Yuan Y. P. ; Zou Z. G. ; Ye J. H. Catal. Lett. 2009, 132, 205.
doi: 10.1007/s10562-009-0087-8 |
27 |
Dou X. C. ; Zhang C. L. ; Shi H. F. Sep. Purif. Technol. 2022, 282, 120023.
doi: 10.1016/j.seppur.2021.120023 |
28 |
Dou X. C. ; Chen Y. G. ; Shi H. F. Chem. Eng. J. 2022, 431, 134054.
doi: 10.1016/j.cej.2021.134054 |
29 |
Chen Y. K. ; Fang J. J. ; Dai B. Y. ; Kou J. H. ; Lu C. H. ; Xu Z. Z. Appl. Surf. Sci. 2020, 534, 147640.
doi: 10.1016/j.apsusc.2020.147640 |
30 |
Liu Q. D. ; Hou J. ; Wu J. ; Miao L. Z. ; You G. X. ; Ao Y. H. J. Hazard. Mater. 2022, 423, 127063.
doi: 10.1016/j.jhazmat.2021.127063 |
31 |
Ren K. X. ; Lv M. S. ; Xie Q. J. ; Zhang C. L. ; Shi H. F. Carbon 2022, 186, 355.
doi: 10.1016/j.carbon.2021.10.050 |
32 |
Li Q. Q. ; Zhao W. L. ; Zhai Z. C. ; Ren K. X. ; Wang T. Y. ; Guan H. ; Shi H. F. J. Mater. Sci. Technol. 2020, 56, 216.
doi: 10.1016/j.jmst.2020.03.038 |
33 |
Florent M. ; Giannakoudakis D. A. ; Bandosz T. J. Appl. Catal. B: Environ. 2020, 272, 119038.
doi: 10.1016/j.apcatb.2020.119038 |
34 |
Shanmugam V. ; Muppudathi A. L. ; Jayavel S. ; Jeyaperumal K. S. Arab. J. Chem. 2020, 13, 2439.
doi: 10.1016/j.arabjc.2018.05.009 |
35 |
Suganthi S. ; Vignesh S. ; Mohanapriya S. ; Sundar J. K. ; Raj V. J. Mater. Sci. Mater. Electron. 2019, 30, 15168.
doi: 10.1007/s10854-019-01890-0 |
36 |
Shi H. F. ; Chen G. Q. ; Zhang C. L. ; Zou Z. G. ACS Catal. 2014, 4, 3637.
doi: 10.1021/cs500848f |
37 |
Rashidizadeh A. ; Zand H. R. E. ; Ghafuri H. ; Rezazadeh Z. ACS Appl. Nano Mater. 2020, 3, 7057.
doi: 10.1021/acsanm.0c01380 |
38 |
Yang Y. ; Tang Z. ; Zhou B. J. ; Shen J. Y. ; He H. C. ; Ali A. ; Zhong Q. ; Xiong Y. J. ; Gao C. ; Alsaedi A. ; et al Appl. Catal. B: Environ. 2020, 264, 118470.
doi: 10.1016/j.apcatb.2019.118470 |
39 |
Zhu S. S. ; Zou X. F. ; Zhou Y. ; Zeng Y. J. ; Long Y. ; Yuan Z. F. ; Wu Q. B. ; Li M. ; Wang Y. Z. ; Xiang B. J. Alloys Compd. 2019, 775, 63.
doi: 10.1016/j.jallcom.2018.10.085 |
40 |
Xu Q. Q. ; Huo W. ; Li S. S. ; Fang J. H. ; Li L. ; Zhang B. Y. ; Zhang F. ; Zhang Y. X. ; Li S. W. Appl. Surf. Sci. 2020, 533, 147368.
doi: 10.1016/j.apsusc.2020.147368 |
41 |
Liu L. Z. ; Hu T. P. ; Dai K. ; Zhang J. F. ; Liang C. H. Chin. J. Catal. 2021, 42, 46.
doi: 10.1016/S1872-2067(20)63560-4 |
42 |
Geng Y. X. ; Chen D. Y. ; Li N. J. ; Xu Q. F. ; Li H. ; He J. H. ; Lu J. M. Appl. Catal. B: Environ. 2021, 280, 119409.
doi: 10.1016/j.apcatb.2020.119409 |
43 |
Xiao D. ; Dai K. ; Qu Y. ; Yin Y. P. ; Chen H. Appl. Surf. Sci. 2015, 358, 181.
doi: 10.1016/j.apsusc.2015.09.042 |
44 |
Bhattacharya C. ; Saji S. E. ; Mohan A. ; Madav V. ; Jia G. H. ; Yin Z. Y. Adv. Energy Mater. 2020, 10, 2002402.
doi: 10.1002/aenm.202002402 |
45 |
Jiang Z. F. ; Wan W. M. ; Li H. M. ; Yuan S. Q. ; Zhao H. J. ; Wong P. K. Adv. Mater. 2018, 30, 1706108.
doi: 10.1002/adma.201706108 |
46 |
Wang Y. J. ; Song H. M. ; Chen J. ; Chai S. N. ; Shi L. M. ; Chen C. W. ; Wang Y. B. ; He C. Appl. Surf. Sci. 2020, 512, 145650.
doi: 10.1016/j.apsusc.2020.145650 |
47 |
Wang W. L. ; Zhao W. L. ; Zhang H. C. ; Dou X. C. ; Shi H. F. Chin. J. Catal. 2021, 42, 97.
doi: 10.1016/S1872-2067(20)63602-6 |
48 |
Kuang P. Y. ; Sayed M. ; Fan J. J. ; Cheng B. ; Yu J. G. Adv. Energy Mater. 2020, 10, 1903802.
doi: 10.1002/aenm.201903802 |
49 |
Wang W. L. ; Zhao W. L. ; Huang H. M. ; Chen R. Y. ; Shi H. F. Catal. Sci. Technol. 2021, 11, 2948.
doi: 10.1039/D1CY00051A |
50 |
Hu X. Y. ; Yu Y. T. ; Chen D. D. ; Xu W. C. ; Fang J. Z. ; Liu Z. ; Li R. Q. ; Yao L. ; Qin J. J. ; Fang Z. Q. Chem. Eng. J. 2022, 432, 134375.
doi: 10.1016/j.cej.2021.134375 |
51 |
Yin Z. Y. ; Chen X. T. ; Wang C. ; Guo Z. J. ; Wu X. L. ; Zhao Z. Y. ; Yao Y. F. ; Luo W. J. ; Zou Z. G. Chem. Sci. 2020, 11, 6297.
doi: 10.1039/D0SC01052A |
52 |
Cheng H. J. ; Hou J. G. ; Takeda O. ; Guo X. M. ; Zhu H. M. J. Mater. Chem. A. 2015, 3, 11006.
doi: 10.1039/c5ta01864a |
53 |
Shen R. C. ; Zhang L. P. ; Chen X. Z. ; Jaroniec M. ; Li N. ; Li X. Appl. Catal. B: Environ. 2020, 266, 118619.
doi: 10.1016/j.apcatb.2020.118619 |
54 |
Sultana S. ; Mansingh S. ; Parida K. M. J. Phys. Chem. C 2018, 122, 808.
doi: 10.1021/acs.jpcc.7b08534 |
55 |
Chen W. ; He Z. C. ; Huang G. B. ; Wu C. L. ; Chen W. F. ; Liu X. H. Chem. Eng. J. 2019, 359, 244.
doi: 10.1016/j.cej.2018.11.141 |
56 |
Wang M. ; Shen M. ; Zhang L. X. ; Tian J. J. ; Jin X. X. ; Zhou Y. J. ; Shi J. L. Carbon 2017, 120, 23.
doi: 10.1016/j.carbon.2017.05.024 |
57 |
Zhang L. Y. ; Zhang J. J. ; Yu H. G. ; Yu J. G. Adv. Mater. 2021, 34, 2107668.
doi: 10.1002/adma.202107668 |
58 |
Xu Q. L. ; Zhang L. Y. ; Cheng B. ; Fan J. J. ; Yu J. G. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
59 |
Yang H. ; He D. Y. ; Liu C. H. ; Zhang T. T. ; Qu J. ; Jin D. X. ; Zhang K. N. ; Lv Y. H. ; Zhang Z. C. ; Zhang. Y. N. Chemosphere 2022, 287, 132072.
doi: 10.1016/j.chemosphere.2021.132072 |
60 | Fei X. G. ; Tan H. Y. ; Cheng B. ; Zhu B. C. ; Zhang L. Y. Acta Phys. -Chim. Sin. 2021, 37, 2010027. |
费新刚; 谭海燕; 程蓓; 朱必成; 张留洋; 物理化学学报, 2021, 37, 2010027.
doi: 10.3866/PKU.WHXB202010027 |
|
61 | Wageh S. ; Al-Ghamdi A. A. ; Liu L. J. Acta Phys. -Chim. Sin. 2021, 37, 2010024. |
WagehS.; Al-GhamdiA. A.; 刘丽君; 物理化学学报, 2021, 37, 2010024.
doi: 10.3866/PKU.WHXB202010024 |
|
62 | Li X. B. ; Liu J. Y. ; Huang J. T. ; He C. Z. ; Feng Z. J. ; Chen Z. ; Wan L. Y. ; Deng F. Acta Phys. -Chim. Sin. 2021, 37, 2010030. |
李喜宝; 刘积有; 黄军同; 何朝政; 冯志军; 陈智; 万里鹰; 邓芳; 物理化学学报, 2021, 37, 2010030.
doi: 10.3866/PKU.WHXB202010030 |
|
63 | Huang Y. ; Mei F. F. ; Zhang J. F. ; Dai K. ; Dawson G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. |
黄悦; 梅飞飞; 张金锋; 代凯; DawsonG.; 物理化学学报, 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028 |
|
64 |
Jin C. Y. ; Li Z. L. ; Zhang Y. ; Wang M. ; Wu Z. M. ; Xie Y. H. ; Wang Y. Z. ; Zhu T. Sep. Purif. Technol. 2019, 224, 33.
doi: 10.1016/j.seppur.2019.05.006 |
65 |
Jo W. K. ; Kumar S. T. ; Eslava S. ; Tonda S. Appl. Catal. B Environ. 2018, 239, 586.
doi: 10.1016/j.apcatb.2018.08.056 |
66 |
Guo W. ; Fan K. ; Zhang J. J. ; Xu C. J. Appl. Surf. Sci. 2018, 447, 125.
doi: 10.1016/j.apsusc.2018.03.080 |
67 |
Xi J. H. ; Xia H. ; Ning X. M. ; Zhang Z. ; Liu J. ; Mu Z. J. ; Zhang S. T. ; Du P. Y. ; Lu X. Q. Small 2019, 15, 1902744.
doi: 10.1002/smll.201902744 |
68 |
Liu X. N. ; Lu Q. F. ; Zhu C. F. ; Liu S. W. RSC Adv. 2014, 5, 4077.
doi: 10.1007/10.1039/c4ra11613e |
69 |
Ren S. S. ; Chen C. H. ; Zhou Y. ; Dong Q. M. ; Ding H. M. Res. Chem. Intermed. 2017, 43, 3307.
doi: 10.1007/s11164-016-2827-x |
70 |
Guo T. ; Wang K. ; Zhang G. K. ; Wu X. Y. Appl. Surf. Sci. 2019, 469, 331.
doi: 10.1016/j.apsusc.2018.10.183 |
[1] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[4] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[5] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[6] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[7] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[8] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[9] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[10] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[11] | Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008030-. |
[12] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[13] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[14] | Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011022-. |
[15] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
|