Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (1): 2206029.doi: 10.3866/PKU.WHXB202206029
• REVIEW • Previous Articles Next Articles
Xiaohui Li1,3, Xiaodong Li2, Quanhu Sun4,5, Jianjiang He4, Ze Yang4, Jinchong Xiao1,*(), Changshui Huang2,4,*(
)
Received:
2022-06-20
Accepted:
2022-07-22
Published:
2022-08-08
Contact:
Jinchong Xiao,Changshui Huang
E-mail:jcxiaoicas@163.com;huangcs@iccas.ac.cn
About author:
Email: huangcs@iccas.ac.cn (C.H.)Supported by:
MSC2000:
Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives[J].Acta Phys. -Chim. Sin., 2023, 39(1): 2206029.
Fig 3
Synthetic routes to graphdiyne derivatives: Glaser coupling (a), Glaser-Hay coupling (b) and Eglinton coupling (c) 12, 63, 66, 67. (a) Adapted from Ref. 63, Open-access; Adapted with permission from Ref. 66, Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim publisher; (b) Adapted from Ref. 63, Open-access; Adapted with permission from Ref. 12, Copyright 2019, John Wiley and Sons publisher. (c) Adapted from Ref. 63, Open-access; Adapted with permission from Ref. 67, Copyright 1992 by VCH Verlagsgesellschaft mbH, Germany publisher."
Table 1
Structures, preparations and performances of GDY and graphdiyne derivatives 1, 2, 36, 43, 49-56, 58, 60, 62."
Number | Sample | Precursor | Structure | Preparation | Application | Performance |
1 | GDY | ![]() | ![]() | Glaser coupling | Energy conversion and storage, optoelectronic devices, catalysis, etc. | LIBs: With a reversible capacity of 552 mAh?g?1 at a current density of 50 mA?g?1 after performing 200 cycles |
2 | TZ-GDY | ![]() | ![]() | Glaser coupling (copper substrate) | – | – |
3 | Ben-GDY | ![]() | ![]() | Glaser coupling (copper substrate) | – | – |
4 | TPE-GDY | ![]() | ![]() | Glaser coupling (copper substrate) | Nonlinear optics (NLO) | Show clear chirality in the ultraviolet band and exhibit a good nonlinear frequency doubling response |
5 | TTF-GDY | ![]() | ![]() | Glaser coupling (without substrate) | Electrode materials of LIBs | With a reversible capacity of 837.6 mAh?g?1 |
6 | SBFCY-NS | ![]() | ![]() | Glaser coupling (without substrate) | Electrode materials of LIBs, and SIBs | LIBs: With a capacity of 1050 mAh?g?1 at a current density of 50 mA?g?1; SIBs: With a capacity of 130 mAh?g?1 at a current density of 5 A g?1 after 3000 circles |
7 | BBT-GDY | ![]() | ![]() | Glaser-Hay coupling (copper substrate) | – | Show semiconductor characteristics with a bandgap of 2.38 eV, and conductivity of 2 × 10?3 S·m?1 (r.t.) |
8 | CoPor-GDY | ![]() | ![]() | Glaser-Hay coupling (copper substrate) | – | The overpotential of HER was 308 mV at 10 mA?cm?2 and the Tafel slope was 68 mV?dec?1; the overpotential of OER was 400 mV at 10 mA?cm?2 and the Tafel slope was 129 mV?dec?1. |
9 | PQ-GDY | ![]() | ![]() | Glaser-Hay coupling (copper substrate) | Electrode materials of LIBs | With a reversible capacity of 570.0 mAh?g?1 after performing 800 cycles at a current density of 200 mA?g?1 |
10 | TP-GDY | ![]() | ![]() | Glaser-Hay coupling (without substrate) | – | After modification: freestanding morphology, smooth texture, domain size > 1 mm, thickness 220 nm |
11 | COP-GY | ![]() | ![]() | Sonogashira coupling (melamine sponge or cotton fabric substrate, etc.) | Conductive and superhydrophobic materials for oil-water separation, biosensing, etc. | Cotton fabrics with COP-GY showed oil-water separation efficiency of 95.5%; COP-GY in melamine sponge showed superhydrophobicity with a contact angle of 154°. |
12 | Ag-TET | ![]() | ![]() | Glaser coupling (Ag substrate) | – | – |
13 | HgL1 | ![]() | ![]() | Glaser coupling (glass slide, silicon wafer or quartz substrate) | Passively Q-switched (PQS) | With stable and perfect broadband nonlinear saturable absorption (SA) properties at both 532 and 1064 nm |
14 | HgL2 | ![]() | ![]() | Glaser coupling (glass slide, silicon wafer or quartz substrate) | Passively Q-switched (PQS) | With stable and perfect broadband nonlinear saturable absorption (SA) properties at both 532 and 1064 nm |
Fig 5
Solid–liquid interfacial synthesis of TPE-GDY (a) and liquid/liquid interfacial synthesis of TTF-GDY (b) 49, 51. (a) Adapted with permission from Ref. 49, Copyright 2003, John Wiley and Sons publisher; (b) Adapted with permission from Ref. 51, Copyright 2019 American Chemical Society publisher."
Fig 6
Structures of B-GDY (a), BBT-GDY (b), C-DY (c), Por-GDY (d) and synthetic route to CoPor-GDY (e) 43, 44, 47, 54. (a) Adapted with permission from Ref. 47, Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim publisher; (b) Adapted from Ref. 43, IOP Publishing publisher; (c) Adapted with permission from Ref. 44, Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim publisher; (d, e) Adapted from Ref. 54, Open-access."
Fig 9
Structures of Ag-Ben-GDY (b) and Ag-TET (c) and synthetic routes to Ag-Ben-GDY (a), HgL1 (d) and HgL2 (e) 58–61. (a, b) Adapted with permission from Ref. 61, Copyright 2019 American Chemical Society; (c) Adapted from Ref. 60, Open-access; (d, e) Adapted with permission from Ref. 58, Copyright 2021 Wiley-VCH GmbH; (e) Adapted with permission from Ref. 59, Copyright 2016 American Chemical Society."
Fig 12
Electrochemical performance of C-DY、Si-DY and Ge-DY based anodes for Li ion storage 44–46. (a) Cycling performance of C-DY based electrodes for LIBs at 200 mA∙g?1. (b, c) Cycling performance of Si-DY, Ge-DY based electrodes for LIBs at 50 mA∙g?1. (d, e) Cycling performance of Si-DY、Ge-DY based electrodes for LIBs at 5000 mA∙g?1. (f–h) Rate performance of C-DY, Si-DY, Ge-DY based electrodes for LIBs. (a) Adapted with permission from Ref. 44, Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b, d, e) Adapted with permission from Ref. 45, Copyright 2021 Wiley-VCH GmbH; (c, f, g) Adapted with permission from Ref. 46, Copyright 2022 John Wiley and Sons."
Fig 13
Electrochemical performance of TTF-GDY and PQ-GDY in Li ion storage 51, 53. (a) Rate performance of TTF-GDY based electrodes for LIBs. (b) Cycling performance of TTF-GDY based electrodes for LIBs at 0.5 A∙g?1. (c) Rate performance of PQ-GDY based electrodes for LIBs. (d) Cycling performance of PQ-GDY based electrodes for LIBs between 5 mV and 3 V. (a, b) Adapted with permission from Ref. 51, Copyright 2019 American Chemical Society; (c, d) Adapted with permission from Ref. 53, Copyright 2020 American Chemical Society."
Fig 14
Lithium and sodium storage performance of SBFCY-NS 52. (a) Cycling performance at 0.05 A∙g?1 for LIBs. (b) Cycling performance at 5 A∙g?1 for SIBs. (c) Cycling performance at 5 A∙g?1 for LIBs. (b) Rate performance at increasing current density for LIBs. (e) Rate performance at increasing current density for SIBs. Adapted with permission from Ref. 52, Copyright 2021 Wiley-VCH GmbH."
Fig 15
The electrocatalytic performances of CoPor-GDY and Por-GDY in HER and OER 54. (a) HER LSV curves. (b) Tafel plots of HER. (c) Comparison of the HER performances of CoPor-GDY with the reported catalysts. (d) OER LSV curves. (e) Tafel plots of OER. (f) Comparison of the OER performances of CoPor-GDY with the reported catalysts. Adapted from Ref. 54, Open-access."
1 | HuangC. S.;LiY. L.Acta Phys. -Chim. Sin.2016,32,1314. |
黄长水;李玉良.物理化学学报,2016,32,1314.
doi: 10.3866/PKU.WHXB201605035 |
|
2 |
LiG. X.;LiY. L.;LiuH. B.;GuoY. B.;LiY. J.;ZhuD. B.Chem. Commun2010,46,3256.
doi: 10.1039/b922733d |
3 |
HuangC. S.;LiY. J.;WangN.;XueY. R.;ZuoZ. C.;LiuH. B.;LiY. L.Chem. Rev.2018,118,7744.
doi: 10.1021/acs.chemrev.8b00288 |
4 | ShenX. Y.;HeJ. J.;WangN.;HuangC. S.Acta Phys. -Chim. Sin.2018,34,1029. |
神祥艳;何建江;王宁;黄长水.物理化学学报,2018,34,1029.
doi: 10.3866/PKU.WHXB201801122 |
|
5 |
LiY. J.;XuL.;LiuH. B.;LiY. L.Chem. Soc. Rev.2014,43,2572.
doi: 10.1039/C3CS60388A |
6 |
DiederichF.;KivalaM.Adv. Mater.2010,22,803.
doi: 10.1002/adma.200902623 |
7 |
JiaZ. Y.;LiY. J.;ZuoZ. C.;LiuH. B.;HuangC. S.;LiY. L.Acc. Chem. Res.2017,50,2470.
doi: 10.1021/acs.accounts.7b00205 |
8 |
GaoX.;LiuH. B.;WangD.;ZhangJ.Chem. Soc. Rev.2019,48,908.
doi: 10.1039/C8CS00773J |
9 |
ZuoZ. C.;LiY. L.Joule2019,3,899.
doi: 10.1016/j.joule.2019.01.016 |
10 |
DuY. C.;ZhouW. D.;GaoJ.;PanX. Y.;LiY. L.Acc. Chem. Res.2020,53,459.
doi: 10.1021/acs.accounts.9b00558 |
11 |
YuH. D.;XueY. R.;LiY. L.Adv. Mater.2019,31,1803101.
doi: 10.1002/adma.201803101 |
12 |
SakamotoR.;FukuiN.;MaedaH.;MatsuokaR.;ToyodaR.;NishiharaH.Adv. Mater.2019,31,1804211.
doi: 10.1002/adma.201804211 |
13 |
WangN.;HeJ. J.;WangK.;ZhaoY. J.;JiuT. G.;HuangC. S.;LiY. L.Adv. Mater.2019,31,1803202.
doi: 10.1002/adma.201803202 |
14 |
GuoJ.;GuoM. Y.;WangF. H.;JinW. Y.;ChenC. Y.;LiuH. B.;LiY. L.Angew. Chem. Int. Ed.2020,59,16712.
doi: 10.1002/anie.202006891 |
15 |
JinJ.;GuoM. Y.;LiuJ. M.;LiuJ.;ZhouH. G.;LiJ. Y.;WangL. M.;LiuH. B.;LiY. L.;ZhaoY. L.;et alACS Appl. Mater. Interfaces2018,10,8436.
doi: 10.1021/acsami.7b17219 |
16 |
XieJ. N.;WangN.;DongX. H.;WangC. Y.;DuZ.;MeiL. Q.;YongY.;HuangC. S.;LiY. L.;GuZ. J.;et alACS Appl. Mater. Interfaces2018,11,2579.
doi: 10.1021/acsami.8b00949 |
17 |
ShangH.;ZuoZ. Q.;LiL.;WangF.;LiuH. B.;LiY. J.;LiY. L.Angew. Chem. Int. Ed.2018,57,774.
doi: 10.1002/anie.201711366 |
18 |
WangF.;ZuoZ. C.;LiL.;HeF.;LuF. S.;LiY. L.Adv. Mater.2019,31,1806272.
doi: 10.1002/adma.201806272 |
19 |
ZuoZ. C.;HeF.;WangF.;LiL.;LiY. L.Adv. Mater.2020,32,2004379.
doi: 10.1002/adma.202004379 |
20 |
LiJ.;GaoX.;LiuB.;FengQ. L.;LiX. B.;HuangM. Y.;LiuZ. F.;ZhangJ.;TungC. H.;WuL. Z.J. Am. Chem. Soc.2016,138,3954.
doi: 10.1021/jacs.5b12758 |
21 |
GaoX.;LiJ.;DuR.;ZhouJ. Y.;HuangM. Y.;LiuR.;LiJ.;XieZ. Q.;WuL. Z.;LiuZ. F.;ZhangJ.Adv. Mater.2017,29,1605308.
doi: 10.1002/adma.201605308 |
22 |
FangY.;XueY. R.;LiY. J.;YuH. D.;HuiL.;LiuY. X.;XingC. Y.;ZhangC.;ZhangD. Y.;WangZ. Q.;et alAngew. Chem. Int. Ed.2020,59,13021.
doi: 10.1002/anie.202004213 |
23 |
FangY.;XueY. R.;HuiL.;YuH. D.;LiY. L.Angew. Chem. Int. Ed.2021,133,3207.
doi: 10.1002/ange.202012357 |
24 |
YuH. D.;XueY. R.;HuiL.;ZhangC.;FangY.;LiuY. X.;ChenX.;ZhangD. Y.;HuangB. L.;LiY. L.Natl. Sci. Rev.2021,8,nwaa213.
doi: 10.1093/nsr/nwaa213 |
25 |
ZuoZ. C.;WangD.;ZhangJ.;LuF. S.;LiY. L.Adv. Mater.2019,31,1803762.
doi: 10.1002/adma.201803762 |
26 |
XueY. R.;HuangB. L.;YiY. P.;GuoY.;ZuoZ. C.;LiY. J.;JiaZ. Y.;LiuH. B.;LiY. L.Nat. Commun.2018,9,1460.
doi: 10.1038/s41467-018-03896-4 |
27 |
HuiL.;XueY. R.;YuH. D.;LiuY. X.;FangY.;XingC. Y.;HuangB. L.;LiY. L.J. Am. Chem. Soc.2019,141,10677.
doi: 10.1021/jacs.9b03004 |
28 |
HuiL.;XueY. R.;HuangB. L.;YuH. D.;ZhangC.;ZhangD. Y.;JiaD. Z.;ZhaoY. J.;LiY. J.;LiuH. B.;et alNat. Commun.2018,9,5309.
doi: 10.1038/s41467-018-07790-x |
29 |
YuH. D.;XueY. R.;HuiL.;ZhangC.;LiY. J.;ZuoZ. C.;ZhaoY. J.;LiZ. B.;LiY. L.Adv. Mater.2018,30,1707082.
doi: 10.1002/adma.201707082 |
30 |
YangZ.;CuiW. W.;WangK.;SongY. W.;ZhaoF. H.;WangN.;LongY. Z.;WangH. L.;HuangC. S.Chem. Eur. J.2019,25,5643.
doi: 10.1002/chem.201900477 |
31 |
DuH. P.;ZhangZ. H.;He;J.J.;CuiZ. L.;ChaiJ. C.;MaJ.;YangZ.;HuangC. S.;CuiG. L.Small2017,13,1702277.
doi: 10.1002/smll.201702277 |
32 |
ZhaoY. S.;WanJ. W.;YaoH. Y.;ZhangL. J.;LinK. F.;WangL.;YangN. L.;LiuD. B.;SongL.;ZhuJ.;et alNat. Chem.2018,10,924.
doi: 10.1038/s41557-018-0100-1 |
33 |
ShenX. Y.;LiX. D.;ZhaoF. H.;WangN.;XieC. P.;HeJ. J.;SiW. Y.;YiY. P.;YangZ.;LiX. F.;et al2D Mater.2019,6,035020.
doi: 10.1088/2053-1583/ab185d |
34 |
WangN.;HeJ. J.;TuZ. Y.;YangZ.;ZhaoF. H.;LiX. D.;HuangC. S.;WangK.;JiuT. G.;YiY. P.;et alAngew. Chem. Int. Ed.2017,56,10740.
doi: 10.1002/anie.201704779 |
35 |
HeJ. J.;WangN.;YangZ.;ShenX. Y.;WangK.;HuangC. S.;YiY. P.;TuZ. Y.;LiY. L.Energy Environ. Sci.2018,11,2893.
doi: 10.1039/c8ee01642a |
36 |
ZhouW. X.;ShenH.;WuC. Y.;TuZ. Y.;HeF.;GuY. N.;XueY. R.;ZhaoY. J.;YiY. P.;LiY. J.;et alJ. Am. Chem. Soc2018,141,48.
doi: 10.1021/jacs.8b09945 |
37 |
HeJ. J.;WangN.;CuiZ. L.;DuH. P.;FuL.;HuangC. S.;YangZ.;ShenX. Y.;YiY. P.;TuZ. Y.;et alNat. Commun.2017,8,1.
doi: 10.1038/s41467-017-01202-2 |
38 |
YangZ.;LiuR. R.;WangN.;HeJ. J.;WangK.;LiX. D.;ShenX. Y.;WangX.;LvQ.;ZhangM. J.;et alCarbon2018,137,442.
doi: 10.1016/j.carbon.2018.05.049 |
39 |
ShangH.;ZuoZ. C.;ZhengH. Y.;LiK.;TuZ. Y.;YiY. P.;LiuH. B.;LiY. J.;LiY. L.Nano Energy2018,44,144.
doi: 10.1016/j.nanoen.2017.11.072 |
40 |
KanX. N.;BanY. Q.;WuC. Y.;PanQ. Y.;LiuH.;SongJ. H.;ZuoZ. C.;LiZ. B.;ZhaoY. J.ACS Appl. Mater. Interfaces2018,10,53.
doi: 10.1021/acsami.7b17326 |
41 |
YangZ.;ShenX. Y.;WangN.;HeJ. J.;LiX. D.;WangX.;HouZ. F.;WangK.;GaoJ.;JiuT. G.;et alACS Appl. Mater. Interface2019,11,2608.
doi: 10.1021/acsami.8b01823 |
42 |
ZhangZ. H.;WuC. Y.;PanQ. Y.;ShaoF.;SongQ. Z.;ChenS. Q.;LiZ. B.;ZhaoY. J.Chem. Commun.2020,56,3210.
doi: 10.1039/C9CC09617E |
43 |
PanQ. Y.;ChenX. S.;LiH.;ChenS. Q.;ZhengX. H.;LiuH.;LiB.;ZhaoY. J.2D Mater.2022,9,014001.
doi: 10.1088/2053-1583/ac2e50 |
44 |
ZhaoZ. Q.;DasS.;XingG. L.;FayonP.;HeasmanP.;JayM.;BaileyS.;LambertC.;YamadaH.;WakiharaT.;et alAngew. Chem. Int. Ed.2018,57,11952.
doi: 10.1002/anie.201805924 |
45 |
YangZ.;SongY. W.;ZhangC. F.;HeJ. J.;LiX. D.;WangX.;WangN.;LiY. L.;HuangC. S.Adv. Energy Mater.2021,11,2101197.
doi: 10.1002/aenm.202101197 |
46 |
YangZ.;RenX.;SongY. W.;LiX. D.;ZhangC. F.;HuX. L.;HeJ. J.;LiJ. Z.;HuangC. S.Energy Environ. Mater.2022,
doi: 10.1002/eem2.12269 |
47 |
WangN.;LiX. D.;TuZ. Y.;ZhaoF. H.;HeJ. J.;GuanZ. Y.;HuangC. S.;LiY. P.;LiY. L.Angew. Chem. Int. Ed.2018,130,4032.
doi: 10.1002/anie.201800453 |
48 |
JiaZ. Y.;ZuoZ. C.;YiY. P.;LiuH. B.;LiD.;LiY. J.;LiY. L.Nano Energy2017,33,343.
doi: 10.1016/j.nanoen.2017.01.049 |
49 |
LiuH.;ZhangZ. H.;WuC. Y.;PanQ. Y.;ZhaoY. J.;LiZ. B.Small2019,15,1804519.
doi: 10.1002/smll.201804519 |
50 |
LiuC.;ChengP. X.;ShiR. C.;GeF.;HanX.;QiS. M.;LiG.;XuJ. L.2D Mater.2021,9,014006.
doi: 10.1088/2053-1583/ac3c9a |
51 |
PanQ. Y.;ChenS. Q.;WuC. Y.;ZhangZ. H.;LiZ. B.;ZhaoY. J.ACS Appl. Mater. Interfaces2019,11,46070.
doi: 10.1021/acsami.9b15133 |
52 |
LuT. T.;DengX.;SunQ. H.;XiaoJ. C.;HeJ. J.;WangK.;HuangC. S.Small2021,18,2106328.
doi: 10.1002/smll.202106328 |
53 |
GaoL.;GeX.;ZuoZ. C.;WangF.;LiuX. Y.;LvM. M.;ShiS. Q.;XuL. T.;LiuT. F.;ZhouQ. H.;et alNano Lett.2020,20,7333.
doi: 10.1021/acs.nanolett.0c02728 |
54 |
PanQ. Y.;ChenX. S.;LiuH.;GanW. J.;DingN. X.;ZhaoY. J.Mat. Chem. Front.2021,5,4596.
doi: 10.1039/d1qm00285f |
55 |
MatsuokaR.;ToyodaR.;ShiotsukiR.;FukuiN.;WadaK.;MaedaH.;SakamotoR.;SasakiS.;MasunagaH.;NagashioK.;et alACS Appl. Mater. Interfaces2018,11,2730.
doi: 10.1021/acsami.8b00743 |
56 |
KulkarniR.;HuangJ. Y.;TrunkM.;BurmeisterD.;AmsalemP.;MüllerJ.;MartinA.;KochN.;KassD.;BojdysM. J.Chem. Sci2021,12,12661.
doi: 10.1039/d1sc03390e |
57 |
Al-BusaidiI. J.;HaqueA.;Al-BalushiR. A.;RatherJ. A.;MunamA.;IlmiR.;RaithbyP. R.;ZhangY. M.;FuY. Y.;XieZ. Y.;et alNew J. Chem.2021,45,15082.
doi: 10.1039/D1NJ00925G |
58 |
XuL. L.;SunJ. B.;TangT. H.;ZhangH. Y.;SunM. Z.;ZhangJ. Q.;LiJ. H.;HuangB. L.;WangZ. P.;XieZ.;et alAngew. Chem. Int. Ed.2021,60,11326.
doi: 10.1002/anie.202014835 |
59 |
SunQ.;CaiL. L.;MaH. H.;YuanC. X.;XuW.ACS Nano2016,10,7023.
doi: 10.1021/acsnano.6b03048 |
60 |
YangZ. C.;GebhardtJ. L.;SchaubT. A.;SanderT.;SchönamsgruberJ.;SoniH.;GörlingA.;KivalaM.;MaierS.Nanoscale2018,10,3769.
doi: 10.1039/c7nr08238j |
61 |
ZhangY. Q.;PaintnerT.;HellwigR.;HaagF.;AllegrettiF.;FeulnerP.;KlyatskayaS.;RubenM.;SeitsonenA. P.;BarthJ. V.;et alJ. Am. Chem. Soc.2019,141,5087.
doi: 10.1021/jacs.8b13547 |
62 |
AryaJ. S.;MahatoM. K.;SankaramanS.;PrasadE.J. Mater. Chem. C2021,9,10324.
doi: 10.1039/D1TC02334A |
63 |
KongY.;LiJ. Q.;ZengS.;YonC.;TongL. M.;ZhangJ.Chem2020,6,1933.
doi: 10.1016/j.chempr.2020.06.011 |
64 | TangJ. Y.;JiangH. F.;DengG. H.;ZhouL.Chin. J. Org. Chem.2005,25,1503. |
唐金玉;汪焕峰;邓国华;周磊.有机化学,2005,25,1503. | |
65 | BaiD. H.;LiC. J.;LiJ.;JiaX. S.Chin. J. Org. Chem.2012,32,994. |
白东虎;李春举;李健;贾学顺.有机化学,2012,32,994.
doi: 10.6023/cjoc1202073 |
|
66 |
ZhouJ. Y.;LiJ. Q.;LiuZ. F.;ZhangJ.Adv. Mater.2019,31,1803758.
doi: 10.1002/adma.201803758 |
67 |
DiederichF.;RubinY.Angew. Chem. Int. Ed.1992,31,1101.
doi: 10.1002/anie.199211013 |
68 |
LiG. X.;LiY. L.;QianX. M.;LiuH. B.;LinH. W.;ChenN.;LiY. J.J. Phys. Chem. C2011,115,2611.
doi: 10.1021/jp107996f |
69 |
MatsuokaR.;SakamotoR.;HoshikoK.;SasakiS.;MasunagaH.;NagashioK.;NishiharaH.J. Am. Chem. Soc.2017,139,3145.
doi: 10.1021/jacs.6b12776 |
70 |
LiuR.;GaoX.;ZhouJ. Y.;XuH.;LiZ. Z.;ZhangS. Q.;XieZ. Q.;ZhangJ.;LiuZ. F.Adv. Mater.2017,29,1604665.
doi: 10.1002/adma.201604665 |
71 | ZhouJ. Y.;ZhangJ.;LiuZ. F.Acta Phys. -Chim. Sin.2018,34,977. |
周劲媛;张锦;刘忠范.物理化学学报,2018,34,977.
doi: 10.3866/PKU.WHXB201801243 |
|
72 |
KlappenbergerF.;ZhangY. Q.;BjörkJ.;KlyatskayaS.;RubenM.;BarthJ. V.Acc. Chem. Res.2015,48,2140.
doi: 10.1021/acs.accounts.5b00174 |
73 |
GaoH. Y.;HeldP. A.;AmirjalayerS.;LiuL. C.;TimmerA.;SchirmerB.;AradoO. D.;MönigH.;Mück-LichtenfeldC.;NeugebauerJ.;et alJ. Am. Chem. Soc.2017,139,7012.
doi: 10.1021/jacs.7b02430 |
74 |
GaoX.;ZhuY. H.;YiD.;ZhouJ. Y.;ZhangS. S.;YinC.;DingF.;ZhangS. Q.;YiX. H.;WangJ. Z.;et alSci. Adv.2018,4,eaat6378.
doi: 10.1126/sciadv.aat6378 |
75 |
MiaoS. B.;SmithM. D.;BunzU. H. F.Org. Lett.2006,8,757.
doi: 10.1021/ol0529851 |
76 | ZhangS. D.;LiuY.;QiM. Y.;CaoA. M.Acta Phys. -Chim. Sin.2021,37,2011007. |
张思东;刘园;祁慕尧;曹安民.物理化学学报,2021,37,2011007.
doi: 10.3866/PKU.WHXB202011007 |
|
77 |
MortazaviB.;ShahrokhiM.;MadjetM. E.;HussainT.;ZhuangX. Y.;RabczukT.J. Mater. Chem. C2019,7,3025.
doi: 10.1039/C9TC00082H |
78 |
GeyerF. L.;RomingerF.;BunzU. H. F.Chem. Eur. J.2014,20,3600.
doi: 10.1002/chem.201400105 |
79 | LiuM. H.;LiY. L.Acta Phys. -Chim. Sin.2018,34,959. |
刘鸣华;李玉良.物理化学学报,2018,34,959.
doi: 10.3866/PKU.WHXB201803232 |
|
80 | QueH. F.;JiangH. N.;WangX. G.;ZhaiP. B.;MengL. J.;ZhangP.;GongY. J.Acta Phys. -Chim. Sin.2021,37,2010051. |
阙海峰;江华宁;王兴国;翟朋博;孟令佳;张鹏;宫勇吉.物理化学学报,2021,37,2010051.
doi: 10.3866/PKU.WHXB202010051 |
|
81 | YeY. K.;HuZ. X.;LiuJ. H.;LinW. C.;ChenT. W.;ZhengJ. X.;PanF.Acta Phys. -Chim. Sin.2021,37,2011003. |
叶耀坤;胡宗祥;刘佳华;林伟成;陈涛文;郑家新;潘锋.物理化学学报,2021,37,2011003.
doi: 10.3866/PKU.WHXB202011003 |
|
82 |
van MiertG.;JuričićV.;Morais;SmithC.Phys. Rev. B2014,90,195414.
doi: 10.1103/PhysRevB.90.195414 |
83 |
SearlesD. J.;SunC. H.J. Phys. Chem. C2012,116,26222.
doi: 10.1021/jp309638z |
84 | Wang, S. L.; Yang, G. Y.; Nasir, M. S.; Wang, X.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003. |
王思岚, 杨国锐, Nasir, M. S., 王筱珺, 王嘉楠, 延卫. 物理化学学报, 2021, 37, 2001003. doi: 10.3866/PKU.WHXB202001003 | |
85 | ChenY.;DongH. Y.;LiY. Y.;LiuJ. P.Acta Phys. -Chim. Sin.2021,37,2007075. |
陈瑶;董浩洋;李园园;刘金平.物理化学学报,2021,37,2007075.
doi: 10.3866/PKU.WHXB202007075 |
|
86 |
WuB.;LiM. R.;XiaoS. N.;QuY. K.;QiuX. Y.;LiuT. F.;TianF. H.;LiH. X.;XiaoS. X.Nanoscale2017,9,11939.
doi: 10.1039/c7nr02247f |
87 | Li, Y. L. Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, 1st ed.; Wiley: Weinheim, Germany, 2021; pp. 367–368. |
[1] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[2] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[3] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[4] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[5] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[6] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[7] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[8] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[9] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[10] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[11] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[12] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[13] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
[14] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
[15] | Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009077-. |
|