Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (1): 2207007.doi: 10.3866/PKU.WHXB202207007
• ARTICLE • Previous Articles Next Articles
Mingliang Wu1, Yehui Zhang1, Zhanzhao Fu1, Zhiyang Lyu2, Qiang Li1,*(), Jinlan Wang1,*(
)
Received:
2022-07-05
Accepted:
2022-07-31
Published:
2022-08-09
Contact:
Qiang Li,Jinlan Wang
E-mail:qiang.li@seu.edu.cn;jlwang@seu.edu.cn
About author:
Email: jlwang@seu.edu.cn(J.W.)Supported by:
MSC2000:
Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction[J].Acta Phys. -Chim. Sin., 2023, 39(1): 2207007.
1 |
LiY.;WangH.;PriestC.;LiS.;XuP.;WuG.Adv. Mater.2021,33,e2000381.
doi: 10.1002/adma.202000381 |
2 |
SehZ. W.;KibsgaardJ.;DickensC. F.;ChorkendorffI.;NorskovJ. K.;JaramilloT. F.Science2017,355,eaad4998.
doi: 10.1126/science.aad4998 |
3 |
DingY.;CaiP.;WenZ.Chem. Soc. Rev.2021,50,1495.
doi: 10.1039/d0cs01239d |
4 |
YanZ.;HittJ. L.;TurnerJ. A.;MalloukT. E.Proc. Natl. Acad. Sci. USA2020,117,12558.
doi: 10.1073/pnas.1821686116 |
5 |
WangJ.;CuiW.;LiuQ.;XingZ.;AsiriA. M.;SunX.Adv. Mater.2016,28,215.
doi: 10.1002/adma.201502696 |
6 |
SongJ.;WeiC.;HuangZ.-F.;LiuC.;ZengL.;WangX.;XuZ. J.Chem. Soc. Rev.2020,49,2196.
doi: 10.1039/c9cs00607a |
7 |
XiaB. Y.;YanY.;LiN.;WuH. B.;LouX. W.;WangX.Nat. Energy2016,1,15006.
doi: 10.1038/nenergy.2015.6 |
8 |
ZhangL.;JiaY.;GaoG.;YanX.;ChenN.;ChenJ.;SooM. T.;WoodB.;YangD.;DuA.;et alChem2018,4,285.
doi: 10.1016/j.chempr.2017.12.005 |
9 |
ZhaoC. X.;LiuJ. N.;WangJ.;RenD.;LiB. Q.;ZhangQ.Chem. Soc. Rev.2021,50,7745.
doi: 10.1039/d1cs00135c |
10 |
ZhangW.;CaoR.Chem2021,7,1981.
doi: 10.1016/j.chempr.2021.07.012 |
11 |
ZhangJ.-Y.;YanY.;MeiB.;QiR.;HeT.;WangZ.;FangW.;ZamanS.;SuY.;DingS.;et alEnergy Environ. Sci.2021,14,365.
doi: 10.1039/d0ee03500a |
12 |
FeiH.;DongJ.;FengY.;AllenC.S.;WanC.;VolosskiyB.;LiM.;ZhaoZ.;WangY.;SunH.;et alNat. Catal.2018,1,63.
doi: 10.1038/s41929-017-0008-y |
13 |
LiuJ.;XiaoJ.;LuoB.;TianE.;WaterhouseG. I. N.Chem. Eng. J.2022,,427,132038.
doi: 10.1016/j.cej.2021.131686 |
14 |
ZhaoC. X.;LiB. Q.;LiuJ. N.;ZhangQ.Angew. Chem. Int. Ed.2021,60,4448.
doi: 10.1002/anie.202003917 |
15 |
LiX.;YangX.;LiuL.;ZhaoH.;LiY.;ZhuH.;ChenY.;GuoS.;LiuY.;TanQ.;WuG.ACS Catal.2021,11,7450.
doi: 10.1021/acscatal.0c05446 |
16 |
WuY.-J.;WuX.-H.;TuT.-X.;ZhangP.-F.;LiJ.-T.;ZhouY.;HuangL.;SunS.-G.Appl. Catal. B Environ.2020,278,119259.
doi: 10.1016/j.apcatb.2020.119259 |
17 |
BanJ. J.;WenX. H.;XuH. J.;WangZ.;LiuX. H.;CaoG. Q.;ShaoG. S.;HuJ. H.Adv. Funct. Mater.2021,31,2010472.
doi: 10.1002/adfm.202010472 |
18 |
HuangQ. E.;WangB.;YeS.;LiuH.;ChiH.;LiuX.;FanH.;LiM.;DingC.;LiZ.;et alACS Catal.2021,12,491.
doi: 10.1021/acscatal.1c04644 |
19 |
LiX. Y.;RongH. P.;ZhangJ. T.;WangD. S.;LiY. D.Nano Res.2020,13,1842.
doi: 10.1007/s12274-020-2755-3 |
20 |
LiuJ.ACS Catal.2016,7,34.
doi: 10.1021/acscatal.6b01534 |
21 |
ZhangQ.;DuanZ.;LiM.;GuanJ.Chem. Commun.2020,56,794.
doi: 10.1039/c9cc09007j |
22 |
XuH.;ChengD.;CaoD.;ZengX. C.Nat. Catal.2018,1,339.
doi: 10.1038/s41929-018-0063-z |
23 |
LuJ.;ZengY.;MaX.;WangH.;GaoL.;ZhongH.;MengQ.Polymers2019,11,828.
doi: 10.3390/polym11050828 |
24 |
WangJ.;HuangZ.;LiuW.;ChangC.;TangH.;LiZ.;ChenW.;JiaC.;YaoT.;WeiS.;et alJ. Am. Chem. Soc.2017,139,17281.
doi: 10.1021/jacs.7b10385 |
25 |
ZhangL.;FischerJ.;JiaY.;YanX.;XuW.;WangX.;ChenJ.;YangD.;LiuH.;ZhuangL.;et alJ. Am. Chem. Soc.2018,140,10757.
doi: 10.1021/jacs.8b04647 |
26 |
ZhouY.;YangW.;UtetiwaboW.;LianY. M.;YinX.;ZhouL.;YuP.;ChenR.;SunS.J. Phys. Chem. Lett.2020,11,1404.
doi: 10.1021/acs.jpclett.9b03771 |
27 |
KresseG.;HafnerJ.Phys. Rev. B1993,48,13115.
doi: 10.1103/PhysRevB.48.13115 |
28 |
KresseG.;FurthmüllerJ.Phys. Rev. B1996,54,11169.
doi: 10.1103/PhysRevB.54.11169 |
29 |
KresseG.;JoubertD.Phys. Rev. B1999,59,1758-1775.
doi: 10.1103/PhysRevB.59.1758 |
30 |
PerdewJ. P.;BurkeK.;ErnzerhofM.Phys. Rev. Lett.1996,77,3865.
doi: 10.1103/PhysRevLett.77.3865 |
31 |
GrimmeS.;AntonyJ.;EhrlichS.;KriegH.J. Chem. Phys.2010,132,154104.
doi: 10.1063/1.3382344 |
32 |
GrimmeS.;EhrlichS.;GoerigkL.J. Comput. Chem.2011,32,1456.
doi: 10.1002/jcc.21759 |
33 |
HenkelmanG.;ArnaldssonA.;JónssonH.Comput. Mater. Sci.2006,36,354.
doi: 10.1016/j.commatsci.2005.04.010 |
34 |
SanvilleE.;KennyS. D.;SmithR.;HenkelmanG.J. Comput. Chem.2007,28,899.
doi: 10.1002/jcc.20575 |
35 |
HenkelmanG.;UberuagaB. P.;JónssonH.J. Chem. Phys.2000,113,9901.
doi: 10.1063/1.1329672 |
36 |
MaintzS.;DeringerV. L.;TchougréeffA. L.;DronskowskiR.J. Comput. Chem.2013,34,2557.
doi: 10.1002/jcc.23424 |
37 |
MaintzS.;DeringerV. L.;TchougréeffA. L.;DronskowskiR.J. Comput. Chem.2016,37,1030.
doi: 10.1002/jcc.24300 |
38 |
HansenH. A.;ViswanathanV.;NørskovJ. K.J. Phys. Chem. C2014,118,6706.
doi: 10.1021/jp4100608 |
39 |
ZhangX.;YangZ.;LuZ.;WangW.Carbon2018,130,112.
doi: 10.1016/j.carbon.2017.12.121 |
40 |
SunX.;SunS.;GuS.;LiangZ.;ZhangJ.;YangY.;DengZ.;WeiP.;PengJ.;XuY.;et alNano Energy2019,61,245.
doi: 10.1016/j.nanoen.2019.04.076 |
41 |
ZhaoJ.;ZhangJ.-J.;LiZ.-Y.;BuX.-H.Small2020,16,2003916.
doi: 10.1002/smll.202003916 |
42 |
VinogradovI.;SinghS.;LyleH.;PaolinoM.;MandalA.;RossmeislJ.;CukT.Nat. Mater.2022,21,88.
doi: 10.1038/s41563-021-01118-9 |
43 |
TahirM.;PanL.;IdreesF.;ZhangX.;WangL.;ZouJ.-J.;WangZ. L.Nano Energy2017,37,136.
doi: 10.1016/j.nanoen.2017.05.022 |
44 |
BetleyT. A.;WuQ.;Van VoorhisT.;NoceraD. G.Inorg. Chem.2008,47,1849.
doi: 10.1021/ic701972n |
45 |
HeY. H.;GuoH.;HwangS.;YangX. X.;HeZ. Z.;BraatenJ.;KarakalosS.;ShanW. T.;WangM.Y.;ZhouH.;et alAdv. Mater.2020,32,2003577.
doi: 10.1002/adma.202003577 |
46 |
ZhangN.;ZhouT.;GeJ.;LinY.;DuZ.;ZhongC. A.;WangW.;JiaoQ.;YuanR.;TianY.;et alMatter2020,3,509.
doi: 10.1016/j.matt.2020.06.026 |
47 |
BajdichM.;Garcia-MotaM.;VojvodicA.;NorskovJ. K.;BellA. T.J. Am. Chem. Soc.2013,135,13521.
doi: 10.1021/ja405997s |
48 |
QiuZ.;TaiC. W.;NiklassonG. A.;EdvinssonT.Energy Environ. Sci.2019,12,572.
doi: 10.1039/c8ee03282c |
49 |
MeffordJ. T.;AkbashevA. R.;KangM.;BentleyC. L.;GentW. E.;DengH. D.;AlsemD. H.;YuY. S.;SalmonN. J.;ShapiroD. A.;et alNature2021,593,67.
doi: 10.1038/s41586-021-03454-x |
50 |
SuntivichJ.;MayK. J.;GasteigerH. A.;GoodenoughJ. B.;Shao-HornY.Science2011,334,1383.
doi: 10.1126/science.1212858 |
51 |
LiQ. K.;LiX. F.;ZhangG.;JiangJ. J.J. Am. Chem. Soc.2018,140,15149.
doi: 10.1021/jacs.8b07816 |
52 |
JinZ.;LiP.;MengY.;FangZ.;XiaoD.;YuG.Nat. Catal.2021,4,615.
doi: 10.1038/s41929-021-00650-w |
53 |
LiZ.;WangZ.;XiS.;ZhaoX.;SunT.;LiJ.;YuW.;XuH.;HerngT. S.;HaiX.;et alACS Nano2021,15,7105.
doi: 10.1021/acsnano.1c00251 |
54 |
ExnerK. S.Chem Catal.2021,1,258.
doi: 10.1016/j.checat.2021.06.011 |
55 |
GovindarajanN.;KoperM. T. M.;MeijerE. J.;Calle-VallejoF.ACS Catal.2019,9,4218.
doi: 10.1021/acscatal.9b00532 |
[1] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[2] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[3] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[4] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[5] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[6] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[7] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[8] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[9] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[10] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[11] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[12] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[13] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[14] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[15] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
|