Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (11): 2207024.doi: 10.3866/PKU.WHXB202207024
Special Issue: Special Issue of Emerging Scientists
• REVIEW • Previous Articles
Yuxin Chen1, Lijun Wang1, Zhibo Yao1, Leiduan Hao1, Xinyi Tan2,*(), Justus Masa3, Alex W. Robertson4, Zhenyu Sun1,*
Received:
2022-07-12
Accepted:
2022-07-29
Published:
2022-08-03
Contact:
Xinyi Tan,Zhenyu Sun
E-mail:monica950521@126.com
About author:
Email: sunzy@mail.buct.edu.cn (Z.S.). Tel.: +86-13301308339 (Z.S.)Supported by:
MSC2000:
Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction[J].Acta Phys. -Chim. Sin., 2022, 38(11): 2207024.
1 |
JosepG. C.;CorinneL. Q.;MichaelR. R.;ChristopherB. F.;ErikT. B.;PhilippeC.;ThomasJ. C.;NathanP. G.;HoughtonR. A.;GreggM.Proc. Natl. Acad. Sci.2007,104,47.
doi: 10.1073/pnas.0702737104 |
2 |
McgladeC.;EkinsP.Nature2015,517,7533.
doi: 10.1038/nature14016 |
3 |
ShakunJ. D.;ClarkP. U.;HeF.;MarcottS. A.;MixA. C.;LiuZ.;Otto-BliesnerB.;SchmittnerA.;BardE.Nature2012,484,7392.
doi: 10.1038/nature10915 |
4 |
ShiJ.;JiangY.;JiangZ.;WangX.;WangX.;ZhangS.;HanP.;YangC.Chem. Soc. Rev.2015,44,17.
doi: 10.1039/c5cs00182j |
5 |
YuF.;WangC.;MaH.;SongM.;LiD.;LiY.;LiS.;ZhangX.;LiuY.Nanoscale2020,12,13.
doi: 10.1039/c9nr09743k |
6 |
SunZ.;MaT.;TaoH.;FanQ.;HanB.Chem2017,3,4.
doi: 10.1016/j.chempr.2017.09.009 |
7 |
ZhangW.;MaD.;Pérez-RamírezJ.;ChenZ.Adv. Energy Sustain. Res.2021,3,2.
doi: 10.1002/aesr.202100169 |
8 |
GrodkowskiJ.;NetaP.J. Phys. Chem. B2001,105,21.
doi: 10.1021/jp004567d |
9 |
LiM.;WangH.;LuoW.;SherrellP. C.;ChenJ.;YangJ.Adv. Mater.2020,32,34.
doi: 10.1002/adma.202001848 |
10 |
GaoD.;Arán-AisR. M.;JeonH. S.;Roldan CuenyaB.Nat. Catal.2019,2,3.
doi: 10.1038/s41929-019-0235-5 |
11 |
NielsenD. U.;HuX.-M.;DaasbjergK.;SkrydstrupT.Nat. Catal.2018,1,4.
doi: 10.1038/s41929-018-0051-3 |
12 |
WangH.;TzengY. K.;JiY.;LiY.;LiJ.;ZhengX.;YangA.;LiuY.;GongY.;CaiL.;et alNat. Nanotechnol.2020,15,2.
doi: 10.1038/s41565-019-0603-y |
13 |
WangY.;WangZ.;DinhC.-T.;LiJ.;OzdenA.;Golam KibriaM.;SeifitokaldaniA.;TanC.-S.;GabardoC. M.;LuoM.;et alNat. Catal.2019,3,2.
doi: 10.1038/s41929-019-0397-1 |
14 |
ZhangC.;YangS.;WuJ.;LiuM.;YazdiS.;RenM.;ShaJ.;ZhongJ.;NieK.;JalilovA. S.;et alAdv. Energy Mater.2018,8,19.
doi: 10.1002/aenm.201703487 |
15 |
LiX.;HongS.;HaoL.;SunZ.Chin. J. Chem. Eng.2022,43
doi: 10.1016/j.cjche.2021.10.013 |
16 |
ZhangZ.;MaC.;TuY.;SiR.;WeiJ.;ZhangS.;WangZ.;LiJ.-F.;WangY.;DengD.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2316-9 |
17 |
LiF.;GuG. H.;ChoiC.;KollaP.;HongS.;WuT.-S.;SooY.-L.;MasaJ.;MukerjeeS.;JungY.;et alAppl. Catal. B: Environ.2020,277,119241.
doi: 10.1016/j.apcatb.2020.119241 |
18 |
WangA.;LiJ.;ZhangT.Nat. Rev. Chem.2018,2,6.
doi: 10.1038/s41570-018-0010-1 |
19 |
SunT.;LiY.;CuiT.;XuL.;WangY. G.;ChenW.;ZhangP.;ZhengT.;FuX.;ZhangS.;et alNano Lett.2020,20,8.
doi: 10.1021/acs.nanolett.0c02677 |
20 |
JiangY.;ChoiC.;HongS.;ChuS.;WuT.-S.;SooY.-L.;HaoL.;JungY.;SunZ.Cell Rep. Phys. Sci.2021,2,3.
doi: 10.1016/j.xcrp.2021.100356 |
21 |
LiX.;RongH.;ZhangJ.;WangD.;LiY.Nano Res.2020,13,7.
doi: 10.1007/s12274-020-2755-3 |
22 |
LinR.;MaX.;CheongW. -C.;ZhangC.;ZhuW.;PeiJ.;ZhangK.;WangB.;LiangS.;LiuY.;et alNano Res.2019,12,11.
doi: 10.1007/s12274-019-2526-1 |
23 | HaoL.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009033. |
郝磊端;孙振宇;物理化学学报,2021,37,2009033.
doi: 10.3866/PKU.WHXB202009033 |
|
24 |
FanQ.;HouP.;ChoiC.;WuT. S.;HongS.;LiF.;SooY. L.;KangP.;JungY.;SunZ.Adv. Energy Mater.2019,10,5.
doi: 10.1002/aenm.201903068 |
25 |
JiaM.;HongS.;WuT. S.;LiX.;SooY. L.;SunZ.Chem. Commun.2019,55,80.
doi: 10.1039/c9cc06178a |
26 | CuiX.;ShiF.Acta Phys. -Chim. Sin.2021,37,2006080. |
崔新江;石峰;物理化学学报,2021,37,2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
27 |
WangY.;LiuY.;LiuW.;WuJ.;LiQ.;FengQ.;ChenZ.;XiongX.;WangD.;LeiY.Energy Environ. Sci.2020,13,12.
doi: 10.1039/d0ee02833a |
28 |
BackS.;LimJ.;KimN. Y.;KimY. H.;JungY.Chem. Sci.2017,8,2.
doi: 10.1039/c6sc03911a |
29 |
BaggerA.;JuW.;VarelaA. S.;StrasserP.;RossmeislJ.Catal. Today2017,288,74.
doi: 10.1016/j.cattod.2017.02.028 |
30 |
JiangK.;SiahrostamiS.;ZhengT.;HuY.;HwangS.;StavitskiE.;PengY.;DynesJ.;GangisettyM.;SuD.;et alEnergy Environ. Sci.2018,11,4.
doi: 10.1039/c7ee03245e |
31 |
ShengT.;SunS.-G. Chem. Phys. Lett2017,688,37.
doi: 10.1016/j.cplett.2017.09.052 |
32 |
HanL.;SongS.;LiuM.;YaoS.;LiangZ.;ChengH.;RenZ.;LiuW.;LinR.;QiG.;et alJ. Am. Chem. Soc.2020,142,29.
doi: 10.1021/jacs.9b12111 |
33 |
ShangH.;WangT.;PeiJ.;JiangZ.;ZhouD.;WangY.;LiH.;DongJ.;ZhuangZ.;ChenW.;et alAngew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202010903 |
34 |
LiuL.;CormaA.Chem. Rev.2018,118,10.
doi: 10.1021/acs.chemrev.7b00776 |
35 |
HanS.;MaD.;ZhuQ.Small Methods2021,5,8.
doi: 10.1002/smtd.202100102 |
36 |
JiaM.;FanQ.;LiuS.;QiuJ.;SunZ.Curr. Opin. Green Sustain. Chem.2019,16,1.
doi: 10.1016/j.cogsc.2018.11.002 |
37 |
SaéEantJ.-M. Chem. Rev.2008,108,7.
doi: 10.1021/cr8004026 |
38 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,374.
doi: 10.1039/c9ee03660a |
39 |
HoriY.;KikuchiK.;SuzukiS.Chem. Lett.1985,14,1695.
doi: 10.1246/cl.1985.1695 |
40 |
JuW.;BaggerA.;HaoG. P.;VarelaA. S.;SinevI.;BonV.;Roldan CuenyaB.;KaskelS.;RossmeislJ.;StrasserP.Nat. Commun.2017,8,1.
doi: 10.1038/s41467-017-01035-z |
41 |
NguyenT. N.;SalehiM.;LeQ. V.;SeifitokaldaniA.;DinhC. T.ACS Catal.2020,10,17.
doi: 10.1021/acscatal.0c02643 |
42 |
ChengY.;YangS.;JiangS. P.;WangS.Small Methods2019,3,9.
doi: 10.1002/smtd.201800440 |
43 |
ZhangN.;ZhangX.;TaoL.;JiangP.;YeC.;LinR.;HuangZ.;LiA.;PangD.;YanH.;et alAngew. Chem. Int. Ed.2021,60,11.
doi: 10.1002/anie.202014718 |
44 |
WangY.;CaoL.;LibrettoN.J.;LiX.;LiC.;WanY.;HeC.;LeeJ.;GreggJ.;ZongH.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b05766 |
45 |
BabucciM.;Sarac OztunaF. E.;DebefveL. M.;BoubnovA.;BareS. R.;GatesB. C.;UnalU.;UzunA.ACS Catal.2019,9,11.
doi: 10.1021/acscatal.9b02231 |
46 |
HeX.;HeQ.;DengY.;PengM.;ChenH.;ZhangY.;YaoS.;ZhangM.;XiaoD.;MaD.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11619-6 |
47 |
HuangK.;ZhangL.;XuT.;WeiH.;ZhangR.;ZhangX.;GeB.;LeiM.;MaJ. Y.;LiuL. M.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-08484-8 |
48 |
LangR.;XiW.;LiuJ. C.;CuiY. T.;LiT.;LeeA. F.;ChenF.;ChenY.;LiL.;LiL.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-018-08136-3 |
49 |
FengS.;SongX.;LiuY.;LinX.;YanL.;LiuS.;DongW.;YangX.;JiangZ.;DingY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-12965-1 |
50 |
PengP.;ShiL.;HuoF.;MiC.;WuX.;ZhangS.;XiangZ.Sci. Adv.2019,5,2322.
doi: 10.1126/sciadv.aaw2322 |
51 |
WangQ.;CaiC.;DaiM.;FuJ.;ZhangX.;LiH.;ZhangH.;ChenK.;LinY.;LiH.;et alSmall Sci.2020,1,2.
doi: 10.1002/smsc.202000028 |
52 |
GaoD.;LiuT.;WangG.;BaoX.ACS Energy Lett.2021,6,2.
doi: 10.1021/acsenergylett.0c02665 |
53 |
WengZ.;JiangJ.;WuY.;WuZ.;GuoX.;MaternaK. L.;LiuW.;BatistaV. S.;BrudvigG. W.;WangH.J. Am. Chem. Soc.2016,138,26.
doi: 10.1021/jacs.6b04746 |
54 |
HanN.;WangY.;MaL.;WenJ.;LiJ.;ZhengH.;NieK.;WangX.;ZhaoF.;LiY.;et alChem2017,3,4.
doi: 10.1016/j.chempr.2017.08.002 |
55 |
YaoC.;LiJ.;GaoW.;JiangQ.Chem.-Eur. J.2018,24,43.
doi: 10.1002/chem.201800363 |
56 |
DiercksC. S.;LiuY.;CordovaK. E.;YaghiO. M.Nat. Mater.2018,17,4.
doi: 10.1038/s41563-018-0033-5 |
57 |
MaL.;HuW.;MeiB.;LiuH.;YuanB.;ZangJ.;ChenT.;ZouL.;ZouZ.;YangB.;et alACS Catal.2020,10,8.
doi: 10.1021/acscatal.0c00243 |
58 |
CorbinN.;ZengJ.;WilliamsK.;ManthiramK.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2403-y |
59 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,2.
doi: 10.1039/c9ee03660a |
60 |
LiuS.;YangH. B.;HungS.F.;DingJ.;CaiW.;LiuL.;GaoJ.;LiX.;RenX.;KuangZ.;et alAngew. Chem. Int. Ed.2020,59,2.
doi: 10.1002/anie.201911995 |
61 |
GeJ.;HeD.;ChenW.;JuH.;ZhangH.;ChaoT.;WangX.;YouR.;LinY.;WangY.;et alJ. Am. Chem. Soc.2016,138,42.
doi: 10.1021/jacs.6b09246 |
62 |
WanJ.;ChenW.;JiaC.;ZhengL.;DongJ.;ZhengX.;WangY.;YanW.;ChenC.;PengQ.;et alAdv. Mater.2018,30,11.
doi: 10.1002/adma.201705369 |
63 |
RenW.;TanX.;YangW.;JiaC.;XuS.;WangK.;SmithS. C.;ZhaoC.Angew. Chem. Int. Ed.2019,58,21.
doi: 10.1002/anie.201901575 |
64 |
ZhangE.;WangT.;YuK.;LiuJ.;ChenW.;LiA.;RongH.;LinR.;JiS.;ZhengX.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b08259 |
65 |
YinP.;YaoT.;WuY.;ZhengL.;LinY.;LiuW.;JuH.;ZhuJ.;HongX.;DengZ.;et alAngew. Chem. Int. Ed.2016,55,36.
doi: 10.1002/anie.201604802 |
66 |
LiX.;ZhuQ.-L.Energy Chem2020,2,3.
doi: 10.1016/j.enchem.2020.100033 |
67 |
WuY. L.;LiX.;WeiY. S.;FuZ.;WeiW.;WuX. T.;ZhuQ. L.;XuQ.Adv. Mater.2021,33,12.
doi: 10.1002/adma.202006965 |
68 |
WangX.;ChenW.;ZhangL.;YaoT.;LiuW.;LinY.;JuH.;DongJ.;ZhengL.;YanW.;et alJ. Am. Chem. Soc.2017,139,28.
doi: 10.1021/jacs.7b01686 |
69 |
LiQ.;ChenW.;XiaoH.;GongY.;LiZ.;ZhengL.;ZhengX.;YanW.;CheongW.C.;ShenR.;et alAdv. Mater.2018,30,25.
doi: 10.1002/adma.201800588 |
70 |
FeiH.;DongJ.;FengY.;AllenC.S.;WanC.;VolosskiyB.;LiM.;ZhaoZ.;WangY.;SunH.;et alNat. Catal.2018,1,1.
doi: 10.1038/s41929-017-0008-y |
71 |
GuanJ.;DuanZ.;ZhangF.;KellyS. D.;SiR.;DupuisM.;HuangQ.;ChenJ. Q.;TangC.;LiC.Nat. Catal.2018,1,11.
doi: 10.1038/s41929-018-0158-6 |
72 |
HuX.-M.;HvalH. H.;BjerglundE. T.;DalgaardK. J.;MadsenM. R.;PohlM.-M.;WelterE.;LamagniP.;BuhlK.B.;BremholmM.;et alACS Catal.2018,8,7.
doi: 10.1021/acscatal.8b01022 |
73 |
WenX.;DuanZ.;BaiL.;GuanJ.J. Power Sources2019,431,265.
doi: 10.1016/j.jpowsour.2019.126650 |
74 |
YuanK.;Lutzenkirchen-HechtD.;LiL.;ShuaiL.;LiY.;CaoR.;QiuM.;ZhuangX.;LeungM. K. H.;ChenY.;et alJ. Am. Chem. Soc.2020,142,5.
doi: 10.1021/jacs.9b11852 |
75 |
LiX.;BiW.;ChenM.;SunY.;JuH.;YanW.;ZhuJ.;WuX.;ChuW.;WuC.;et alJ. Am. Chem. Soc.2017,139,42.
doi: 10.1021/jacs.7b09074 |
76 |
Jonesj.;XiongH.;DeLaRivaA. T.;PetersonE. J.;PhamH.;ChallaS. R.;QiG.;OhS.;WiebengaM. H.;HernándezX. I.P.;et alScience2016,353,150.
doi: 10.1126/science.aaf8800 |
77 |
WeiS.;LiA.;LiuJ. C.;LiZ.;ChenW.;GongY.;ZhangQ.;CheongW.C.;WangY.;ZhengL.;et alNat. Nanotechnol.2018,13,9.
doi: 10.1038/s41565-018-0197-9 |
78 |
QuY.;LiZ.;ChenW.;LinY.;YuanT.;YangZ.;ZhaoC.;WangJ.;ZhaoC.;WangX.;et alNat. Catal.2018,1,10.
doi: 10.1038/s41929-018-0146-x |
79 |
ChenM. X.;ZhuM.;ZuoM.;ChuS. Q.;ZhangJ.;WuY.;LiangH. W.;FengX.Angew. Chem. Int. Ed.2020,59,4.
doi: 10.1002/anie.201912275 |
80 |
ZhouP.;LiN.;ChaoY.;ZhangW.;LvF.;WangK.;YangW.;GaoP.;GuoS.Angew. Chem. Int. Ed.2019,58,40.
doi: 10.1002/anie.201908351 |
81 |
YangZ.;ChenB.;ChenW.;QuY.;ZhouF.;ZhaoC.;XuQ.;ZhangQ.;DuanX.;WuY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11796-4 |
82 |
QiaoB.;WangA.;YangX.;AllardL. F.;JiangZ.;CuiY.;LiuJ.;LiJ.;ZhangT.Nat. Chem.2011,3,8.
doi: 10.1038/nchem.1095 |
83 |
YangM.;AllardL. F.;Flytzani-StephanopoulosM.J. Am. Chem. Soc.2013,135,10.
doi: 10.1021/ja312646d |
84 |
GeX.;ZhouP.;ZhangQ.;XiaZ.;ChenS.;GaoP.;ZhangZ.;GuL.;GuoS.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201911516 |
85 |
ZhangZ.;FengC.;LiuC.;ZuoM.;QinL.;YanX.;XingY.;LiH.;SiR.;ZhouS.;et alNat. Commun.2020,11,1.
doi: 10.1038/s41467-020-14917-6 |
86 |
SunS.;ZhangG.;GauquelinN.;ChenN.;ZhouJ.;YangS.;ChenW.;MengX.;GengD.;BanisM. N.;et alSci. Rep.2013,3,1.
doi: 10.1038/srep01775 |
87 |
LiJ.;GuanQ.;WuH.;LiuW.;LinY.;SunZ.;YeX.;ZhengX.;PanH.;ZhuJ.;et alJ. Am. Chem. Soc.2019,141,37.
doi: 10.1021/jacs.9b06482 |
88 |
DengD.;ChenX.;YuL.;WuX.;LiuQ.;LiuY.;YangH.;TianH.;HuY.;DuP.;et alSci. Adv.2015,1,e1500462.
doi: 10.1126/sciadv.1500462 |
89 |
ZhangJ.;CaiW.;HuF. X.;YangH.;LiuB.Chem. Sci.2021,12,20.
doi: 10.1039/d1sc01375k |
90 |
HuX.;LuoG.;ZhaoQ.;WuD.;YangT.;WenJ.;WangR.;XuC.;HuN.J. Am. Chem. Soc.2020,142,39.
doi: 10.1021/jacs.0c07317 |
91 |
HuangP.;ChengM.;ZhangH.;ZuoM.;XiaoC.;XieY.Nano Energy2019,61,428.
doi: 10.1016/j.nanoen.2019.05.003 |
92 |
LiY.;WeiB.;ZhuM.;ChenJ.;JiangQ.;YangB.;HouY.;LeiL.;LiZ.;ZhangR.;et alAdv. Mater.2021,33,41.
doi: 10.1002/adma.202102212 |
93 |
LiangS.;JiangQ.;WangQ.;LiuY.Adv. Energy Mater.2021,11,36.
doi: 10.1002/aenm.202101477 |
94 |
ShangH.;JiangZ.;ZhouD.;PeiJ.;WangY.;DongJ.;ZhengX.;ZhangJ.;ChenW.Chem. Sci.2020,11,23.
doi: 10.1039/d0sc02343d |
95 |
SunX.;TuoY.;YeC.;ChenC.;LuQ.;LiG.;JiangP.;ChenS.;ZhuP.;MaM.;et alAngew. Chem. Int. Ed.2021,60,44.
doi: 10.1002/anie.202110433 |
96 |
WangY.;SuH.;HeY.;LiL.;ZhuS.;ShenH.;XieP.;FuX.;ZhouG.;FengC.;et alChem. Rev.2020,120,21.
doi: 10.1021/acs.chemrev.0c00594 |
97 |
ZhangN.;ZhangX.;KangY.;YeC.;JinR.;YanH.;LinR.;YangJ.;XuQ.;WangY.;et alAngew. Chem. Int. Ed.2021,60,24.
doi: 10.1002/anie.202101559 |
98 |
LiZ.;ChenY.;JiS.;TangY.;ChenW.;LiA.;ZhaoJ.;XiongY.;WuY.;GongY.;et alNat. Chem.2020,12,8.
doi: 10.1038/s41557-020-0473-9 |
99 |
JiS.;ChenY.;FuQ.;ChenY.;DongJ.;ChenW.;LiZ.;WangY.;GuL.;HeW.;et alJ. Am. Chem. Soc.2017,139,29.
doi: 10.1021/jacs.7b05018 |
100 |
GongM.;ZhouW.;TsaiM. C.;ZhouJ.;GuanM.;LinM. C.;ZhangB.;HuY.;WangD. Y.;YangJ.;et alNat. Commun.2014,5,4695.
doi: 10.1038/ncomms5695 |
101 |
KuhlK. P.;HatsukadeT.;CaveE. R.;AbramD. N.;KibsgaardJ.;JaramilloT. F.J. Am. Chem. Soc.2014,136,40.
doi: 10.1021/ja505791r |
102 |
ZhaoZ.;ChenZ.;LuG.J. Phys. Chem. C2017,121,38.
doi: 10.1021/acs.jpcc.7b06895 |
103 |
WangX.;SangX.;DongC.L.;YaoS.;ShuaiL.;LuJ.;YangB.;LiZ.;LeiL.;QiuM.;et alAngew. Chem. Int. Ed.2021,60,21.
doi: 10.1002/anie.202100011 |
104 |
WangX.;WangY.;SangX.;ZhengW.;ZhangS.;ShuaiL.;YangB.;LiZ.;ChenJ.;LeiL.;et alAngew. Chem. Int. Ed.2021,60,8.
doi: 10.1002/anie.202013427 |
105 |
JiangK.;SiahrostamiS.;AkeyA.J.;LiY.;LuZ.;LattimerJ.;HuY.;StokesC.;GangishettyM.;ChenG.;et alChem2017,3,6.
doi: 10.1016/j.chempr.2017.09.014 |
106 |
YangH. B.;HungS.-F.;LiuS.;YuanK.;MiaoS.;ZhangL.;HuangX.;WangH.-Y.;CaiW.;ChenR.;et alNat. Energy2018,3,2.
doi: 10.1038/s41560-017-0078-8 |
107 |
HuanT. N.;RanjbarN.;RousseG.;SougratiM.;ZitoloA.;MougelV.;JaouenF.;FontecaveM.ACS Catal.2017,7,3.
doi: 10.1021/acscatal.6b03353 |
108 |
GuJun.;HsuC-S.;BaiL.;ChenH.;HuX.Science2019,364,6445.
doi: 10.1126/science.aaw7515 |
109 |
LiX.;XiS.;SunL.;DouS.;HuangZ.;SuT.;WangX.Adv. Sci.2020,7,17.
doi: 10.1002/advs.202001545 |
110 |
LinL.;LiH.;YanC.;LiH.;SiR.;LiM.;XiaoJ.;WangG.;BaoX.Adv. Mater.2019,31,41.
doi: 10.1002/adma.201903470 |
111 |
PanF.;LiB.;SarnelloE.;FeiY.;FengX.;GangY.;XiangX.;FangL.;LiT.;HuY. H.;et alACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02499 |
112 |
WangT.;SangX.;ZhengW.;YangB.;YaoS.;LeiC.;LiZ.;HeQ.;LuJ.;LeiL.;et alAdv. Mater.2020,32,29.
doi: 10.1002/adma.202002430 |
113 |
HouP.;SongW.;WangX.;HuZ.;KangP.Small2020,16,24.
doi: 10.1002/smll.202001896 |
114 |
SuP.;IwaseK.;HaradaT.;KamiyaK.;NakanishiS.Chem. Sci.2018,9,16.
doi: 10.1039/c8sc00604k |
115 |
YangH.;LinQ.;WuY.;LiG.;HuQ.;ChaiX.;RenX.;ZhangQ.;LiuJ.;HeC.Nano Energy2020,70,104454.
doi: 10.1016/j.nanoen.2020.104454 |
116 |
WangX.;ChenZ.;ZhaoX.;YaoT.;ChenW.;YouR.;ZhaoC.;WuG.;WangJ.;HuangW.;et alAngew. Chem. Int. Ed.2018,57,7.
doi: 10.1002/anie.201712451 |
117 |
WuY.;JiangZ.;LuX.;LiangY.;WangH.Nature2019,575,7784.
doi: 10.1038/s41586-019-1760-8 |
118 | ChuS.;LiX.;RobertsonA. W.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009023. |
楚森林;李欣;RobertsonA. W.;孙振宇;物理化学学报,2021,37,2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
119 |
ChuS.;YanX.;ChoiC.;HongS.;RobertsonA. W.;MasaJ.;HanB.;JungY.;SunZ.Green Chem.2020,22,19.
doi: 10.1039/d0gc02279a |
120 | YangY.;ZhangY.;HuJ.-S.;WanL.-J. Acta Phys. -Chim. Sin.2020,36,1906085. |
杨艳;张云;胡劲松;万立骏;物理化学学报,2020,36,1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
121 | MengY.;KuangS.;LiuH.;FanQ.;MaX.;ZhangS.Acta Phys. -Chim. Sin.2021,37,2006034. |
孟怡辰;况思宇;刘海;范群;马新宾;张生;物理化学学报,2021,37,2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
122 |
LiY.;ChuS.;ShenH.;XiaQ.;RobertsonA. W.;MasaJ.;SiddiquiU.;SunZ.ACS Sustain. Chem. Eng.2020,8,12.
doi: 10.1021/acssuschemeng.0c00800 |
123 |
ChenR.;SuH. Y.;LiuD.;HuangR.;MengX.;CuiX.;TianZ. Q.;ZhangD. H.;DengD.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201910662 |
124 |
YangH.;WuY.;LiG.;LinQ.;HuQ.;ZhangQ.;LiuJ.;HeC.J. Am. Chem. Soc.2019,141,32.
doi: 10.1021/jacs.9b04907 |
125 |
GuanA.;ChenZ.;QuanY.;PengC.;WangZ.;ShamT.-K.;YangC.;JiY.;QianL.;XuX.;et alCS Energy Lett.2020,5,4.
doi: 10.1021/acsenergylett.0c00018 |
126 |
KarapinarD.;HuanN. T.;SahraieN. R.;LiJ. K.;WakerleyD.;TouatiN.;ZannaS.;TavernaD.;Galvão TizeiL.H.;ZitoloA.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201907994 |
127 |
XuH.;RebollarD.;HeH.;ChongL.;LiuY.;LiuC.;SunC.-J.;LiT.;MunteanJ. V.;WinansR. E.;et alNat. Energy2020,5,8.
doi: 10.1038/s41560-020-0666-x |
128 |
ChenZ.;MouK.;YaoS.;LiuL.ChemSusChem2018,11,17.
doi: 10.1002/cssc.201800925 |
129 |
YangF.;SongP.;LiuX.;MeiB.;XingW.;JiangZ.;GuL.;XuW.Angew. Chem. Int. Ed.2018,57,38.
doi: 10.1002/anie.201805871 |
130 |
LinL.;LiuT.;XiaoJ.;LiH.;WeiP.;GaoD.;NanB.;SiR.;WangG.;BaoX.Angew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202009191 |
131 |
ZhaoC.;DaiX.;YaoT.;ChenW.;WangX.;WangJ.;YangJ.;WeiS.;WuY.;LiY.J. Am. Chem. Soc.2017,139,24.
doi: 10.1021/jacs.7b02736 |
132 |
ZuX.;LiX.;LiuW.;SunY.;XuJ.;YaoT.;YanW.;GaoS.;WangC.;WeiS.;et alAdv. Mater.2019,31,15.
doi: 10.1002/adma.201808135 |
133 |
JiangZ.;WangT.;PeiJ.;ShangH.;ZhouD.;LiH.;DongJ.;WangY.;CaoR.;ZhuangZ.;et alEnergy Environ. Sci.2020,13,9.
doi: 10.1039/d0ee01486a |
134 |
SaY. J.;JungH.;ShinD.;JeongH. Y.;RingeS.;KimH.;HwangY. J.;JooS. H.ACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02325 |
135 |
GongY.;JiaoL. L.;QianY.;PanC.;ZhengL.;CaiX.;LiuB.;YuS.;JiangH.Angew. Chem.2020,132,7.
doi: 10.1002/ange.201914977 |
136 |
ZhengW.;YangJ.;ChenH.;HouY.;WangQ.;GuM.;HeF.;XiaY.;XiaZ.;LiZ.;et alAdv. Funct. Mater.2019,30,4.
doi: 10.1002/adfm.201907658 |
137 |
ZhangH.;LiJ.;XiS.;DuY.;HaiX.;WangJ.;XuH.;WuG.;ZhangJ.;LuJ.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201906079 |
138 |
PanY.;LinR.;ChenY.;LiuS.;ZhuW.;CaoX.;ChenW.;WuK.;CheongW. C.;WangY.;et alJ. Am. Chem. Soc.2018,140,12.
doi: 10.1021/jacs.8b00814 |
139 |
SunL.;HuangZ.;RedduV.;SuT.;FisherA. C.;WangX.Angew. Chem. Int. Ed.2020,59,39.
doi: 10.1002/anie.202007445 |
140 |
WangX.;PanY.;NingH.;WangH.;GuoD.;WangW.;YangZ.;ZhaoQ.;ZhangB.;ZhengL.;et alAppl. Catal. B: Environ.2020,266,118630.
doi: 10.1016/j.apcatb.2020.118630 |
141 |
ZhangB.;ZhangJ.;ShiJ.;TanD.;LiuL.;ZhangF.;LuC.;SuZ.;TanX.;ChengX.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-10854-1 |
142 |
NiW.;GaoY.;LinY.;MaC.;GuoX.;WangS.;ZhangS.ACS Catal.2021,11,9.
doi: 10.1021/acscatal.0c05514 |
143 |
YingY.;LuoX.;QiaoJ.;HuangH.Adv. Funct. Mater.2020,31,3.
doi: 10.1002/adfm.202007423 |
144 |
PanY.;ZhangC.;LiuZ.;ChenC.;LiY.Matter2020,2,1.
doi: 10.1016/j.matt.2019.11.014 |
145 |
VasileffA.;XuC.;JiaoY.;ZhengY.;QiaoS.-Z.Chem2018,4,8.
doi: 10.1016/j.chempr.2018.05.001 |
146 |
OuyangY.;ShiL.;BaiX.;LiQ.;WangJ.Chem. Sci.2020,11,7.
doi: 10.1039/c9sc05236d |
147 |
DingC.;FengC.;MeiY.;LiuF.;WangH.;DupuisM.;LiC.Appl. Catal. B: Environ.2020,268,118391.
doi: 10.1016/j.apcatb.2019.118391 |
148 |
ZhongM.;TranK.;MinY.;WangC.;WangZ.;DinhC. T.;De LunaP.;YuZ.;RasouliA. S.;BrodersenP.;et alNature2020,581,7807.
doi: 10.1038/s41586-020-2242-8 |
149 |
ChenD.;ZhangL. H.;DuJ.;WangH.;GuoJ.;ZhanJ.;LiF.;YuF.Angew. Chem. Int. Ed.2021,60,45.
doi: 10.1002/anie.202109579 |
150 |
WangX.;De AraujoJ. F.;JuW.;BaggerA.;SchmiesH.;KuhlS.;RossmeislJ.;StrasserP.Nat. Nanotechnol.2019,14,11.
doi: 10.1038/s41565-019-0551-6 |
151 |
JiaoJ.;LinR.;LiuS.;CheongW. C.;ZhangC.;ChenZ.;PanY.;TangJ.;WuK.;HungS. F.;et alNat. Chem.2019,11,3.
doi: 10.1038/s41557-018-0201-x |
152 |
WuY.;CaoS.;HouJ.;LiZ.;ZhangB.;ZhaiP.;ZhangY.;SunL.Adv. Energy Mater.2020,10,29.
doi: 10.1002/aenm.202070123 |
153 |
WangY.;ChenZ.;HanP.;DuY.;GuZ.;XuX.;ZhengG.ACS Catal.2018,8,8.
doi: 10.1021/acscatal.8b01014 |
154 |
GuoW.;LiuS.;TanX.;WuR.;YanX.;ChenC.;ZhuQ.;ZhengL.;MaJ.;ZhangJ.;et alAngew. Chem. Int. Ed.2021,60,40.
doi: 10.1002/anie.202108635 |
155 |
QinX.;ZhuS.;XiaoF.;ZhangL.;ShaoM.ACS Energy Lett.2019,4,7.
doi: 10.1021/acsenergylett.9b01015 |
156 |
NiW.;LiuZ.;ZhangY.;MaC.;DengH.;ZhangS.;WangS.Adv. Mater.2021,33,1.
doi: 10.1002/adma.202003238 |
157 |
RongX.;WangH. J.;LuX. L.;SiR.;LuT. B.Angew. Chem. Int. Ed.2020,59,5.
doi: 10.1002/anie.201912458 |
158 |
HanS.-G.;MaD.-D.;ZhouS.-H.;ZhangK.;WeiW.-B.;DuY.;WuX.-T.;XuQ.;ZouR.;ZhuQ.-L.Appl. Catal. B: Environ.2021,283,119591.
doi: 10.1016/j.apcatb.2020.119591 |
159 |
HuangP.;ChengZ.;ZengL.;YuJ.;TanL.;MohapatraP.;FanL.-S.;ZhuY.ACS Catal.2020,10,24.
doi: 10.1021/acscatal.0c03941 |
160 |
PanF.;LiB.;SarnelloE.;HwangS.;GangY.;FengX.;XiangX.;AdliN. M.;LiT.;SuD.;et alNano Energy2020,68,104384.
doi: 10.1016/j.nanoen.2019.104384 |
161 |
WangH.-H.;LvL.-B.;ZhangS.-N.;SuH.;ZhaiG.-Y.;LeiW.-W.;LiX.-H.;ChenJ.-S.Nano Res.2020,13,8.
doi: 10.1007/s12274-020-2810-0 |
162 |
LiY.;AdliN. M.;ShanW.;WangM.;ZachmanM.J.;HwangS.;TabassumH.;KarakalosS.;FengZ.;WangG.;et alEnergy Environ. Sci.2022,15,5.
doi: 10.1039/d2ee00318j |
163 |
ChenX.;MaD.-D.;ChenB.;ZhangK.;ZouR.;WuX.-T.;ZhuQ.-L.Appl. Catal. B: Environ.2020,267,118720.
doi: 10.1016/j.apcatb.2020.118720 |
164 |
ChenS.;LiW.H.;JiangW.;YangJ.;ZhuJ.;WangL.;OuH.;ZhuangZ.;ChenM.;SunX.;et alAngew. Chem. Int. Ed.2022,61,4.
doi: 10.1002/anie.202114450 |
165 |
PazF. A.;KlinowskiJ.;VilelaS. M.;TomeJ. P.;CavaleiroJ. A.;RochaJ.Chem. Soc. Rev.2012,41,3.
doi: 10.1039/c1cs15055c |
166 |
BangS.;LeeY. M.;HongS.;ChoK. B.;NishidaY.;SeoM. S.;SarangiR.;FukuzumiS.;NamW.Nat. Chem.2014,6,10.
doi: 10.1038/nchem.2055 |
167 |
RenX.;LiuS.;LiH.;DingJ.;LiuL.;KuangZ.;LiL.;YangH.;BaiF.;HuangY.;et alSci. Chin. Chem.2020,63,12.
doi: 10.1007/s11426-020-9847-9 |
168 |
ZhangX.;WuZ.;ZhangX.;LiL.;LiY.;XuH.;LiX.;YuX.;ZhangZ.;LiangY.;et alNat. Commun.2017,8,14675.
doi: 10.1038/ncomms14675 |
169 |
ZhangX.;WangY.;GuM.;WangM.;ZhangZ.;PanW.;JiangZ.;ZhengH.;LuceroM.;WangH.;et alNat. Energy2020,5,9.
doi: 10.1038/s41560-020-0667-9 |
170 | Gao, Y.; Yang, Y.; Hao, L.; Hong, S.; Tan, X.; Wu, T. -S.; Soo, Y. -L.; Robertson, A. W.; Yang, Q.; Sun, Z. Chem. Catal. 2022, in press. doi: 10.1016/j.checat.2022.06.010 |
[1] | Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207035-0. |
[2] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[3] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[4] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[5] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[6] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[7] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[8] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[9] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[10] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[11] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[12] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[13] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[14] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[15] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
|