Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (2): 2207035.doi: 10.3866/PKU.WHXB202207035
• ARTICLE • Previous Articles Next Articles
Ruifang Wei1,2, Dongfeng Li2,3, Heng Yin2, Xiuli Wang2,*(), Can Li1,2,3,*(
)
Received:
2022-07-15
Accepted:
2022-09-05
Published:
2022-09-08
Contact:
Xiuli Wang,Can Li
E-mail:xiuliwang@dicp.ac.cn;canli@dicp.ac.cn
About author:
Email: canli@dicp.ac.cn (C.L.). +86-411-84379070 (C.L.)Supported by:
MSC2000:
Ruifang Wei, Dongfeng Li, Heng Yin, Xiuli Wang, Can Li. Operando Electrochemical UV-Vis Absorption Spectroscopy with Microsecond Time Resolution[J].Acta Phys. -Chim. Sin., 2023, 39(2): 2207035.
Fig 2
(a) Cyclic voltammetry curve and (b) Tafel curve of ferrihydrite (Fh); under (c) 4 s bias pulse width and (d) 20 μs bias pulse width, absorbance–time curve recorded with the time-resolved operando electrochemical UV-Vis absorption spectrometer (top panel); current–time curve recorded with the electrochemical workstation (middle panel); voltage amplitude–time curve applied with the circuit control component (bottom panel). Black dotted lines indicate the time matching of 4 s and 20 μs potential pulse widths in (c) and (d), respetively. Electrolyte: KPi; baseline bias: 1.67 V; high bias: 1.90 V; detection wavelength: 543.5 nm."
Fig 4
(a) Cyclic voltammetry curves of Fh with or without Na2SO3 in KPi; (b) time-resolved operando electrochemical UV-Vis absorption spectra. Baseline bias in the presence of Na2SO3 in KPi (pH = 7.58): 1.45 V; baseline bias without Na2SO3 in KPi (pH = 6.81): 1.67 V; high bias: 1.90 V; detection wavelength: 543.5 nm."
1 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
2 |
Dusastre V. ; Martiradonna L. Nat. Mater. 2016, 16, 15.
doi: 10.1038/nmat4838 |
3 |
Yang H. ; Han X. ; Douka A. I. ; Huang L. ; Gong L. ; Xia C. ; Park H. S. ; Xia B. Y Adv. Funct. Mater. 2020, 31, 2007602.
doi: 10.1002/adfm.202007602 |
4 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Norskov J. K. ; Jaramillo T. F Science 2017, 355, eaad4998.
doi: 10.1126/science.aad4998 |
5 |
Suen N. T. ; Hung S. F. ; Quan Q. ; Zhang N. ; Xu Y. J. ; Chen H. M Chem. Soc. Rev. 2017, 46, 337.
doi: 10.1039/c6cs00328a |
6 |
Moysiadou A. ; Lee S. ; Hsu C. S. ; Chen H. M. ; Hu X. J. Am. Chem. Soc. 2020, 142, 11901.
doi: 10.1021/jacs.0c04867 |
7 |
An H. ; Chen Z. ; Yang J. ; Feng Z. ; Wang X. ; Fan F. ; Li C. J. Catal. 2018, 367, 53.
doi: 10.1016/j.jcat.2018.08.007 |
8 |
Cho K. H. ; Park S. ; Seo H. ; Choi S. ; Lee M. Y. ; Ko C. ; Nam K. T Angew. Chem. Int. Ed. 2021, 60, 4673.
doi: 10.1002/anie.202014551 |
9 |
Liu H. ; Frei H. ACS Catal. 2020, 10, 2138.
doi: 10.1021/acscatal.9b03281 |
10 |
Zhang B. ; Daniel Q. ; Fan L. ; Liu T. ; Meng Q. ; Sun L. iScience 2018, 4, 144.
doi: 10.1016/j.isci.2018.05.018 |
11 | Mo C. ; Dicko C. ; Shao Z. ; Chen X. Acta Chim. Sin. 2009, 67, 2641. |
莫春丽; DickoCedricb; 邵正中; 陈新. 化学学报, 2009, 67, 2641.
doi: 10.3321/j.issn:0567-7351.2009.22.019 |
|
12 |
Chang H. W. ; Lu Y. R. ; Chen J. L. ; Chen C. L. ; Lee J. F. ; Chen J. M. ; Tsai Y. C. ; Yeh P. H. ; Chou W. C. ; Dong C. L. Phys. Chem. Chem. Phys. 2016, 18, 18705.
doi: 10.1039/c6cp01192f |
13 |
Lee S. ; Moysiadou A. ; Chu Y. -C. ; Chen H. M. ; Hu X. Energy Environ. Sci. 2022, 15, 206.
doi: 10.1039/d1ee02999a |
14 |
Zahran Z. N. ; Mohamed E. A. ; Naruta Y. ACS Catal. 2016, 6, 4470.
doi: 10.1021/acscatal.6b00413 |
15 |
Jin K. ; Chu A. ; Park J. ; Jeong D. ; Jerng S. E. ; Sim U. ; Jeong H. Y. ; Lee C. W. ; Park Y. S. ; Yang K. D. ; et al Sci. Rep. 2015, 5, 10279.
doi: 10.1038/srep10279 |
16 | Tan T. ; Yang J. ; Zhu C. ; Wang G. ; Chen J. ; Su J. Acta Phys. -Chim. Sin. 2016, 32, 1929. |
谭天; 杨佳慧; 朱春华; 王官武; 陈家富; 苏吉虎. 物理化学学报, 2016, 32, 1929.
doi: 10.3866/PKU.WHXB201605092 |
|
17 |
Zhang S. ; Yao Y. ; Jiao X. ; Ma M. ; Huang H. ; Zhou X. ; Wang L. ; Bai J. ; Yu Y. Adv. Mater. 2021, 33, e2103846.
doi: 10.1002/adma.202103846 |
18 |
Feng L. ; Wang R. ; Zhang Y. ; Ji S. ; Chuan Y. ; Zhang W. ; Liu B. ; Yuan C. ; Du C. J. Mater. Sci. 2018, 54, 1520.
doi: 10.1007/s10853-018-2885-0 |
19 |
Sheng C. ; Yu F. ; Li C. ; Zhang H. ; Huang J. ; Wu Y. ; Armand M. ; Chen Y. J. Phys. Chem. Lett. 2021, 12, 2064.
doi: 10.1021/acs.jpclett.1c00118 |
20 |
Morales-Guio C. G. ; Liardet L. ; Hu X. J. Am. Chem. Soc. 2016, 138, 8946.
doi: 10.1021/jacs.6b05196 |
21 |
Rao R. R. ; Corby S. ; Bucci A. ; Garcia-Tecedor M. ; Mesa C. A. ; Rossmeisl J. ; Gimenez S. ; Lloret-Fillol J. ; Stephens I. E. L. ; Durrant J. R J. Am. Chem. Soc. 2022, 144, 7622.
doi: 10.1021/jacs.1c08152 |
22 |
Gorlin M. ; Ferreira de Araujo J. ; Schmies H. ; Bernsmeier D. ; Dresp S. ; Gliech M. ; Jusys Z. ; Chernev P. ; Kraehnert R. ; Dau H. ; et al J. Am. Chem. Soc. 2017, 139, 2070.
doi: 10.1021/jacs.6b12250 |
23 |
Zaharieva I. ; González-Flores D. ; Asfari B. ; Pasquini C. ; Mohammadi M. R. ; Klingan K. ; Zizak I. ; Loos S. ; Chernev P. ; Dau H. Energy Environ. Sci. 2016, 9, 2433.
doi: 10.1039/c6ee01222a |
24 |
Takashima T. ; Hashimoto K. ; Nakamura R. J. Am. Chem. Soc. 2012, 134, 1519.
doi: 10.1021/ja206511w |
25 |
Francas L. ; Selim S. ; Corby S. ; Lee D. ; Mesa C. A. ; Pastor E. ; Choi K. S. ; Durrant J. R Chem. Sci. 2021, 12, 7442.
doi: 10.1039/d0sc06429g |
26 |
Wu L. L. ; Huang H. G. ; Li J. X. ; Luo J. ; Lin Z. H. Electrochim. Acta 2000, 45, 2877.
doi: 10.1016/S0013-4686(00)00362-5 |
27 |
Wang P. ; Li D. ; Chi H. ; Zhao Y. ; Wang J. ; Li D. ; Pang S. ; Fu P. ; Shi J. ; Li C. Angew. Chem. Int. Ed. 2021, 60, 6691.
doi: 10.1002/anie.202014871 |
28 |
Risch M. ; Ringleb F. ; Kohlhoff M. ; Bogdanoff P. ; Chernev P. ; Zaharieva I. ; Dau H. Energy Environ. Sci. 2015, 8, 661.
doi: 10.1039/c4ee03004d |
29 |
Francas L. ; Corby S. ; Selim S. ; Lee D. ; Mesa C. A. ; Godin R. ; Pastor E. ; Stephens I. E. L. ; Choi K. S. ; Durrant J. R. Nat. Commun. 2019, 10, 5208.
doi: 10.1038/s41467-019-13061-0 |
30 |
Yin H. ; Li D. ; Wang X. ; Li C. J. Phys. Chem. C 2021, 125, 8369.
doi: 10.1021/acs.jpcc.1c02369 |
31 |
Yin H. ; Shao C. ; Wang H. ; Zhang H. ; Li D. ; Zong X. ; Wang X. ; Li C. J. Phys. Chem. Lett. 2021, 12, 3698.
doi: 10.1021/acs.jpclett.1c00767 |
32 |
Kok B. ; Forbush B. ; McGloin M. Photochem. Photobiol. 1970, 11, 457.
doi: 10.1111/j.1751-1097.1970.tb06017.x |
33 |
Zhang Y. ; Zhang H. ; Liu A. ; Chen C. ; Song W. ; Zhao J. J. Am. Chem. Soc. 2018, 140, 3264.
doi: 10.1021/jacs.7b10979 |
34 |
Zhang H. ; Li D. ; Byun W. J. ; Wang X. ; Shin T. J. ; Jeong H. Y. ; Han H. ; Li C. ; Lee J. S Nat. Commun. 2020, 11, 4622.
doi: 10.1038/s41467-020-18484-8 |
35 |
Ma Y. ; Kafizas A. ; Pendlebury S. R. ; Le Formal F. ; Durrant J. R Adv. Funct. Mater. 2016, 26, 4951.
doi: 10.1002/adfm.201600711 |
36 |
Zahran Z. N. ; Mohamed E. A. ; Ohta T. ; Naruta Y. ChemCatChem 2016, 8, 532.
doi: 10.1002/cctc.201501073 |
[1] | Tianran Wei, Shusheng Zhang, Qian Liu, Yuan Qiu, Jun Luo, Xijun Liu. Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2207026-0. |
[2] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[3] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[4] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[5] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[6] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[7] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[8] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[9] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[10] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[11] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[12] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
[13] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[14] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[15] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
|