Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (12): 2208008.doi: 10.3866/PKU.WHXB202208008
Special Issue: Special Issue in Honor of the 120’s Anniversary of Academician Ying Fu
• REVIEW • Previous Articles
Junda Huang1,44, Yuhui Zhu2, Yu Feng1, Yehu Han4, Zhenyi Gu5, Rixin Liu6, Dongyue Yang7, Kai Chen7, Xiangyu Zhang8, Wei Sun1, Sen Xin2,*(), Yan Yu4, Haijun Yu9, Xu Zhang9, Le Yu8, Hua Wang10, Xinhua Liu11, Yongzhu Fu12, Guojie Li13, Xinglong Wu14, Canliang Ma15, Fei Wang16, Long Chen17, Guangmin Zhou18, Sisi Wu19, Zhouguang Lu19, Xiuting Li20, Jilei Liu21, Peng Gao21, Xiao Liang22, Zhi Chang23, Hualin Ye24, Yanguang Li24, Liang Zhou25, Ya You25, Peng-Fei Wang26, Chao Yang25, Jinping Liu25, Meiling Sun27, Minglei Mao28, Hao Chen29, Shanqing Zhang29, Gang Huang7, Dingshan Yu30, Jiantie Xu31, Shenglin Xiong32, Jintao Zhang32, Ying Wang33, Yurong Ren34, Chunpeng Yang35, Yunhan Xu35, Yanan Chen36, Yunhua Xu36, Zifeng Chen36, Xiangwen Gao37, Shengda D. Pu37, Shaohua Guo6, Qiang Li38, Xiaoyu Cao39, Jun Ming7, Xinpeng Pi40, Chaofan Liang40, Long Qie40, Junxiong Wang18, Shuhong Jiao4, Yu Yao4, Chenglin Yan41, Dong Zhou18, Baohua Li18, Xinwen Peng42, Chong Chen43, Yongbing Tang43, Qiaobao Zhang3, Qi Liu45, Jincan Ren45, Yanbing He18, Xiaoge Hao46, Kai Xi47, Libao Chen48, Jianmin Ma1,*(
)
Received:
2022-08-04
Accepted:
2022-09-19
Published:
2022-10-08
Contact:
Sen Xin,Jianmin Ma
E-mail:xinsen08@iccas.ac.cn;nanoelechem@uestc.edu.cn
About author:
Email: nanoelechem@uestc.edu.cn (J.M):
Junda Huang, Yuhui Zhu, Yu Feng, Yehu Han, Zhenyi Gu, Rixin Liu, Dongyue Yang, Kai Chen, Xiangyu Zhang, Wei Sun, Sen Xin, Yan Yu, Haijun Yu, Xu Zhang, Le Yu, Hua Wang, Xinhua Liu, Yongzhu Fu, Guojie Li, Xinglong Wu, Canliang Ma, Fei Wang, Long Chen, Guangmin Zhou, Sisi Wu, Zhouguang Lu, Xiuting Li, Jilei Liu, Peng Gao, Xiao Liang, Zhi Chang, Hualin Ye, Yanguang Li, Liang Zhou, Ya You, Peng-Fei Wang, Chao Yang, Jinping Liu, Meiling Sun, Minglei Mao, Hao Chen, Shanqing Zhang, Gang Huang, Dingshan Yu, Jiantie Xu, Shenglin Xiong, Jintao Zhang, Ying Wang, Yurong Ren, Chunpeng Yang, Yunhan Xu, Yanan Chen, Yunhua Xu, Zifeng Chen, Xiangwen Gao, Shengda D. Pu, Shaohua Guo, Qiang Li, Xiaoyu Cao, Jun Ming, Xinpeng Pi, Chaofan Liang, Long Qie, Junxiong Wang, Shuhong Jiao, Yu Yao, Chenglin Yan, Dong Zhou, Baohua Li, Xinwen Peng, Chong Chen, Yongbing Tang, Qiaobao Zhang, Qi Liu, Jincan Ren, Yanbing He, Xiaoge Hao, Kai Xi, Libao Chen, Jianmin Ma. Research Progress on Key Materials and Technologies for Secondary Batteries[J].Acta Phys. -Chim. Sin., 2022, 38(12): 2208008.
Fig 5
(a) TEM images, (b) cycling performances at 100 mA∙g−1 of SiOx/C-CVD 140; (c) corresponding third-cycle discharge capacity vs. Sn content (inset: the dependence of the Cfree content vs. Sn content) 143; (d) design of multifunctional SEI layer through mimicking human musculoskeletal tissues 145; (e) schematic diagrams illustrating microstructural changes in the SiOx-C/PZT composites anode during lithiation 141. (d) Reproduced with permission from Ref. 145, Copyright © Wiley."
Fig 6
(a) Schematic open-circuit energy diagram of an electrolyte, ΦA and ΦC are the anode and cathode work functions, Eg is the electrolyte s electrochemical stability window, μA and μC are the redox potential of the anode and cathode, respectively 4; (b) influence of SEI derived from local high concentration and low concentration DME based electrolyte on graphite properties 165; (c) Li+ solvation structure formula and model describing the structure of electrolyte quantitatively and graphically 167; (d) molecular interface model based on Li+ de-solvation process on graphite anode 169. (a) Reproduced with permission from Ref. 4, Copyright © American Chemical Society. (b) Reproduced with permission from Ref. 165, Copyright © Wiley."
Fig 7
(a) Schematic diagram of the dissociation of lithium salts by (up) a FE polymer (e.g., PVDF) with a relatively low er and (down) an RFE polymer [e.g., P(VDF-TrFE)-based terpolymer] with a high εr 174; (b) schematic of the preparation of ultrathin ZnO layer coated LATP pellet by magnetron sputtering (up) and interface evolution between Li metal anode and LATP (middle) with and (down) without ultrathin ZnO layer 177; (c) variation of ionic conductivity of Li10Ge(P1−xSbx)2S12 with Sb content 179; (d) the influence of the value of x in LixScCl3+x on the structure and Li+ diffusivity, with increasing x value, higher Li+, lower vacancy concentration, and less blocking effects from Sc ions are achieved, enabling the ability to tune the Li+ migration 181; (e) illustration of water-mediated synthesis route for Li3InCl6 and the reversible interconversion between the hydrated a Li3InCl6∙xH2O and dehydrated Li3InCl6 182. (c) Reproduced with permission from Ref. 179, (d) Reproduced with permission from Ref. 181; Copyright © American Chemical Society. (e) Reproduced with permission from Ref. 182, Copyright © Wiley."
Fig 8
(a) Commercial PP separator coated with microporous carbon material to suppress lithium polysulfide shuttle and improve battery electrochemical performance for lithium-sulfur batteries 214; (b) commercial PP separator modified by molecular sieve improve the cycling stability and safety of high-voltage lithium metal battery (LiNi0.8Mn0.1Co0.1O2//Li) work under high temperature and elevated voltage 215; (c) in situ photopolymerization on the surface of a commercial separator generates a dense metal frame material, which significantly improves the stability of lithium metal batteries within carbonate electrolytes 195; (d) a novel fireproof separator based on triphenyl phosphate (TPP) "core" and polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) "shell" to improve the safety of secondary battery 217. (b) Reproduced with permission from Ref. 215, Copyright © Wiley."
Fig 9
Diagrammatic illustration of the free radical scavenging ability of (a) lignin and (b) PVDF 237; (c) schematic illustration of the working mechanism in LTMOCs antiaging binder 224. (a, b) Reproduced with permission from Ref. 237, Copyright © Royal Society of Chemistry. (c) Reproduced with permission from Ref. 224, Copyright © American Chemical Society."
Fig 10
(a) Proposed Al(EtO)3/FEC reaction mechanism, schematic illustration of the protection mechanism of the SEI and CEI formed in basic electrolyte (b) and additive-modified electrolyte (c) 253; (d) Li deposition on a Li surface with or without CoPc additive 257. (d) Reproduced with permission from Ref. 257, Copyright © Wiley."
Fig 12
(a) Schematic diagram of repairing the NCM cathode by solid-state sintering with Li2CO3 285; (b) schematic diagram of hydrothermal repair of lithium iron phosphate cathode using LiOH aqueous solution and reducing agent 287; (c) schematic diagram of using deep eutectic solvent liquid phase reaction to repair cathode materials 288; (d) schematic diagram of remediation of NCM cathode materials using LiOH-LiNO3 molten salt system 289; (e) process for remediation of lithium cobalt oxide cathode materials by electrochemical lithiation using Li2SO4 solution 291. (a) Reproduced with permission from Ref. 285, (d) Reproduced with permission from Ref. 289, (e) Reproduced with permission from Ref. 291; Copyright © American Chemical Society. (b) Reproduced with permission from Ref. 287, Copyright © Royal Society of Chemistry."
Fig 13
(a) Schematic diagram of porous graphite and lithium recovery process based on Li-containing SG; (b) cyclic properties of porous graphite and ordinary graphite at 1C; (c) schematic diagram of porous graphite recovery process and formation mechanism; (d) the hypothesis of activation mechanism and the corresponding chemical equation 297."
Fig 14
(a) Lattice expansion in SG revealed by digital optoelectronic technology, (b) TEM and (c) HRTEM images of SG processed by H2SO4 303; (d) SEM, (e) TEM images and (f) discharge/charge curves at different current densities and (g) cycling performance at 1000 mA∙g−1 of porous graphene 297. (a, b, c) Reproduced with permission from Ref. 303, Copyright © American Chemical Society."
Fig 15
(a) Schematic diagram of MNO2-Ag adsorbing ions and (b) comparison of the removal rates of Pb2+, Cd2+ and AG+ by MNO2-Ag and AG 306; (c) schematic diagram of MG-MCMB complex preparation 307. (a, b) Reproduced with permission from Ref. 306, (c) Reproduced with permission from Ref. 307; Copyright © American Chemical Society."
Fig 16
(a) Cycle performance of amorphous MoS3-on-rGO and crystal MoS2-on-rGO heterostructures for sodium ion batteries at 0.2 A∙g−1, (b) sodium storage performance comparison of amorphous MoS3-on-rGO heterostructure with different loadings 324; (c) schematic of the synthesis process of the SbSn nanoarrays 336; (d) molecular structure of disodium terephthalate (Na2C8H4O4) and the Na insertion/deinsertion mechanism 337. (a, b) Reproduced with permission from Ref. 324, (c) Reproduced with permission from Ref. 336, (d) Reproduced with permission from Ref. 337; Copyright © Wiley."
Fig 17
(a) In situ XRD pattern and schematic diagram of O3-P3 phase transition of NaNi0.5Mn0.2Ti0.3O2348; (b) in situ XRD pattern of Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2350; (c) rate performance test and cycle performance test of Na0.8Li0.2Fe0.2Mn0.6O2353; (d) crystal structures of Prussian Blue cathode materials 356; (e) crystal structure, typical charge-discharge curves and cycle performance tests of Na3V2(PO4)3364; (f) evolution of organic compounds for SIBs 367. (a) Reproduced with permission from Ref. 348, (b) Reproduced with permission from Ref. 350, (e) Reproduced with permission from Ref. 364; Copyright © Wiley. (f) Reproduced with permission from Ref. 367, Copyright © Royal Society of Chemistry."
Fig 18
(a) Galvanostatic measurements of K0.6CoO2 cathode materials in K half-cell configurations 35; (b) schematic illustration of KVPF@3DC composite materials 382; (c) primary structural defect in a typical PBA is the vacancy (up to 33%) [R(CN)6], water is present within the structure in two distinct bonding environments 392; (d) structural evolution of K-MnHCFe: contour maps of operando XRD of K-MnHCFe during the first cycle in a K cell showing major diffraction peaks which were indexed using monoclinic (S. G. P21/n), cubic (S. G. Fm3m), and tetragonal (S. G. I4m2) phases 390; (e) working voltage, specific capacity and energy density of main cathode materials in PIBs (based on the mass of cathode only) 393. (a) Reproduced with permission from Ref. 35, Copyright © Wiley. (b) Reproduced with permission from Ref. 382, (c) Reproduced with permission from Ref. 392, (e) Reproduced with permission from Ref. 393; Copyright © American Chemical Society. (d) Reproduced with permission from Ref. 390, Copyright © Royal Society of Chemistry."
Fig 19
(a) Various anode electrode materials in potassium ion batteries 37; (b) SEM and TEM images of the nitrogen-doped carbon nanotubes 403; (c) XRD patterns of the Sn electrode in the half battery after the first cycle of charge and discharge 408; (d) structures of the COF-10 and CoF-10@CNT 420. (a) Reproduced with permission from Ref. 37, (d) Reproduced with permission from Ref. 420; Copyright © American Chemical Society."
Fig 20
Comparison of several promising cathode materials, including intercalation voltage (V), practical gravimetric (Wh∙kg−1), volumetric (Wh∙L−1) energy densities, barrier for bulk Mg mobility (eV), cycling stability (number of cycles), and abundance of the transition metal used in the cathode in the earth's crust 422."
Fig 22
Optimization strategy of high-performance anode for aqueous rechargeable zinc batteries. (a) Schematic illustration of the Zn plating process with different coating layers 448; (b) schematic diagram of the deposition process of Zn ions in the Zn@ZnO-3D anode in comparison with the bare Zn anode and the structure of the bilayer near the anode and the corresponding activation energy potential 449; (c) illustration of recharging Ni-Zn (conventional powder Zn anodes) vs. Ni-3D Zn batteries 450; (d) schematic illustration of the suppressed hydrogen evolution side reactions in Zn-Sn alloy electrode 454. (b) Reproduced with permission from Ref. 449, Copyright © Royal Society of Chemistry. (c) Reproduced with permission from Ref. 450, Copyright © The American Association for the Advancement of Science. (d) Reproduced with permission from Ref. 454, Copyright © Wiley."
Fig 24
(a) Polyhedral structure of manganese oxide crystal structure, a. β-MnO2 (pyrolusite-type); b. R-MnO2(ramsdellite-type); c. γ-MnO2 (nsutite-type); d. α-MnO2 (hollandite-type); e. romanechite-type MnO2; f. todorokite-type MnO2; g. δ-MnO2 (birnessite-type); h. λ-MnO2 (spinel-type) 455; (b) schematic diagram of phase transition of Zn2+ embedment in α-MnO2 460; (c) schematic diagram of co-embedding mechanism of H+ and Zn2+ in Zn/MnO2 batteries 461. (a) Reproduced with permission from Ref. 455, Copyright © Wiley. (b) Reproduced with permission from Ref. 460, Copyright © Royal Society of Chemistry. (c) Reproduced with permission from Ref. 461, Copyright © American Chemical Society."
Fig 25
(a) Schematic diagram of crystal structure of original VOG, VOG after charging to 1.3 V and VOG after discharging to 0.2 V 470; (b) schematic diagram of Zn2+ migration in the cathode 471; (c) schematic diagram of working principle of Zinc ‖ LVO-250 battery 472. (a) Reproduced with permission from Ref. 470, Copyright © Wiley. (b) Reproduced with permission from Ref. 471, Copyright © Elsevier. (c) Reproduced with permission from Ref. 472, Copyright © Royal Society of Chemistry."
Fig 26
Research progress on reversible deposition of calcium in different electrolyte systems. (a) 1.5 mol∙L−1 Ca(BH4)2 in THF electrolyte at room temperature 488; (b) 0.25 mol∙L−1 Ca[B(HFIP)4]2 in DME electrolyte at room temperature 489; (c) 0.4 mol∙L−1 Ca(BH4)2 and 0.4 mol∙L−1 LiBH4 in THF electrolyte at room temperature 493."
Fig 29
(a) Electrochemical reactions of the K-S battery, and schematic diagram of the electrode reactions 611; (b) charge/discharge voltage profiles of the composite 613; (c) schematic diagram of K-ACM composite and galvanostatic cycling test of symmetric cells at 2 mA∙cm−2, with the 1 mAh∙cm−2 stripping/plating capacity 615; (d) synthesis pathway of the Se@NO-nanocage/CNT composite, (e) cycling performance of the Se@NO-nanocage/CNT composite 620. (a) Reproduced with permission from Ref. 611, (b) Reproduced with permission from Ref. 613; Copyright © American Chemical Society. (c) Reproduced with permission from Ref. 615, (d, e) Reproduced with permission from Ref. 620; Copyright © Wiley."
Fig 30
(a) The discharge curve of a Li–O2 cell using FGS (C/O = 14) as the air electrode (PO2 = 2 atm) 643; (b) schematic illustration of the roles of solid catalysts in reducing the charging overpotential for Li2O2 oxidation 653; (c) working principle of RMs in Li-O2 batteries; (d) schematics of reactions on discharge with DBBQ as the RM 658; (e) structure and working principle of RFLOB and the photo of the working RFLOB 659; (f) voltage and power density vs. current density curves of RFLOB cells under different operating conditions 660. (a) Reproduced with permission from Ref. 643, (b) Reproduced with permission from Ref. 653; Copyright © American Chemical Society. (f) Reproduced with permission from Ref. 660, Copyright © Royal Society of Chemistry."
Fig 31
(a) Physicochemical properties of the solvent and additive (such as donor/acceptor numbers (DN/AN), Li+ cation-anion association strength) that can help promote a solution-mediated discharge process 644; (b) solvent stability against proton/hydrogen abstraction via nucleophilic attack and solvent ability to facilitate the solution mediated discharge 706; (c) the schematic illustration of the MMM based on CAU1-NH2@PDA (PDA = polydopamine) and polymethyl methacrylate polymer for rebelling H2O and CO2 molecules, symbol: Al, pink; O, red; C, gray; H, blue 707. (b) Reproduced with permission from Ref. 706, Copyright © American Chemical Society."
Fig 32
(a) Schematic diagram of Na-O2 battery 722; (b) the discharge-charge curves of Na-O2 battery based on NaO2 discharge product 723; (c) the discharge-charge curves of Na-O2 battery containing Na2O2 discharge product 724; (d) discharge capacity of Na-O2 battery in different electrolyte solvents 732. (c) Reproduced with permission from Ref. 724, Copyright © American Chemical Society."
Fig 33
(a) Discharge-charge curve of the K-O2 battery 735; (b) XRD patterns of cathodes after discharge and charge in K-O2 batteries 735; (c) discharge-charge curve of the K-O2 battery standing for different times after discharge 744; (d) Discharge-charge curves of BpK-O2 batteries in different atmospheres 746. (a, b) Reproduced with permission from Ref. 735, (d) Reproduced with permission from Ref. 746; Copyright © American Chemical Society. (c) Reproduced with permission from Ref. 744, Copyright © Wiley."
Table 1
Comparison of theoretical cell voltage, negative specific capacity, theoretical mass specific energy and rechargeability of different metal-oxygen batteries."
Batteries | Theoretical cell voltage/V | Negative specific capacity/(mAh∙g−1) | Theoretical mass specific energy/(Wh∙kg−1) | Rechargeability |
Li-O2 battery 2Li + O2 = Li2O2 | 2.96 | 3860 | 3457 | Yes |
Zn-O2 battery Zn + 1/2O2 = ZnO | 1.65 | 820 | 1218 | Yes |
Al-O2 battery 2Al + 3/2O2 +3H2O = 2Al(OH)3 | 2.71 | 2980 | 5780 | No |
Mg-O2 battery | 2200 | |||
Mg + 1/2O2 + H2O = Mg(OH)2(aqueous) | 3.1 | 5240 | Yes | |
Mg + 1/2O2 = MgO (origanic) | 2.95 | 3924 | Yes | |
Fe-O2 battery Fe + 1/2O2 + H2O = Fe(OH)2 | 1.28 | 960 | 1080 | Yes |
Fig 34
(a) Schematic illustration and future applications of FMABs 809; (b) a simplified timeline diagram of the development of FMABs, LOB/NOB means Li/Na-O2 battery, which is tested in the pure O2 atmosphere, AAB: A-air batteries; LAB: Li-air batteries; MgAB: Mg-air batteries; ZAB: Zn-air batteries 810; (c) protection strategies for flexible metal anodes 815; (d) schematic diagram of several common preparation methods for flexible air cathodes 810."
Fig 36
(a) The intercalation potentials of some electrode materials that used in aqueous lithium-ion batteries and the potential of hydrogen evolution reaction, oxygen evolution reaction with different pH values 883; (b) solvation structure of Li+ in dilute aqueous solution and high-concentrated aqueous solution 870; (c) the electrochemical stability window of aqueous electrolyte extended by high-concentrated salt, where upper is the redox potential of t anode and cathode materials, and lower part is the electrochemical stability window of water and high-concentrated aqueous electrolyte at pH = 7 884; (d) performance of aqueous Li-ion batteries based on various electrochemical couples. Color code for cycling stability: red, < 100 cycles; blue, 100 to 200 cycles; green, > 1000 cycles 870. (a) Reproduced with permission from Ref. 883, (c) Reproduced with permission from Ref. 884; Copyright © American Chemical Society. (b, d) Reproduced with permission from Ref. 870, Copyright © The American Association for the Advancement of Science."
Fig 37
(a) DSC heating curves of fully sodiated hard carbon in various electrolyte formulations 889; (b) comparison of components and properties of SEI derived from ether and ester electrolytes 906; (c) the initial five GCD curves of LHC//NVPF full cells in NDD-3 electrolyte at 0.05 A∙g−1 894; (d) TG analysis of the NaTFSI-based electrolytes under N2 flux heating 905. (a) Reproduced with permission from Ref. 889, Copyright © Royal Society of Chemistry. (b) Reproduced with permission from Ref. 906, (c) Reproduced with permission from Ref. 894; Copyright © Wiley. (d) Reproduced with permission from Ref. 905, Copyright © American Chemical Society."
Fig 38
(a) Comparison of ion radius and Stokes radius of Li+, Na+ and K+ 908; (b) solvation structure of K+ in dilute aqueous solution and high-concentrated aqueous solution 915; (c) comparison of electrochemical stability windows between aqueous dilute solution and high-concentrated solution (CH3CO2K) 914; (d) redox potential and specific capacity of APIBs electrode materials 911. (a) Reproduced with permission from Ref. 908, Copyright © Wiley. (b) Reproduced with permission from Ref. 915, (c) Reproduced with permission from Ref. 914; (d) Reproduced with permission from Ref. 911; Copyright © American Chemical Society."
Table 2
The main research battery performance and state."
Battery type | Reaction mechanism | Electrolyte | Working voltage/V | Laboratorial energy density/(Wh∙kg−1) | Practical energy density/(Wh∙kg−1) |
Lead-acid battery | Pb + PbO2 + 2H2SO4 ↔ 2PbSO4 + 2H2O | 5 mol∙L−1 H2SO4 | 2.0 | 167 | 35–70 |
Primary Fe-Ni alkaline batteries | Fe + 2NiOOH + 2H2O ↔ Fe(OH)2+ 2Ni(OH)2 | 2 mol∙L−1 KOH | 1.2 | 234 | 40–60 |
Primary Zn-Ni alkaline batteries | Zn + 2NiOOH + 2H2O ↔ Zn(OH)2 + 2Ni(OH)2 | 1 mol∙L−1 KOH | 1.7 | 321 | 70–100 |
Primary Zn-MnO2 alkaline bartteries | Zn + 2MnO2 + 2H2O → 2MnOOH + Zn(OH)2 | 1 mol∙L−1 KOH | 1.5 | 292 | 80–120 |
Rechargeable Zn batteries | Zn + 2MnO2 ↔ ZnMn2O4 | 2 mol∙L−1 ZnSO4 | 1.35 | 302 | N |
1.1Zn + Zn0.25V2O6 ↔ Zn1.35V2O5 | 1 mol∙L−1 ZnSO4 | 0.8 | 175 | N | |
Rechargeable Mg batteries | Mg + 2λ-MnO2 ↔ MgMn2O4 | 0.5 mol∙L−1 MgCl2 | 1.5 | 404 | N |
Rechargeable Ca batteries | 0.3Ca + CuHCF ↔ Ca0.3CuHCF | 2.5 mol∙L−1 Ca(NO3)2 | 1.24 | 60 | N |
Rechargeable Albatteries | AlxMnO2 +(y − x)Al ↔ AlyMnO2 | 5 mol∙L−1 Al(OTF)3 | 1.1 | 308 | N |
Fig 39
(a) Schematic illustrations of Zn plating/stripping in aqueous electrolytes; (b) schematic illustration of a possible mechanism of how the Zn2+-EG solvation interaction impacts the chemistry of the hybrid electrolyte 951; (c) scheme of Zn2+ solvation structure and zinc surface passivation 952; (d) molarity of the ZnCl2-H2O binary system as functions of the weight ratio of ZnCl2 to H2O and the molar ratio of H2O to ZnCl2 (n), the prospective hydration shells around Zn are shown as inset, the term "water-in-salt" denotes electrolyte with salt to water weight ratio > 1 953; (e) snapshot of MD simulations 957; (f) the evolution process of the Zn2+-solvation sheath in electrolytes with the increased water content 958. (a, b) Reproduced with permission from Ref. 951, Copyright © Royal Society of Chemistry. (c) Reproduced with permission from Ref. 952, Copyright © American Chemical Society. (d) Reproduced with permission from Ref. 953, (e) Reproduced with permission from Ref. 957, (f) Reproduced with permission from Ref. 958; Copyright © Wiley."
Fig 40
a) The performance of different types of the photo-assisted rechargeable metal batteries with or without light 966; (b) proposed reaction mechanisms of photoinvolved Li-O2 batteries 967; (c) schematic illustration of the Ag/Bi2MoO6 photocathode for Li-O2 battery 979. (a) Reproduced with permission from Ref. 966, (c) Reproduced with permission from Ref. 979; Copyright © Wiley. (b) Reproduced with permission from Ref. 967, Copyright © American Chemical Society."
Fig 42
(a) The schematic representation of FIB in discharging process; (b) ionic conductivities of some fluoride ion conductors. "bm" stands for "after ball milled" 1038; (c) solvation structure and Stokes radius of Np1F and Np2F in BTFE 1031; (d) structural changes of La2NiO4.13 before and after fluorination 1037. (b) Reproduced with permission from Ref. 1038, Copyright © Royal Society of Chemistry. (c) Reproduced with permission from Ref. 1031, Copyright © The American Association for the Advancement of Science."
Fig 43
(a) Schematic illustration of the chloride ion battery, (b) schematic illustration of the whole chemical and electrochemical processes of the FeOCl material 1043; (c) structural representation of CoFe-LDH at different charge states 1047; (d) ionic conductivities of PEO solid electrolytes with various SN addition 1056. (a, b) Reproduced with permission from Ref. 1043, Copyright © American Chemical Society. (c) Reproduced with permission from Ref. 1047, (d) Reproduced with permission from Ref. 1056; Copyright © Wiley."
Fig 48
(a) Schematic illustration of a Li-CO2 battery 1169; (b) schematic illustration of corresponding CO2 reduction and evolution reactions on Co/GO electrode 1161; (c) schematic illustration of the charging and discharging reaction mechanism with the Ru catalyst 1154; (d) schematic illustration the preparation procedure of the CC@MoN NFs as cathodes for flexible belt-shaped Li-CO2 battery and reaction mechanism 1168. (a) Reproduced with permission from Ref. 1169, Copyright © American Chemical Society. (b) Reproduced with permission from Ref. 1161, (d) Reproduced with permission from Ref. 1168; Copyright © Wiley. (c) Reproduced with permission from Ref. 1154, Copyright © Royal Society of Chemistry."
Fig 49
(a) Cryo-EM and (b) high-resolution cryo-EM images of the SEI structures in the presence of nitrate, (c) schematic illustration of the area marked with orange square in (b) 1197; (d) cryo-EM and (e) high-resolution cryo-EM images of WGC after low areal capacity Li metal deposition, (f) schematic illustration of SEI nanostructure on the surface of WGC 1189; (g) schematic illustration of cryo-TEM, (h) Cryo-EM image and (i) high-resolution cryo-EM image and the corresponding FFT patterns for the selected regions of the electrochemically deposited Li metal (EDLi) 1190. (d, e, f) Reproduced with permission from Ref. 1189, (g, h, i) Reproduced with permission from Ref. 1190; Copyright © American Chemical Society."
Fig 51
Schematic diagram of a typical system for in situ TEM studies of secondary rechargeable metal batteries. In situ observations of solid-solid reactions, solid-gas reactions, and solid-liquid reactions of electrode materials/solid electrolytes can be made, including open and closed (gas or liquid cell) designs 1206."
Fig 52
(a) In situ TEM image of a single Cu/Si/Ge nanowire (Cu/Si/Ge NW) electrode with the evolution of Li-imbedding time; (b) chemo-mechanical simulation image: showing the gradual bending process and only in the lithium I stage of Ge; The cross-sectional distribution of normalized Li/Ge concentration in Si/Ge co-lithiation II stage; (c) in situ TEM images of amplified morphology changes of a single Cu/Si/Ge NW electrode at different lithium embedding stages and corresponding quantitative measurements of Si/Ge NW double-shell thickness changes with lithium embedding time; (d) electrochemicalmechanical coupling expansion diagram related to the insertion of active lithium near the surface during Si/Ge NW co-embedding 1208. Reproduced with permission from Ref. 1208, Copyright © Royal Society of Chemistry."
Fig 53
(a) In situ TEM images of pore filling and silicon skeleton expansion during different lithium embedding stages of AMPSi/C; (b) schematic diagram of the morphology change of a single AMPSi/C electrode during lithium inlay/removal and in situ TEM images of its morphology change before, after and after lithium inlay; (c) schematic diagram of AMPSi/C overall electrode structure changes during lithium embedding and in situ TEM images of single AMPSi/C electrode morphology changes during different lithium embedding stages 1209."
Fig 54
The process of lithium plating and lithium removal studied by in situ TEM using liquid cell 1217. (a) Schematic diagram of sealed battery design. Of the two chips used, three Pt conducting electrodes are deposited on the larger chip. (b) The distribution of electrostatic field in the chip area when the in situ battery is charged and discharged at a constant current of 0.1 mA∙cm−2 is obtained by finite element calculation and simulation using ANSYS Maxwell software. Specifically, three of the electrodes are the working, reference, and counter electrodes, which are abbreviated to WE, RE and CE, respectively. (c), (d) and (e) show the high Angle annular dark field (HAADF) photos of lithium deposition at the interface between Pt working electrode and LiPF6/PC electrolyte during the first, second and third charging, respectively. Reproduced with permission from Ref. 1217, Copyright © American Chemical Society."
Fig 55
(a) In situ XRD patterns of LiFePO4 at different charge-discharge rates 1224; (b) in situ ND patterns of Li1+xMn2−xO4 cathodes with different Li/Mn ratios for Li-ion batteries 1227; (c) in situ NDP spectra of LFP electrodes cycled at 0.1C, (c1) Geometry 1: small particles (70 nm) at the current collector side, large particles (140 nm) at the electrolyte side, Left: Li-ion distribution after charge/discharge for 5 h. Right: Li-ion distribution evolution during a full charge-discharge cycle, (c2) Geometry 2: large particles (140 nm) at the current collector side, small particles (70 nm) at the electrolyte side, Left: Li-ion distribution after charge/discharge for 5 h, Right: Li-ion distribution evolution during a full charge-discharge cycle 1230; (d) SLD profiles of Si, (d1) first lithiation, (d2) first delithiation, (d3) second lithiation/delithiation as a function of time and distance from the interface 1232; (e) in situ NMR spectra of 7Li, (e1) a-SiO and (e2) d-SiO (1000 ℃) 1234. (a) Reproduced with permission from Ref. 1224, Copyright © The American Association for the Advancement of Science. (b) Reproduced with permission from Ref. 1227, (d) Reproduced with permission from Ref. 1232, (e) Reproduced with permission from Ref. 1234; Copyright © American Chemical Society. (c) Reproduced with permission from Ref. 1230, Copyright © Wiley."
Fig 56
(a) In situ Raman characterizations of graphite upon potassium ion intercalation/deintercalation, (a1) Nearest layer model illustrated according to charge distribution in stage 3-KC36 and calculated by electron charge difference, (a2) Raman spectrum of the K-GICs at different stages, (a3) R value plots obtained with in situ Raman mappings to reveal the chemical phase evolution of K-GICs upon potassiation/depotassiation 1239; (b) in situ Raman mapping images of LiCo2O4 cross-section 1240; (c) in situ FTIR spectra of (c1) graphite, (c2) GO-1, (c3) GO-3, (c4) GO-5 1247; (d) in situ UV-Vis spectra of lithium-sulfur batteries upon charge-discharge processes 1250. (a) Reproduced with permission from Ref. 1239, (d) Reproduced with permission from Ref. 1250; Copyright © Wiley. (b) Reproduced with permission from Ref. 1240, Copyright © The Electrochemical Society of Japan."
Fig 57
(a) Systematic diagram of in situ XPS, Co 2p XPS peaks and the evolution of Co surface as a function of applied voltages 1253; (b) in situ AES mapping images of solid state electrolyte Li2S-P2S5 SEI, (b1) after charging 2 h and (b2) its corresponding threshold-filter processed image, (b3) after charging 6 h, (b4) after charging 15 h 1255; (c) in situ STEM-EDS analysis of sodiation in α-MnO2 1256; (d) gas evolution analysis of NCM-811ǀǀAG pouch cell in 1 mol∙L−1 LiPF6/EC: EMC electrolyte under various applied voltages 1258. (a) Reproduced with permission from Ref. 1253, Copyright © American Chemical Society."
Fig 58
(a) Various synchrotron X-ray techniques used to study battery materials; (b) in situ synchrotron XRD pattern of the Li2S@graphene electrode during the initial charge-discharge process 1264; (c) synchrotron XPS of the LCO particle intensity map of energy range encompassing Li 1s and Co 3p and narrow scan of Li 1s and Co 3p at different locations on the particle 1269; (d) the 3D volume rendering of the Li|Li symmetrical cell after internal short-circuit obtained by synchrotron X-CT 1270. (d) Reproduced with permission from Ref. 1270, Copyright © American Chemical Society."
Fig 59
(a) Basic types and applications of magnetometry 1283; (b) magnetometry about material structure and composition analysis 1299, 1305, 1306; (c) diagram of operando magnetometry 1283, 1301; (d) operando magnetometry for real-time electron transfer dynamic monitoring 1302; (e) application of operando magnetometry in different ion batteries 1300. (b) Reproduced with permission from Ref. 1305-1306, (e) Reproduced with permission from Ref. 1300; Copyright © American Chemical Society. (c) Reproduced with permission from Ref. 1301, Copyright © Royal Society of Chemistry."
1 |
ArmandM.;TarasconJ. M.Nature2008,451,652.
doi: 10.1038/451652a |
2 |
GoodenoughJ. B.Acc. Chem. Res.2013,46,1053.
doi: 10.1021/ar2002705 |
3 |
EtacheriV.;MaromR.;ElazariR.;SalitraG.;AurbachD.Energy Environ. Sci.2011,4,3243.
doi: 10.1039/c1ee01598b |
4 |
GoodenoughJ. B.;KimY.Chem. Mater.2010,22,587.
doi: 10.1021/cm901452z |
5 |
ScrosatiB.J. Solid State Electrochem.2011,15,1623.
doi: 10.1007/s10008-011-1386-8 |
6 | Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries: Science and Technology, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016. |
7 |
GarcheJ.J. Power Sources1990,31,401.
doi: 10.1016/0378-7753(90)80095-u |
8 |
PlackeT.;KloepschR.;DühnenS.;WinterM.J. Solid State Electrochem.2017,21,1939.
doi: 10.1007/s10008-017-3610-7 |
9 |
RuetschiP.;MeliF.;DesilvestroJ.J. Power Sources1995,57,85.
doi: 10.1016/0378-7753(95)02248-1 |
10 |
ChoiJ. W.;AurbachD.Nat. Rev. Mater.2016,1,16013.
doi: 10.1038/natrevmats.2016.13 |
11 | Yoshio, M.; Brodd, R. J.; Kozawa, A. Lithium-Ion Batteries: Science and Technologies, 1st ed.; Springer: New York, NY, USA, 2010. |
12 |
WhittinghamM. S.Science1976,192,1126.
doi: 10.1126/science.192.4244.1126 |
13 |
MizushimaK.;JonesP. C.;WisemanP. J.;GoodenoughJ. B.Mater. Res. Bull.1980,15,783.
doi: 10.1016/0025-5408(80)90012-4 |
14 | Zhang, J. Failure Analysis and Modification Research on High Voltage LiCoO2. Ph. D. Dissertation, University of Chinese Academy of Sciences, Beijing, 2018. |
15 |
YoshinoA.Angew. Chem. Int. Ed.2012,51,5798.
doi: 10.1002/anie.201105006 |
16 |
OzawaK.Solid State Ionics1994,69,212.
doi: 10.1016/0167-2738(94)90411-1 |
17 |
WinterM.;BarnettB.;XuK.Chem. Rev.2018,118,11433.
doi: 10.1021/acs.chemrev.8b00422 |
18 |
LiM.;LuJ.;ChenZ.;AmineK.Adv. Mater.2018,30,1800561.
doi: 10.1002/adma.201800561 |
19 |
GoodenoughJ. B.;ParkK.-S.J. Am. Chem. Soc2013,135,1167.
doi: 10.1021/ja3091438 |
20 |
TarasconJ. M.;ArmandM.Nature2001,414,359.
doi: 10.1038/35104644 |
21 |
NittaN.;WuF.;LeeJ. T.;YushinG.Mater. Today2015,18,252.
doi: 10.1016/j.mattod.2014.10.040 |
22 |
ZubiG.;Dufo-LópezR.;CarvalhoM.;PasaogluG.Renew. Sustain. Energy Rev.2018,89,292.
doi: 10.1016/j.rser.2018.03.002 |
23 |
WhittinghamM. S.Chem. Rev.2014,114,11414.
doi: 10.1021/cr5003003 |
24 |
ThackerayM. M.;WolvertonC.;IsaacsE. D.Energy Environ. Sci.2012,5,7854.
doi: 10.1039/c2ee21892e |
25 |
KulovaT. L.;FateevV. N.;SereginaE. A.;GrigorievA. S.Int. J. Electrochem. Sci.2020,15,7242.
doi: 10.20964/2020.08.22 |
26 |
BruceP. G.;FreunbergerS. A.;HardwickL. J.;TarasconJ.-M.Nat. Mater2012,11,19.
doi: 10.1038/nmat3191 |
27 |
ManthiramA.;FuY.;ChungS.-H.;ZuC.;SuY.-S.Chem. Rev2014,114,11751.
doi: 10.1021/cr500062v |
28 |
SehZ. W.;SunY.;ZhangQ.;CuiY.Chem. Soc. Rev.2016,45,5605.
doi: 10.1039/c5cs00410a |
29 |
PengH.-J.;HuangJ.-Q.;ChengX.-B.;ZhangQ.Adv. Energy Mater.2017,7,1700260.
doi: 10.1002/aenm.201700260 |
30 |
ChristensenJ.;AlbertusP.;Sanchez-CarreraR. S.;LohmannT.;KozinskyB.;LiedtkeR.;AhmedJ.;KojicA.J. Electrochem. Soc.2011,159,R1.
doi: 10.1149/2.086202jes |
31 |
KwakW.-J.;Rosy SharonD.;XiaC.;KimH.;JohnsonL. R.;BruceP. G.;NazarL. F.;SunY.-K.;FrimerA. A.;et alChem. Rev.2020,120,6626.
doi: 10.1021/acs.chemrev.9b00609 |
32 |
YabuuchiN.;KubotaK.;DahbiM.;KomabaS.Chem. Rev.2014,114,11636.
doi: 10.1021/cr500192f |
33 |
HwangJ.-Y.;MyungS.-T.;SunY.-K.Chem. Soc. Rev2017,46,3529.
doi: 10.1039/c6cs00776g |
34 |
NayakP. K.;YangL.;BrehmW.;AdelhelmP.Angew. Chem. Int. Ed.2018,57,102.
doi: 10.1002/anie.201703772 |
35 |
KimH.;KimJ. C.;BianchiniM.;SeoD.-H.;Rodriguez-GarciaJ.;CederG.Adv. Energy Mater.2018,8,1702384.
doi: 10.1002/aenm.201702384 |
36 |
RajagopalanR.;TangY.;JiX.;JiaC.;WangH.Adv. Funct. Mater.2020,30,1909486.
doi: 10.1002/adfm.201909486 |
37 |
HosakaT.;KubotaK.;HameedA. S.;KomabaS.Chem. Rev.2020,120,6358.
doi: 10.1021/acs.chemrev.9b00463 |
38 |
GummowR. J.;VamvounisG.;KannanM. B.;HeY.Adv. Mater.2018,30
doi: 10.1002/adma.201801702 |
39 |
LiangY.;DongH.;AurbachD.;YaoY.Nat. Energy2020,5,646.
doi: 10.1038/s41560-020-0655-0 |
40 |
FangG.;ZhouJ.;PanA.;LiangS.ACS Energy Lett.2018,3,2480.
doi: 10.1021/acsenergylett.8b01426 |
41 |
TangB.;ShanL.;LiangS.;ZhouJ.Energy Environ. Sci.2019,12,3288.
doi: 10.1039/c9ee02526j |
42 |
BlancL. E.;KunduD.;NazarL. F.Joule2020,4,771.
doi: 10.1016/j.joule.2020.03.002 |
43 | Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2000. |
44 |
XiaoL.;ZhaoY.;YangY.;CaoY.;AiX.;YangH.Electrochim. Acta2008,54,545.
doi: 10.1016/j.electacta.2008.07.037 |
45 | Compton, R. G.; Banks, C. E. Understanding Voltammetry, 2nd ed.; Imperial College Press: London, UK, 2011. |
46 |
WangY.;ShaoX.;XuH.;XieM.;DengS.;WangH.;LiuJ.;YanH.J. Power Sources2013,226,140.
doi: 10.1016/j.jpowsour.2012.10.077 |
47 |
ZhangX.;LuoD.;LiG.;ZhengJ.;YuC.;GuanX.;FuC.;HuangX.;LiL.J. Mater. Chem. A2013,1,9721.
doi: 10.1039/C3TA11040K |
48 |
GuoS.;YuH.;JianZ.;LiuP.;ZhuY.;GuoX.;ChenM.;IshidaM.;ZhouH.ChemSusChem2014,7,2115.
doi: 10.1002/cssc.201402138 |
49 |
ZampardiG.;Batchelor-McAuleyC.;KätelhönE.;ComptonR. G.Angew. Chem. Int. Ed.2017,56,641.
doi: 10.1002/anie.201610485 |
50 |
XuW.;ZhouY.;JiX.J. Phys. Chem. Lett.2018,9,4976.
doi: 10.1021/acs.jpclett.8b02315 |
51 |
ArmandM. B.;WhittinghamM. S.;HugginsR. A.Mater. Res. Bull.1972,7,101.
doi: 10.1016/0025-5408(72)90266-8 |
52 |
EichingerG.;BesenhardJ.J. Electroanal. Chem.1976,72,1.
doi: 10.1016/S0022-0728(76)80072-1 |
53 |
ReddyM. V.;MaugerA.;JulienC. M.;PaolellaA.;ZaghibK.Materials2020,13,1884.
doi: 10.3390/ma13081884 |
54 |
GhoshS.;BhattacharjeeU.;BhowmikS.;MarthaS. K.J. Energy Power Technol.2022,4,002.
doi: 10.21926/jept.2201002 |
55 |
ZhangJ.-N.;LiQ.;OuyangC.;YuX.;GeM.;HuangX.;HuE.;MaC.;LiS.;XiaoR.;et alNat. Energy2019,4,594.
doi: 10.1038/s41560-019-0409-z |
56 |
RozierP.;TarasconJ. M.J. Electrochem. Soc.2015,162,A2490.
doi: 10.1149/2.0111514jes |
57 |
LiuW.;OhP.;LiuX.;LeeM.-J.;ChoW.;ChaeS.;KimY.;ChoJ.Angew. Chem. Int. Ed.2015,54,4440.
doi: 10.1002/anie.201409262 |
58 |
WuF.;LiuN.;ChenL.;SuY.;TanG.;BaoL.;ZhangQ.;LuY.;WangJ.;ChenS.;et alNano Energy2019,59,50.
doi: 10.1016/j.nanoen.2019.02.027 |
59 |
ParkC. W.;LeeJ.-H.;SeoJ. K.;JoW. Y.;WhangD.;HwangS. M.;KimY.-J.Nat. Commun2021,12,2145.
doi: 10.1038/s41467-021-22403-w |
60 |
YuH.;CaoY.;ChenL.;HuY.;DuanX.;DaiS.;LiC.;JiangH.Nat. Commun.2021,12,4564.
doi: 10.1038/s41467-021-24893-0 |
61 |
MaY.;TeoJ. H.;WaltherF.;MaY.;ZhangR.;MazilkinA.;TangY.;GoonetillekeD.;JanekJ.;BianchiniM.;et alAdv. Funct. Mater.2022,32,2111829.
doi: 10.1002/adfm.202111829 |
62 | SuY. F.;ZhangQ. Y.;ChenL.;BaoL. Y.;LuY.;ChenS.;WuF.Acta Phys. -Chim. Sin.2021,37,2005062. |
苏岳锋;张其雨;陈来;包丽颖;卢赟;陈实;吴锋.物理化学学报,2021,37,2005062.
doi: 10.3866/PKU.WHXB202005062 |
|
63 |
LiuT.;YuL.;LuJ.;ZhouT.;HuangX.;CaiZ.;DaiA.;GimJ.;RenY.;XiaoX.;et alNat. Commun.2021,12,6024.
doi: 10.1038/s41467-021-26290-z |
64 | YeY. K.;HuZ. X.;LiuJ. H.;LinW. C.;ChenT. W.;ZhengJ. X.;PanF.Acta Phys. -Chim. Sin.2021,37,2011003. |
叶耀坤;胡宗祥;刘佳华;林伟成;陈涛文;郑家新;潘锋.物理化学学报,2021,37,2011003.
doi: 10.3866/PKU.WHXB202011003 |
|
65 |
QianG.;ZhangY.;LiL.;ZhangR.;XuJ.;ChengZ.;XieS.;WangH.;RaoQ.;HeY.;et alEnergy Storage Mater.2020,27,140.
doi: 10.1016/j.ensm.2020.01.027 |
66 |
SeoD.-H.;LeeJ.;UrbanA.;MalikR.;KangS.;CederG.Nat. Chem.2016,8,692.
doi: 10.1038/nchem.2524 |
67 |
LuoK.;RobertsM. R.;HaoR.;GuerriniN.;PickupD. M.;LiuY.-S.;EdströmK.;GuoJ.;ChadwickA. V.;DudaL. C.;et alNat. Chem.2016,8,684.
doi: 10.1038/nchem.2471 |
68 |
SathiyaM.;RousseG.;RameshaK.;LaisaC. P.;VezinH.;SougratiM. T.;DoubletM. L.;FoixD.;GonbeauD.;WalkerW.;et alNat. Mater.2013,12,827.
doi: 10.1038/nmat3699 |
69 |
WuJ.;ZhuoZ.;RongX.;DaiK.;Lebens-HigginsZ.;SallisS.;PanF.;PiperL. F. J.;LiuG.;ChuangY.-D.;et alSci. Adv.2020,6,eaaw3871.
doi: 10.1126/sciadv.aaw3871 |
70 |
XuJ.;SunM.;QiaoR.;RenfrewS. E.;MaL.;WuT.;HwangS.;NordlundD.;SuD.;AmineK.;et alNat. Commun.2018,9,947.
doi: 10.1038/s41467-018-03403-9 |
71 |
ArmstrongA. R.;HolzapfelM.;NovákP.;JohnsonC. S.;KangS.-H.;ThackerayM. M.;BruceP. G.J. Am. Chem. Soc.2006,128,8694.
doi: 10.1021/ja062027+ |
72 |
LiX.;QiaoY.;GuoS.;XuZ.;ZhuH.;ZhangX.;YuanY.;HeP.;IshidaM.;ZhouH.Adv. Mater.2018,30,1705197.
doi: 10.1002/adma.201705197 |
73 |
ZhaoS.;YanK.;ZhangJ.;SunB.;WangG.Angew. Chem. Int. Ed.2021,60,2208.
doi: 10.1002/anie.202000262 |
74 |
LiuT.;LiuJ.;LiL.;YuL.;DiaoJ.;ZhouT.;LiS.;DaiA.;ZhaoW.;XuS.;et alNature2022,606,305.
doi: 10.1038/s41586-022-04689-y |
75 |
HouseR. A.;MarieJ.-J.;Pérez-OsorioM. A.;ReesG. J.;BoivinE.;BruceP. G.Nat. Energy2021,6,781.
doi: 10.1038/s41560-021-00780-2 |
76 |
ZuoC.;HuZ.;QiR.;LiuJ.;LiZ.;LuJ.;DongC.;YangK.;HuangW.;ChenC.;et alAdv. Energy Mater.2020,10,2070141.
doi: 10.1002/aenm.202070141 |
77 |
ManthiramA.;ChemelewskiK.;LeeE.-S.Energy Environ. Sci2014,7,1339.
doi: 10.1039/C3EE42981D |
78 |
AminR.;MuralidharanN.;PetlaR. K.;Ben YahiaH.;Jassim Al-HailS. A.;EssehliR.;DanielC.;KhaleelM. A.;BelharouakI.J. Power Sources2020,467,228318.
doi: 10.1016/j.jpowsour.2020.228318 |
79 |
ManthiramA.;GoodenoughJ. B.Nat. Energy2021,6,844.
doi: 10.1038/s41560-021-00865-y |
80 |
PadhiA. K.;ManivannanV.;GoodenoughJ. B.J. Electrochem. Soc.1998,145,1518.
doi: 10.1149/1.1838513 |
81 |
MarthaS. K.;GrinblatJ.;HaikO.;ZinigradE.;DrezenT.;MinersJ. H.;ExnarI.;KayA.;MarkovskyB.;AurbachD.Angew. Chem. Int. Ed.2009,48,8559.
doi: 10.1002/anie.200903587 |
82 |
KimM.;LeeS.;KangB.Adv. Sci.2016,3,1500366.
doi: 10.1002/advs.201500366 |
83 |
ZhangW.;HuZ.;FanC.;LiuZ.;HanS.;LiuJ.ACS Appl. Mater. Interfaces2021,13,15190.
doi: 10.1021/acsami.0c22958 |
84 |
LanderL.;TarasconJ.-M.;YamadaA.Chem. Rec.2018,18,1394.
doi: 10.1002/tcr.201800071 |
85 |
ZhangL.;TarasconJ.-M.;SougratiM. T.;RousseG.;ChenG.J. Mater. Chem. A2015,3,16988.
doi: 10.1039/C5TA05107J |
86 |
SunM.;RousseG.;AbakumovA. M.;Van TendelooG.;SougratiM.-T.;CourtyM.;DoubletM.-L.;TarasconJ.-M.J. Am. Chem. Soc2014,136,12658.
doi: 10.1021/ja505268y |
87 |
LanY.;YaoW.;HeX.;SongT.;TangY.Angew. Chem. Int. Ed.2020,59,9255.
doi: 10.1002/anie.201915666 |
88 |
LeeY. T.;YoonC. S.;SunY. K.J. Power Sources2005,139,230.
doi: 10.1016/j.jpowsour.2004.06.066 |
89 |
EndoK.;ZhangH. P.;FuL. J.;LeeK. J.;SekineK.;TakamuraT.;JeongY. U.;WuY. P.;HolzeR.;WuH. Q.J. Appl. Electrochem.2006,36,1307.
doi: 10.1007/s10800-006-9177-0 |
90 | ChangC.;ChenW.;ChenY.;ChenY. H.;ChenY.;DingF.;FanC. H.;FanH. J.;FanZ. X.;GongC.;et alActa Phys. -Chim. Sin.2021,37,2108017. |
常诚;陈伟;陈也;陈永华;陈雨;丁峰;樊春海;范红金;范战西;龚成;等.物理化学学报,2021,37,2108017.
doi: 10.3866/PKU.WHXB202108017 |
|
91 |
PanQ.;WangH.;JiangY.J. Mater. Chem.2007,17,329.
doi: 10.1039/b612422d |
92 |
ParkM. S.;KimJ. H.;JoY. N.;OhS. H.;KimH.;KimY. J.J. Mater. Chem.2011,21,17960.
doi: 10.1039/c1jm13158c |
93 |
YoshioM.;WangH.;FukudaK.Angew. Chem. Int. Ed.2010,42,4203.
doi: 10.1002/anie.200351203 |
94 |
ParkY. S.;LeeT. W.;ShinM. S.;LimS. H.;LeeS. M.J. Electrochem. Soc.2016,163,A3078.
doi: 10.1149/2.1161614jes |
95 |
YoshioM.;WangH.;FukudaK.;HaraY.;AdachiY.J. Electrochem. Soc.2000,147,1245.
doi: 10.1149/1.1393344 |
96 |
KaskhedikarN. A.;MaierJ.Adv. Mater.2009,21,2664.
doi: 10.1002/adma.200901079 |
97 |
DahnJ. R.;ZhengT.;LiuY.;XueJ.Science1995,270,590.
doi: 10.1126/science.270.5236.590 |
98 | WangD. J.;WangY. L.;ZhanL.;ZhangX. Y.;LiuC. F.;QiaoW. M.;LingL. C.J. Inorg. Mater.2011,26,619. |
王邓军;王艳莉;詹亮;张秀云;刘春法;乔文明;凌立成.无机材料学报,2011,26,619.
doi: 10.3724/SP.J.1077.2011.00619 |
|
99 |
YazamiR.;ZaghibK.;DeschampsM.J. Power Sources1994,52,55.
doi: 10.1016/0378-7753(94)01933-9 |
100 |
ManevV.;NaidenovI.;PureshevaB.;ZlatilovaP.;PistoiaG.J. Power Sources1995,55,211.
doi: 10.1016/0378-7753(95)02192-J |
101 |
ZhangH.;YangY.;RenD.;WangL.;HeX.Energy Storage Mater.2021,36,147.
doi: 10.1016/j.ensm.2020.12.027 |
102 | XingB. L.;BaoT. A.;LiX. S.;ShiC. L.;GuoH.;WangZ. S.;HouL.;ZhangC. X.;YueZ. H.Mater. Rep.2020,34,15063. |
邢宝林;鲍倜傲;李旭升;史长亮;郭晖;王振帅;侯磊;张传祥;岳志航.材料导报,2020,34,15063.
doi: 10.11896/cldb.19080114 |
|
103 | Liu, X. L.; Song, H. H.; Chen, X. H. Carbon Tech. 2003, No. 5, 27. |
刘先龙, 宋怀河, 陈晓红. 炭素技术, 2003, No. 5, 27. doi: 10.3969/j.issn.1001-3741.2003.05.006 | |
104 |
LiH.;ZhouH.Chem. Commun.2012,48,1201.
doi: 10.1039/c1cc14764a |
105 |
NozakiH.;NagaokaK.;HoshiK.;OhtaN.;InagakiM.J. Power Sources2009,194,486.
doi: 10.1016/j.jpowsour.2009.05.040 |
106 |
LiuS. H.;ZheY.;WangZ. M.;FengL. I.;BaiS.;WenL.;ChengH. M.New Carbon Mater.2008,23,30.
doi: 10.1016/S1872-5805(08)60010-4 |
107 | LiuK.;LiuY.;ZhuH. F.;DongX. L.;WangY. G.;WangC. X.;XiaY. Y.Acta Phys. -Chim. Sin.2020,36,1912030. |
刘昆;刘瑶;朱海峰;董晓丽;王永刚;王丛笑;夏永姚.物理化学学报,2020,36,1912030.
doi: 10.3866/PKU.WHXB201912030 |
|
108 | XieQ. S.;ZhongL.;LiuP.Chin. J. Power Sources2016,40,959. |
谢秋生;仲林;刘萍.电源技术,2016,40,959.
doi: 10.3969/j.issn.1002-087X.2016.05.005 |
|
109 |
LiaoX.;DingZ.;YinZ.Ionics2020,26,5367.
doi: 10.1007/s11581-020-03577-7 |
110 | HeY. D.;LiuH. B.;ShiL.;HongQ.;XiaX. H.;YangL.;ChenH.J. Hunan Univ. (Nat. Sci.)2009,36,44. |
何月德;刘洪波;石磊;洪泉;夏笑虹;杨丽;陈惠.湖南大学学报(自然科学版),2009,36,44. | |
111 |
WuY.-S.;WangY.-H.;LeeY.-H.J. Alloy. Compd2006,426,218.
doi: 10.1016/j.jallcom.2005.11.093 |
112 |
KwonH.-J.;WooS.-W.;LeeY.-J.;KimJ.-Y.;LeeS.-M.Energies2021,14,1946.
doi: 10.3390/en14071946 |
113 | YuZ. H.;WuF.Battery2003,33,342. |
俞政洪;吴锋.电池,2003,33,342. | |
114 |
LeeS.;LeeJ. W.;EomW.;JungY. W.;HanT. H.Appl. Surf. Sci.2020,526,146720.
doi: 10.1016/j.apsusc.2020.146720 |
115 |
CaiK.;LiuY.;LangX.;LiL.;ZhangQ.;XuT.;ChenD.Ionics2020,26,61.
doi: 10.1007/s11581-019-03195-y |
116 |
ChenZ.;LiuY.;ZhangY.;ShenF.;YangG.;WangL.;ZhangX.;HeY.;LuoL.;DengS.Mater. Lett.2018,229,134.
doi: 10.1016/j.matlet.2018.06.104 |
117 | GuoM. C.;MaC.;ZhengH. F.;H.L.;HuB.;LiuR. J.;LiuS. L.Coal Convers.2022,45,65. |
郭明聪;马畅;郑海峰;吕晗;胡博;刘锐剑;刘书林.煤炭转化,2022,45,65.
doi: 10.19726/j.cnki.ebcc.202201008 |
|
118 |
ChengQ.;ZhangY.J. Electrochem. Soc.2018,165,A1104.
doi: 10.1149/2.1171805jes |
119 |
MuY.;HanM.;LiJ.;LiangJ.;YuJ.Carbon2021,173,477.
doi: 10.1016/j.carbon.2020.11.027 |
120 |
KimJ.;JeghanS. M. N.;LeeG.Microporous Mesoporous Mater.2020,305,110325.
doi: 10.1016/j.micromeso.2020.110325 |
121 |
WuX.;YangX.;ZhangF.;CaiL.;ZhangL.;WenZ.Ceram. Int.2017,43,9458.
doi: 10.1016/j.ceramint.2017.04.123 |
122 |
ChenS.;LvL.-P.;XiaoS.;SunW.;LiX.;WangY.Ind. Eng. Chem. Res.2018,57,9420.
doi: 10.1021/acs.iecr.8b01091 |
123 | LiuX. Q.;LiY. H.;ZhangS. N.;YanX. X.;WuM. C.;QiaoY. M.;WangL. J.J. Shanghai Polytech. Univ.2016,33,217. |
刘肖强;李奕怀;张素娜;燕溪溪;吴敏昌;乔永民;王利军.上海第二工业大学学报,2016,33,217. | |
124 |
WuY.;WangL.-Y.;LiY.-F.;ZhaoZ.-Y.;YinL.-W.;LiH.;BaiY.-J. J. Phys. Chem. C2017,121,13052.
doi: 10.1021/acs.jpcc.7b03410 |
125 |
HeM.;ZhouH.;DingG.;ZhangZ.;YeX.;CaiD.;WuM.Carbon2019,146,194.
doi: 10.1016/j.carbon.2019.01.084 |
126 |
ZouL.;KangF.;ZhengY.-P.;ShenW.Electrochim. Acta2009,54,3930.
doi: 10.1016/j.electacta.2009.02.012 |
127 |
ChenK.;YangH.;LiangF.;XueD.ACS Appl. Mater. Interfaces2018,10,909.
doi: 10.1021/acsami.7b16418 |
128 | DiaoY. Q.;ZongJ.;DingF.Chin. J. Power Sources2017,41,837. |
刁玉琦;宗军;丁飞.电源技术,2017,41,837.
doi: 10.3969/j.issn.1002-087X.2017.06.001 |
|
129 |
MaC.-L.;HuZ.-H.;SongN.-J.;ZhaoY.;LiuY.-Z.;WangH.-Q.Rare Met2021,40,837.
doi: 10.1007/s12598-020-01625-9 |
130 |
WuY.-P.;WanC.-R.;JiangC.-Y.;FangS.-B.;JiangY.-Y.Carbon1999,37,1901.
doi: 10.1016/S0008-6223(99)00067-6 |
131 |
MochidaI.;KuC.-H.;YoonS.-H.;KoraiY.J. Power Sources1998,75,214.
doi: 10.1016/S0378-7753(98)00101-3 |
132 |
ImU.-S.;HwangJ. U.;YunJ. H.;AhnW.;KimK. S.;ImJ. S.Mater. Lett.2020,278,128421.
doi: 10.1016/j.matlet.2020.128421 |
133 |
Ein‐EliY.;KochV. R.J. Electrochem. Soc.1997,144,2968.
doi: 10.1149/1.1837945 |
134 |
MaC.;ZhaoY.;LiJ.;SongY.;ShiJ.;GuoQ.;LiuL.Carbon2013,64,553.
doi: 10.1016/j.carbon.2013.07.089 |
135 |
CaiW.;YanC.;YaoY. X.;XuL.;ChenX. R.;HuangJ. Q.;ZhangQ.Angew. Chem. Int. Ed.2021,60,13007.
doi: 10.1002/anie.202102593 |
136 |
ParkK. Y.;LimJ. M.;LuuN. S.;DowningJ. R.;WallaceS. G.;ChaneyL. E.;YooH.;HyunW. J.;KimH. U.;HersamM. C.Adv. Energy Mater.2020,10,2001216.
doi: 10.1002/aenm.202001216 |
137 |
TariqH. A.;NisarU.;AbrahamJ. J.;AhmadZ.;AlQaradawiS.;KahramanR.;ShakoorR.Appl. Surf. Sci.2022,152441.
doi: 10.1016/j.apsusc.2022.152441 |
138 |
ZhongW.;HuangX.;LinY.;CaoY.;WangZ.J. Energy Chem.2021,58,386.
doi: 10.1016/j.jechem.2020.10.013 |
139 |
JiangY.;XieM.;WuF.;YeZ.;ZhangY.;WangZ.;ZhouY.;LiL.;ChenR.Small2021,17,2102893.
doi: 10.1002/smll.202102893 |
140 |
LiuZ.;ZhaoY.;HeR.;LuoW.;MengJ.;YuQ.;ZhaoD.;ZhouL.;MaiL.Energy Storage Mater.2019,19,299.
doi: 10.1016/j.ensm.2018.10.011 |
141 |
ChenJ.;ZhaoH.;LiJ.;QiY.;LiangK.;ZhouL.;HuangX.;RenY.Ceram. Int.2022,48,11257.
doi: 10.1016/j.ceramint.2021.12.346 |
142 |
YanY.;LiuY.;ZhangY.;QinC.;YuH.;BakenovZ.;WangZ.J. Colloid Interface Sci.2021,602,563.
doi: 10.1016/j.jcis.2021.06.046 |
143 |
DubeyR. J. C.;SasikumarP. V. W.;KrumeichF.;BluganG.;KueblerJ.;KravchykK. V.;GrauleT.;KovalenkoM. V.Adv. Sci.2019,6,1901220.
doi: 10.1002/advs.201901220 |
144 |
ZhangY.;ZhangS.;CaoY.;WangH.;SunJ.;LiuC.;HanX.;LiuS.;YangZ.;SunJ.Nano Lett.2022,22,1795.
doi: 10.1021/acs.nanolett.1c04238 |
145 |
HanX.;LiX.;ZhangY.;ZhangS.;SunJ.Adv. Funct. Mater.2022,32,2111074.
doi: 10.1002/adfm.202111074 |
146 |
XuK.Chem. Rev.2004,104,4303.
doi: 10.1021/cr030203g |
147 |
WangY.;NakamuraS.;UeM.;BalbuenaP. B.J. Am. Chem. Soc.2001,123,11708.
doi: 10.1021/ja0164529 |
148 |
TaoH.;ZhouM.;WangR.;WangK.;ChengS.;JiangK.Adv. Sci.2018,5,1801021.
doi: 10.1002/advs.201801021 |
149 |
ChenX.;LiH. R.;ShenX.;ZhangQ.Angew. Chem. Int. Ed.2018,57,16643.
doi: 10.1002/anie.201809203 |
150 |
XuK.Nat. Energy2021,6,763.
doi: 10.1038/s41560-021-00841-6 |
151 |
NajiA.;GhanbajaJ.;WillmannP.;BillaudD.Electrochim. Acta2000,45,1893.
doi: 10.1016/S0013-4686(99)00410-7 |
152 |
LiuX.;ShenX.;LiH.;LiP.;LuoL.;FanH.;FengX.;ChenW.;AiX.;YangH.Adv. Energy Mater.2021,11,2003905.
doi: 10.1002/aenm.202003905 |
153 |
JanssenP.;SchmitzR.;MüllerR.;IskenP.;Lex-BalducciA.;SchreinerC.;WinterM.;Cekić-LaskovićI.;SchmitzR.Electrochim. Acta2014,125,101.
doi: 10.1016/j.electacta.2014.01.023 |
154 |
XiaJ.;SinhaN. N.;ChenL. P.;DahnJ. R.J. Electrochem. Soc.2014,161,A264.
doi: 10.1149/2.015403jes |
155 | Fujimoto, M.; Yoshinaga, N.; Ueno, K. Li-ion Secondary Batteries. Jpn. Pat. 3229635, 1991. |
156 |
LiQ.;LiuG.;ChengH.;SunQ.;ZhangJ.;MingJ.Chem. A Eur. J.2021,27,15842.
doi: 10.1002/chem.202101407 |
157 |
PrabhuP. V. S. S.;Prem KumarT.;NamboodiriP. N. N.;GangadharanR.J. Appl. Electrochem.1993,23,151.
doi: 10.1007/BF00246952 |
158 |
FongR.;von SackenU.;DahnJ. R.J. Electrochem. Soc.1990,137,2009.
doi: 10.1149/1.2086855 |
159 |
KangS.-J.;ParkK.;ParkS.-H.;LeeH.Electrochim. Acta2018,259,949.
doi: 10.1016/j.electacta.2017.11.018 |
160 |
ZouY.;CaoZ.;ZhangJ.;WahyudiW.;WuY.;LiuG.;LiQ.;ChengH.;ZhangD.;ParkG. T.Adv. Mater.2021,33,2102964.
doi: 10.1002/adma.202102964 |
161 |
WangY.;NakamuraS.;TasakiK.;BalbuenaP. B.J. Am. Chem. Soc.2002,124,4408.
doi: 10.1021/ja017073i |
162 |
ZhengJ.;LochalaJ. A.;KwokA.;DengZ. D.;XiaoJ.Adv. Sci.2017,4,1700032.
doi: 10.1002/advs.201700032 |
163 |
ChenS.;ZhengJ.;MeiD.;HanK. S.;EngelhardM. H.;ZhaoW.;XuW.;LiuJ.;ZhangJ. G.Adv. Mater.2018,30,1706102.
doi: 10.1002/adma.201706102 |
164 |
SongW.;HarlowJ.;LoganE.;HebeckerH.;CoonM.;MolinoL.;JohnsonM.;DahnJ.;MetzgerM.J. Electrochem. Soc.2021,168,090503.
doi: 10.1149/1945-7111/ac1e55 |
165 |
JiangL. L.;YanC.;YaoY. X.;CaiW.;HuangJ. Q.;ZhangQ.Angew. Chem. Int. Ed.2021,60,3402.
doi: 10.1002/anie.202009738 |
166 |
ChengH.;SunQ.;LiL.;ZouY.;WangY.;CaiT.;ZhaoF.;LiuG.;MaZ.;WahyudiW.ACS Energy Lett.2022,7,490.
doi: 10.1021/acsenergylett.1c02425 |
167 |
MingJ.;CaoZ.;WuY.;WahyudiW.;WangW.;GuoX.;CavalloL.;HwangJ.-Y.;ShamimA.;LiL.-J.ACS Energy Lett2019,4,2613.
doi: 10.1021/acsenergylett.9b01441 |
168 |
WangA.;KadamS.;LiH.;ShiS.;QiY.NPG Comput. Mater.2018,4,1.
doi: 10.1038/s41524-018-0064-0 |
169 |
MingJ.;CaoZ.;LiQ.;WahyudiW.;WangW.;CavalloL.;ParkK.-J.;SunY.-K.;AlshareefH. N.ACS Energy Lett.2019,4,1584.
doi: 10.1021/acsenergylett.9b00822 |
170 |
QuartaroneE.;MustarelliP.Chem. Soc. Rev.2011,40,2525.
doi: 10.1039/c0cs00081g |
171 |
FentonD. E.;ParkerJ. M.;WrightP. V.Polymer1973,14,589.
doi: 10.1016/0032-3861(73)90146-8 |
172 |
LiS.;ZhangS. Q.;ShenL.;LiuQ.;MaJ. B.;LvW.;HeY. B.;YangQ. H.Adv. Sci.2020,7,1903088.
doi: 10.1002/advs.201903088 |
173 |
LongL.;WangS.;XiaoM.;MengY.J. Mater. Chem. A2016,4,10038.
doi: 10.1039/c6ta02621d |
174 |
HuangY.-F.;GuT.;RuiG.;ShiP.;FuW.;ChenL.;LiuX.;ZengJ.;KangB.;YanZ.;et alEnergy Environ. Sci.2021,14,6021.
doi: 10.1039/d1ee02663a |
175 |
ChengS. H.-S.;LiuC.;ZhuF.;ZhaoL.;FanR.;ChungC.-Y.;TangJ.;ZengX.;HeY.-B.Nano Energy2021,80,105562.
doi: 10.1016/j.nanoen.2020.105562 |
176 |
MiJ.;MaJ.;ChenL.;LaiC.;YangK.;BiaoJ.;XiaH.;SongX.;LvW.;ZhongG.;et alEnergy Storage Mater.2022,48,375.
doi: 10.1016/j.ensm.2022.02.048 |
177 |
HaoX.;ZhaoQ.;SuS.;ZhangS.;MaJ.;ShenL.;YuQ.;ZhaoL.;LiuY.;KangF.;et alAdv. Energy Mater.2019,9,1901604.
doi: 10.1002/aenm.201901604 |
178 |
ShiK.;WanZ.;YangL.;ZhangY.;HuangY.;SuS.;XiaH.;JiangK.;ShenL.;HuY.;et alAngew. Chem. Int. Ed.2020,59,11784.
doi: 10.1002/anie.202000547 |
179 |
LiangJ.;ChenN.;LiX.;LiX.;AdairK. R.;LiJ.;WangC.;YuC.;Norouzi BanisM.;ZhangL.;et alChem. Mater.2020,32,2664.
doi: 10.1021/acs.chemmater.9b04764 |
180 |
LuP.;LiuL.;WangS.;XuJ.;PengJ.;YanW.;WangQ.;LiH.;ChenL.;WuF.Adv. Mater.2021,33,2100921.
doi: 10.1002/adma.202100921 |
181 |
LiangJ.;LiX.;WangS.;AdairK. R.;LiW.;ZhaoY.;WangC.;HuY.;ZhangL.;ZhaoS.;et alJ. Am. Chem. Soc.2020,142,7012.
doi: 10.1021/jacs.0c00134 |
182 |
LiX.;LiangJ.;ChenN.;LuoJ.;AdairK. R.;WangC.;BanisM. N.;ShamT.-K.;ZhangL.;ZhaoS.;et alAngew. Chem. Int. Ed.2019,58,16427.
doi: 10.1002/anie.201909805 |
183 |
ZhouD.;LiuR.;HeY.-B.;LiF.;LiuM.;LiB.;YangQ.-H.;CaiQ.;KangF.Adv. Energy Mater.2016,6,1502214.
doi: 10.1002/aenm.201502214 |
184 |
PopovicJ.;HasegawaG.;MoudrakovskiI.;MaierJ.J. Mater. Chem. A2016,4,7135.
doi: 10.1039/c6ta01826b |
185 |
SolarajanA. K.;MurugadossV.;AngaiahS.Sci. Rep.2017,7,45390.
doi: 10.1038/srep45390 |
186 |
ZhuQ.;WangX.;MillerJ. D.ACS Appl. Mater. Interfaces2019,11,8954.
doi: 10.1021/acsami.8b13735 |
187 |
AngulakshmiN.;KarG. P.;BoseS.;GowdE. B.;ThomasS.;StephanA. M.Mater. Chem. Front.2017,1,269.
doi: 10.1039/c6qm00098c |
188 |
YangK.;ChenL.;MaJ.;LaiC.;HuangY.;MiJ.;BiaoJ.;ZhangD.;ShiP.;XiaH.;et alAngew. Chem. Int. Ed.2021,60,24668.
doi: 10.1002/anie.202110917 |
189 |
LiuS.;ZhouL.;HanJ.;WenK.;GuanS.;XueC.;ZhangZ.;XuB.;LinY.;ShenY.;et alAdv. Energy Mater.2022,12,2200660.
doi: 10.1002/aenm.202200660 |
190 |
ZhongS.;YuanB.;GuangZ.;ChenD.;LiQ.;DongL.;JiY.;DongY.;HanJ.;HeW.Energy Storage Mater.2021,41,805.
doi: 10.1016/j.ensm.2021.07.028 |
191 |
DeimedeV.;ElmasidesC.Energy Technol.2015,3,453.
doi: 10.1002/ente.201402215 |
192 |
LeeH.;YanilmazM.;ToprakciO.;FuK.;ZhangX.Energy Environ. Sci.2014,7,3857.
doi: 10.1039/c4ee01432d |
193 |
ZhangS. S.J. Power Sources2007,164,351.
doi: 10.1016/j.jpowsour.2006.10.065 |
194 |
AroraP.;ZhangZ.Chem. Rev.2004,104,4419.
doi: 10.1021/cr020738u |
195 |
ShengL.;WangQ.;LiuX.;CuiH.;WangX.;XuY.;LiZ.;WangL.;ChenZ.;XuG.-L.;et alNat. Commun.2022,13,172.
doi: 10.1038/s41467-021-27841-0 |
196 |
RothE. P.;DoughtyD. H.;PileD. L.J. Power Sources2007,174,579.
doi: 10.1016/j.jpowsour.2007.06.163 |
197 |
JeongH.-S.;HongS. C.;LeeS.-Y.J. Membr. Sci2010,364,177.
doi: 10.1016/j.memsci.2010.08.012 |
198 |
WangC.;WuD.Energy Storage Sci. Technol.2016,5,120.
doi: 10.3969/j.issn.2095-4239.2016.02.002 |
199 |
XiaoW.;GongY.;WangH.;ZhaoL.;LiuJ.;YanC.Energy Storage Sci. Technol.2016,5,188.
doi: 10.3969/j.issn.2095-4239.2016.02.010 |
200 |
KimM.;ParkJ. H.Adv. Energy Mater.2013,3,1417.
doi: 10.1002/aenm.201300235 |
201 |
WangH.;PanL.;WuC.;GaoD.;ChenS.;LiL.J. Mater. Chem. A2015,3,20535.
doi: 10.1039/c5ta06381g |
202 |
LiaoY.;SunC.;HuS.;LiW.Electrochim. Acta2013,89,461.
doi: 10.1016/j.electacta.2012.11.095 |
203 |
JeongH.-S.;LeeS.-Y. J.Power Sources2011,196,6716.
doi: 10.1016/j.jpowsour.2010.11.037 |
204 |
KimK. M.;LatifatuM.;LeeY.-G.;KoJ. M.;KimJ. H.;ChoW. I.J. Electroceram.2014,32,146.
doi: 10.1007/s10832-013-9860-6 |
205 |
YangC.;TongH.;LuoC.;YuanS.;ChenG.;YangY.J. Power Sources2017,348,80.
doi: 10.1016/j.jpowsour.2017.02.078 |
206 |
GhaziZ. A.;HeX.;KhattakA. M.;KhanN. A.;LiangB.;IqbalA.;WangJ.;SinH.;LiL.;TangZ.Adv. Mater.2017,29,1606817.
doi: 10.1002/adma.201606817 |
207 |
YimT.;HanS. H.;ParkN. H.;ParkM. S.;LeeJ. H.;ShinJ.;ChoiJ. W.;JungY.;JoY. N.;YuJ. S.Adv. Funct. Mater.2016,26,7817.
doi: 10.1002/adfm.201602498 |
208 | ZhangP.;ShiC.;YangP. T.;ChenL. X.;ZhaoJ. B.Chin. Sci. Bull.2013,58,3124. |
张鹏;石川;杨娉婷;陈丽肖;赵金保.科学通报,2013,58,3124.
doi: 10.1360/972013-767 |
|
209 |
ChangZ.;QiaoY.;WangJ.;DengH.;HeP.;ZhouH.Energy Storage Mater.2020,25,164.
doi: 10.1016/j.ensm.2019.10.018 |
210 |
BaiS.;LiuX.;ZhuK.;WuS.;ZhouH.Nat. Energy2016,1,16094.
doi: 10.1038/NENERGY.2016.94 |
211 |
ChungS. H.;HanP.;SinghalR.;KalraV.;ManthiramA.Adv. Energy Mater.2015,5,1500738.
doi: 10.1002/aenm.201500738 |
212 |
ChungS. H.;ManthiramA.Adv. Mater.2014,26,7352.
doi: 10.1002/adma.201402893 |
213 |
SuY.-S.;ManthiramA.Nat. Commun.2012,3,1166.
doi: 10.1038/ncomms2163 |
214 |
PeiF.;LinL.;FuA.;MoS.;OuD.;FangX.;ZhengN.Joule2018,2,323.
doi: 10.1016/j.joule.2017.12.003 |
215 |
ChangZ.;QiaoY.;YangH.;CaoX.;ZhuX.;HeP.;ZhouH.Angew. Chem. Int. Ed.2021,60,15572.
doi: 10.1002/anie.202104124 |
216 |
YanilmazM.;LuY.;ZhuJ.;ZhangX.J. Power Sources2016,313,205.
doi: 10.1016/j.jpowsour.2016.02.089 |
217 |
LiuK.;LiuW.;QiuY.;KongB.;SunY.;ChenZ.;ZhuoD.;LinD.;CuiY.Sci. Adv.2017,3,e1601978.
doi: 10.1126/sciadv.1601978 |
218 |
ChenH.;LingM.;HenczL.;LingH. Y.;LiG.;LinZ.;LiuG.;ZhangS.Chem. Rev.2018,118,8936.
doi: 10.1021/acs.chemrev.8b00241 |
219 |
ZhangH.;EshetuG. G.;JudezX.;LiC.;Rodriguez-MartínezL. M.;ArmandM.Angew. Chem. Int. Ed.2018,57,15002.
doi: 10.1002/anie.201712702 |
220 |
ZhaoY.;LiangZ.;KangY.;ZhouY.;LiY.;HeX.;WangL.;MaiW.;WangX.;ZhouG.;et alEnergy Storage Mater.2021,35,353.
doi: 10.1016/j.ensm.2020.11.021 |
221 |
ChoiS.;KwonT.-W.;CoskunA.;ChoiJ. W.Science2017,357,279.
doi: 10.1126/science.aal4373 |
222 |
LiuT.;ChuQ.;YanC.;ZhangS.;LinZ.;LuJ.Adv. Energy Mater.2019,9,1802645.
doi: 10.1002/aenm.201802645 |
223 |
DongT.;MuP.;ZhangS.;ZhangH.;LiuW.;CuiG.Electrochem. Energy Rev.2021,4,545.
doi: 10.1007/s41918-021-00102-w |
224 |
MuP.;ZhangH.;JiangH.;DongT.;ZhangS.;WangC.;LiJ.;MaY.;DongS.;CuiG.J. Am. Chem. Soc.2021,143,18041.
doi: 10.1021/jacs.1c06003 |
225 |
ChenH.;HuQ.;HuangZ.;HeZ.;WangZ.;GuoH.;LiX.Ceram. Int.2016,42,263.
doi: 10.1016/j.ceramint.2015.08.104 |
226 |
HenczL.;ChenH.;LingH. Y.;WangY.;LaiC.;ZhaoH.;ZhangS.Nano-Micro Lett.2019,11,17.
doi: 10.1007/s40820-019-0249-1 |
227 |
LestriezB.C. R. Chim.2010,13,1341.
doi: 10.1016/j.crci.2010.01.018 |
228 |
ZhangS. S.J. Power Sources2006,162,1379.
doi: 10.1016/j.jpowsour.2006.07.074 |
229 |
BiY.;TaoJ.;WuY.;LiL.;XuY.;HuE.;WuB.;HuJ.;WangC.;ZhangJ.-G.;et alScience2020,370,1313.
doi: 10.1126/science.abc3167 |
230 |
ChenH.;HuQ.;PengW.;GuoH.;YanG.;WuX.Ceram. Int.2017,43,10919.
doi: 10.1016/j.ceramint.2017.05.129 |
231 |
ChenH.;HeZ.;HuangZ.;SongL.;ShenC.;LiuJ.Ceram. Int.2017,43,8616.
doi: 10.1016/j.ceramint.2017.03.175 |
232 |
LudwigJ.;NilgesT.J. Power Sources2018,382,101.
doi: 10.1016/j.jpowsour.2018.02.038 |
233 |
PieczonkaN. P. W.;LiuZ.;LuP.;OlsonK. L.;MooteJ.;PowellB. R.;KimJ.-H.J. Phys. Chem. C2013,117,15947.
doi: 10.1021/jp405158m |
234 |
XiaoB.;SunX.Adv. Energy Mater.2018,8,1802057.
doi: 10.1002/aenm.201802057 |
235 |
YabuuchiN.;KinoshitaY.;MisakiK.;MatsuyamaT.;KomabaS.J. Electrochem. Soc.2015,162,A538.
doi: 10.1149/2.0151504jes |
236 |
ChouW.-Y.;JinY.-C.;DuhJ.-G.;LuC.-Z.;LiaoS.-C.Appl. Surf. Sci2015,355,1272.
doi: 10.1016/j.apsusc.2015.08.046 |
237 |
MaY.;ChenK.;MaJ.;XuG. J.;DongS. M.;ChenB. B.;LiJ. D.;ChenZ.;ZhouX. H.;CuiG. L.Energy Environ. Sci.2019,12,273.
doi: 10.1039/c8ee02555j |
238 |
LingH. Y.;ChenH.;WuZ. Z.;HenczL.;QianS. S.;LiuX. H.;LiuT. F.;ZhangS. Q.Mater. Chem. Front.2021,5,5932.
doi: 10.1039/d1qm00255d |
239 |
ChenS.;SongZ.;WangL.;ChenH.;ZhangS.;PanF.;YangL.Acc. Chem. Res.2022,55,2088.
doi: 10.1021/acs.accounts.2c00259 |
240 |
KovalenkoI.;ZdyrkoB.;MagasinskiA.;HertzbergB.;MilicevZ.;BurtovyyR.;LuzinovI.;YushinG.Science2011,334,75.
doi: 10.1126/science.1209150 |
241 |
ChenS.;LingH. Y.;ChenH.;ZhangS. Q.;DuA. J.;YanC.J. Power Sources2020,450,227671.
doi: 10.1016/j.jpowsour.2019.227671 |
242 |
LingM.;XuY.;ZhaoH.;GuX.;QiuJ.;LiS.;WuM.;SongX.;YanC.;LiuG.;et alNano Energy2015,12,178.
doi: 10.1016/j.nanoen.2014.12.011 |
243 |
HenczL.;ChenH.;WuZ.;GuX.;LiM.;TianY.;ChenS.;YanC.;BatiA. S. R.;ShapterJ. G.;et alGreen Energy Environ.2022,7,1206.
doi: 10.1016/j.gee.2021.01.014 |
244 |
ChenH.;WuZ. Z.;SuZ.;ChenS.;YanC.;Al-MamunM.;TangY. B.;ZhangS. Q.Nano Energy2021,81,105654.
doi: 10.1016/j.nanoen.2020.105654 |
245 |
LingH. Y.;LaiC.;WangC. R.;SuZ.;ChenH.;QianS. S.;ZhangS. Q.;ChenS.;YanC.;LiD. S.;et alEnergy Environ. Mater.2021,4,263.
doi: 10.1002/eem2.12143 |
246 |
HenczL.;ChenH.;WuZ.;QianS.;ChenS.;GuX.;LiuX.;YanC.;ZhangS.Exploration2022,2,20210131.
doi: 10.1002/EXP.20210131 |
247 |
LingH. Y.;HenczL.;ChenH.;WuZ. Z.;SuZ.;ChenS.;YanC.;LaiC.;LiuX. H.;ZhangS. Q.Sustain. Mater. Technol.2021,28,e00283.
doi: 10.1016/j.susmat.2021.e00283 |
248 |
ChenH.;WuZ. Z.;SuZ.;HenczL.;ChenS.;YanC.;ZhangS. Q.J. Energy Chem.2021,62,127.
doi: 10.1016/j.jechem.2021.03.015 |
249 |
ChenH. W.;WangC. H.;DaiY. F.;GeJ.;LuW.;YangJ. L.;ChenL. W.Nano Energy2016,26,43.
doi: 10.1016/j.nanoen.2016.04.052 |
250 |
YangX.;WangC.;YanP.;JiaoT.;HaoJ.;JiangY.;RenF.;ZhangW.;ZhengJ.;ChengY.;et alAdv. Energy Mater.2022,12,2200197.
doi: 10.1002/aenm.202200197 |
251 |
HuangT.;ZhengX.;WuM.;WangW.;PanY.;FangG.J. Power Sources2016,318,264.
doi: 10.1016/j.jpowsour.2016.04.028 |
252 |
LeeH. J.;BrownZ.;ZhaoY.;FawdonJ.;SongW.;LeeJ. H.;IhliJ.;PastaM.Chem. Mater.2021,33,1238.
doi: 10.1021/acs.chemmater.0c04014 |
253 |
ZhangY.;WuY.;LiH.;ChenJ.;LeiD.;WangC.Nat. Commun.2022,13,1297.
doi: 10.1038/s41467-022-28959-5 |
254 |
ChenR.;LiuF.;ChenY.;YeY.;HuangY.;WuF.;LiL.J. Power Sources2016,306,70.
doi: 10.1016/j.jpowsour.2015.10.105 |
255 |
LiaoX.;HuangQ.;MaiS.;WangX.;XuM.;XingL.;LiaoY.;LiW.J. Power Sources2014,272,501.
doi: 10.1016/j.jpowsour.2014.08.117 |
256 |
LiL.;DaiH.;WangC.Nano Select2021,2,16.
doi: 10.1002/nano.202000164 |
257 |
DaiH.;DongJ.;WuM.;HuQ.;WangD.;ZuinL.;ChenN.;LaiC.;ZhangG.;SunS.Angew. Chem. Int. Ed.2021,60,19852.
doi: 10.1002/anie.202106027 |
258 |
YangY.;XiongJ.;LaiS.;ZhouR.;ZhaoM.;GengH.;ZhangY.;FangY.;LiC.;ZhaoJ.ACS Appl. Mater. Interfaces2019,11,6118.
doi: 10.1021/acsami.8b20706 |
259 |
ChoiN.-S.;YewK. H.;LeeK. Y.;SungM.;KimH.;KimS.-S. J. Power Sources2006,161,1254.
doi: 10.1016/j.jpowsour.2006.05.049 |
260 |
LvR.;YangJ.;WangJ.;NuLiY.J. Power Sources2011,196,3868.
doi: 10.1016/j.jpowsour.2010.12.101 |
261 |
KhasanovM.;PazhetnovE.;ShinW. C.J. Electrochem. Soc.2015,162,A1892.
doi: 10.1149/2.0901509jes |
262 |
ZhangJ.;ShkrobI. A.;AssaryR. S.;ClarkR. J.;WilsonR. E.;JiangS.;MeisnerQ. J.;ZhuL.;HuB.;ZhangL.Mater. Today Energy2019,13,308.
doi: 10.1016/j.mtener.2019.06.003 |
263 |
XiangH. F.;XuH. Y.;WangZ. Z.;ChenC. H.J. Power Sources2007,173,562.
doi: 10.1016/j.jpowsour.2007.05.001 |
264 |
JinS.;JiangY.;JiH.;YuY.Adv. Mater.2018,30,1802014.
doi: 10.1002/adma.201802014 |
265 |
ChenS.;XinY.;ZhouY.;MaY.;ZhouH.;QiL.Energy Environ. Sci.2014,7,1924.
doi: 10.1039/c3ee42646g |
266 |
VargheseB.;ReddyM. V.;YanwuZ.;LitC. S.;HoongT. C.;Subba RaoG. V.;ChowdariB. V. R.;WeeA. T. S.;LimC. T.;SowC.-H.Chem. Mater2008,20,3360.
doi: 10.1021/cm703512k |
267 |
LiX.;QiaoL.;LiD.;WangX.;XieW.;HeD.J. Mater. Chem. A2013,1,6400.
doi: 10.1039/c3ta10821j |
268 |
ZhuP.;GastolD.;MarshallJ.;SommervilleR.;GoodshipV.;KendrickE.J. Power Sources2021,485,229321.
doi: 10.1016/j.jpowsour.2020.229321 |
269 |
StriebelK.;ShimJ.;SierraA.;YangH.;SongX.;KosteckiR.;McCarthyK.J. Power Sources2005,146,33.
doi: 10.1016/j.jpowsour.2005.03.119 |
270 |
JohnsonB. A.;WhiteR. E.J. Power Sources1998,70,48.
doi: 10.1016/S0378-7753(97)02659-1 |
271 |
LuL.-L.;GeJ.;YangJ.-N.;ChenS.-M.;YaoH.-B.;ZhouF.;YuS.-H.Nano Lett2016,16,4431.
doi: 10.1021/acs.nanolett.6b01581 |
272 |
YangC.-P.;YinY.-X.;ZhangS.-F.;LiN.-W.;GuoY.-G.Nat. Commun2015,6,8058.
doi: 10.1038/ncomms9058 |
273 |
YeY.;ChouL.-Y.;LiuY.;WangH.;LeeH. K.;HuangW.;WanJ.;LiuK.;ZhouG.;YangY.Nat. Energy2020,5,786.
doi: 10.1038/s41560-020-00702-8 |
274 |
PhamM. T.;DarstJ. J.;WalkerW. Q.;HeenanT. M.;PatelD.;IacovielloF.;RackA.;OlbinadoM. P.;HindsG.;BrettD. J.Cell Rep. Phys. Sci.2021,2,100360.
doi: 10.1016/j.xcrp.2021.100360 |
275 | WangR.;LiuZ.;YanC.;QieL.;HuangY.Acta Phys. -Chim. Sin.2023,39,2203043. |
汪茹;刘志康;严超;伽龙;黄云辉.物理化学学报,2023,39,2203043.
doi: 10.3866/PKU.WHXB202203043 |
|
276 | Wu, M. Z.; Zhu, Z. L.; Huang, Y. H.; Qie, L.; Zeng, X. P.; Jiao, X. P. Flexible Conductive Film and Preparation Method Thereof. CN Patent 112435776B, 2020-09-08. |
吴明忠, 朱正录, 黄云辉, 伽龙, 曾祥平, 焦鑫鹏. 一种柔性导电薄膜及其制备方法: 中国, CN112435776B. [P]. 2020-09-08. | |
277 | Huang, Y. H.; Qie, L.; Yan, C. Ear-Free Cylindrical Battery and Preparation Method Thereof. CN Patent 112928281B, 2021-03-23. |
黄云辉, 伽龙, 严超. 一种无极耳圆柱电池极其制备方法: 中国, CN112928281B. [P]. 2021-03-23. | |
278 | Lithium-ion Battery Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2018–2023. https://www.businesswire.com/news/home/20181105005693/en/Lithium-ion-Battery-Market-Global-Industry-Trends-Share (accessed 2022-06-01). |
279 |
JungJ. C.-Y.;SuiP.-C.;ZhangJ.J. Energy Storage2021,35,102217.
doi: 10.1016/j.est.2020.102217 |
280 |
MayyasA.;StewardD.;MannM.Sustain. Mater. Technol.2019,19,e00087.
doi: 10.1016/j.susmat.2018.e00087 |
281 |
FanE.;LiL.;WangZ.;LinJ.;HuangY.;YaoY.;ChenR.;WuF.Chem. Rev.2020,120,7020.
doi: 10.1021/acs.chemrev.9b00535 |
282 |
BaiY.;MuralidharanN.;SunY.-K.;PasseriniS.;WhittinghamM. S.;BelharouakI.Mater. Today2020,41,304.
doi: 10.1016/j.mattod.2020.09.001 |
283 |
HarperG.;SommervilleR.;KendrickE.;DriscollL.;SlaterP.;StolkinR.;WaltonA.;ChristensenP.;HeidrichO.;LambertS.Nature2019,575,75.
doi: 10.1038/s41586-019-1682-5 |
284 |
ChenM.;MaX.;ChenB.;ArsenaultR.;KarlsonP.;SimonN.;WangY.Joule2019,3,2622.
doi: 10.1016/j.joule.2019.09.014 |
285 |
MengX.;HaoJ.;CaoH.;LinX.;NingP.;ZhengX.;ChangJ.;ZhangX.;WangB.;SunZ.Waste Manag.2019,84,54.
doi: 10.1016/j.wasman.2018.11.034 |
286 |
LiJ.;HuL.;ZhouH.;WangL.;ZhaiB.;YangS.;MengP.;HuR.J. Mater. Sci.-Mater. Electron.2018,29,17661.
doi: 10.1007/s10854-018-9870-x |
287 |
JiangZ.;SunJ.;JiaP.;WangW.;SongZ.;ZhaoX.;MaoY.Sustain. Energy Fuels2022,6,2207.
doi: 10.1039/D1SE01750K |
288 |
WangJ.;ZhangQ.;ShengJ.;LiangZ.;MaJ.;ChenY.;ZhouG.;ChengH.-M.Natl. Sci. Rev2022,9,nwac097.
doi: 10.1093/nsr/nwac097 |
289 |
ShiY.;ZhangM.;MengY. S.;ChenZ.Adv. Energy Mater.2019,9,1900454.
doi: 10.1002/aenm.201900454 |
290 |
JiangG.;ZhangY.;MengQ.;ZhangY.;DongP.;ZhangM.;YangX.ACS Sustain. Chem. Eng.2020,8,18138.
doi: 10.1021/acssuschemeng.0c06514 |
291 |
ZhangL.;XuZ.;HeZ.ACS Sustain. Chem. Eng.2020,8,11596.
doi: 10.1021/acssuschemeng.0c02854 |
292 |
LiW.;EricksonE. M.;ManthiramA.Nat. Energy2020,5,26.
doi: 10.1038/s41560-019-0513-0 |
293 |
MoJ. Y.;JeonW.Sustainability2018,10,2870.
doi: 10.3390/su10082870 |
294 | Jacoby, M. It's time to get serious about recycling lithium-ion batteries. https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28. (accessed 2022-06-23). |
295 |
NatarajanS.;AravindanV.Adv. Energy Mater.2020,10,2002238.
doi: 10.1002/aenm.202002238 |
296 |
ZhaoY.;KangY.;FanM.;LiT.;WoznyJ.;ZhouY.;WangX.;ChuehY.-L.;LiangZ.;ZhouG.;et alEnergy Storage Mater.2022,45,1092.
doi: 10.1016/j.ensm.2021.11.005 |
297 |
ZhangJ. K.;YuL.;LinZ. P.;XieP. R.;LuH. Y.;XuJ. T.Chem. Eng. J.2022,436,135011.
doi: 10.1016/j.cej.2022.135011 |
298 |
WangH.;HuangY.;HuangC.;WangX.;WangK.;ChenH.;LiuS.;WuY.;XuK.;LiW.Electrochim. Acta2019,313,423.
doi: 10.1016/j.electacta.2019.05.050 |
299 |
MaZ.;ZhuangY.;DengY.;SongX.;ZuoX.;XiaoX.;NanJ.J. Power Sources2018,376,91.
doi: 10.1016/j.jpowsour.2017.11.038 |
300 |
GaoY.;ZhangJ. L.;ChenY. Q.;WangC. Y.Surf. Interfaces2021,24,101089.
doi: 10.1016/j.surfin.2021.101089 |
301 |
LiuJ.;ShiH.;HuX.;GengY.;YangL.;ShaoP.;LuoX.Sci. Total Environ.2022,816,151621.
doi: 10.1016/j.scitotenv.2021.151621 |
302 |
LiangH.-J.;HouB.-H.;LiW.-H.;NingQ.-L.;YangX.;GuZ.-Y.;NieX.-J.;WangG.;WuX.-L.Energy Environ. Sci2019,12,3575.
doi: 10.1039/C9EE02759A |
303 |
ZhangY.;SongN.;HeJ.;ChenR.;LiX.Nano Lett.2019,19,512.
doi: 10.1021/acs.nanolett.8b04410 |
304 |
AllenM. J.;TungV. C.;KanerR. B.Chem. Rev.2010,110,132.
doi: 10.1021/cr900070d |
305 |
LeiY.;ZhangJ. K.;ChenX. H.;MinW. L.;WangR.;YanM.;XuJ. T.Mater. Today Energy2022,26,100997.
doi: 10.1016/j.mtener.2022.100997 |
306 |
ZhangY.;GuoX.;WuF.;YaoY.;YuanY.;BiX.;LuoX.;Shahbazian-YassarR.;ZhangC.;AmineK.ACS Appl. Mater. Interfaces2016,8,21315.
doi: 10.1021/acsami.6b05458 |
307 |
ZhaoT.;YaoY.;WangM.;ChenR.;YuY.;WuF.;ZhangC.ACS Appl. Mater. Interfaces2017,9,25369.
doi: 10.1021/acsami.7b07882 |
308 |
NatarajanS.;BajajH. C.;AravindanV.J. Mater. Chem. A2019,7,3244.
doi: 10.1039/C8TA11521D |
309 |
NatarajanS.;BajajH. C.J. Environ. Chem. Eng.2016,4,4631.
doi: 10.1016/j.jece.2016.10.024 |
310 |
CaoZ.;ZhengX.;CaoH.;ZhaoH.;SunZ.;GuoZ.;WangK.;ZhouB.Chem. Eng. J.2018,337,256.
doi: 10.1016/j.cej.2017.12.104 |
311 |
WangY.;CaoH.;ChenL.;ChenC.;DuanX.;XieY.;SongW.;SunH.;WangS.Appl. Catal. B: Environ.2018,229,71.
doi: 10.1016/j.apcatb.2018.02.010 |
312 |
WangG.;YuM.;FengX.Chem. Soc. Rev.2021,50,2388.
doi: 10.1039/d0cs00187b |
313 |
HouH.;BanksC. E.;JingM.;ZhangY.;JiX.Adv. Mater.2015,27,7861.
doi: 10.1002/adma.201503816 |
314 |
WangW.;LiuY.;WuX.;WangJ.;FuL.;ZhuY.;WuY.;LiuX.Adv. Mater. Technol.2018,3,1800004.
doi: 10.1002/admt.201800004 |
315 |
WuC.;HuaW.;ZhangZ.;ZhongB.;YangZ.;FengG.;XiangW.;WuZ.;GuoX.Adv. Sci.2018,5,1800519.
doi: 10.1002/advs.201800519 |
316 |
CaoK.;JiaoL.;PangW. K.;LiuH.;ZhouT.;GuoZ.;WangY.;YuanH.Small2016,12,2991.
doi: 10.1002/smll.201600845 |
317 |
JacheM. S. B.;AdelhelmP.Angew. Chem. Int. Ed.2014,53,10169.
doi: 10.1002/anie.201403734 |
318 |
WenY.;HeK.;ZhuY.;HanF.;XuY.;MatsudaI.;IshiiY.;CumingsJ.;WangC.Nat. Commun.2014,5,4033.
doi: 10.1038/ncomms5033 |
319 |
CaoB.;LiuH.;XuB.;LeiY.;ChenX.;SongH.J. Mater. Chem. A2016,4,6472.
doi: 10.1039/c6ta00950f |
320 |
SaurelD.;OrayechB.;XiaoB.;CarriazoD.;LiX.;RojoT.Adv. Energy Mater.2018,8,1703268.
doi: 10.1002/aenm.201703268 |
321 | ChenY.;DongH. Y.;LiY. Y.;LiuJ. P.Acta Phys. -Chim. Sin.2021,37,2007075. |
陈瑶;董浩洋;李园园;刘金平.物理化学学报,2021,37,2007075.
doi: 10.3866/PKU.WHXB202007075 |
|
322 |
MichaelD.;Slater KimD.;LeeE.;JohnsonC. S.Adv. Funct. Mater.2013,23,947.
doi: 10.1002/adfm.201200691 |
323 |
WangL.;ŚwiatowskaJ.;DaiS.;CaoM.;ZhongZ.;ShenY.;WangM.Mater. Today Energy2019,11,46.
doi: 10.1016/j.mtener.2018.10.017 |
324 |
MaM.;ZhangS.;WangL.;YaoY.;ShaoR.;ShenL.;YuL.;DaiJ.;JiangY.;ChengX.Adv. Mater.2021,33,2106232.
doi: 10.1002/adma.202106232 |
325 |
LuoM.;YuH.;HuF.;LiuT.;ChengX.;ZhengR.;BaiY.;ShuiM.;ShuJ.Chem. Eng. J.2020,380,122557.
doi: 10.1016/j.cej.2019.122557 |
326 |
LiuQ.;HuZ.;LiangY.;LiL.;ZouC.;JinH.;WangS.;LuH.;GuQ.;ChouS.-L.;et alAngew. Chem.2020,59,5159.
doi: 10.1002/anie.201913683 |
327 |
FangL.;BahlawaneN.;SunW.;PanH.;XuB. B.;YanM.;JiangY.Small2021,17,2101137.
doi: 10.1002/smll.202101137 |
328 |
LaoM.;ZhangY.;LuoW.;YanQ.;SunW.;DouS. X.Adv. Mater.2017,29,1700622.
doi: 10.1002/adma.201700622 |
329 |
ZhengS.-M.;TianY.-R.;LiuY.-X.;WangS.;HuC.-Q.;WangB.;WangK.-M.Rare Met2021,40,272.
doi: 10.1007/s12598-020-01605-z |
330 |
ChevrierV. L.;CederG.J. Electrochem. Soc.2011,158,A1011.
doi: 10.1149/1.3607983 |
331 |
WangJ. W.;LiuX. H.;MaoS. X.;HuangJ. Y.Nano Lett.2012,12,5897.
doi: 10.1021/nl303305c |
332 |
KangH.;LiuY.;CaoK.;ZhaoY.;JiaoL.;WangY.;YuanH.J. Mater. Chem. A2015,3,17899.
doi: 10.1039/c5ta03181h |
333 |
WuY.;XingF.;XuR.;ChengX.;LiD.;ZhouX.;ZhangQ.;YuY.J. Mater. Chem. A2019,7,8581.
doi: 10.1039/c9ta01039d |
334 |
LiuJ.;YuL.;WuC.;WenY.;YinK.;ChiangF.-K.;HuR.;LiuJ.;SunL.;GuL.Nano Lett.2017,17,2034.
doi: 10.1021/acs.nanolett.7b00083 |
335 |
YangH.;ChenL.-W.;HeF.;ZhangJ.;FengY.;ZhaoL.;WangB.;HeL.;ZhangQ.;YuY.Nano Lett.2020,20,758.
doi: 10.1021/acs.nanolett.9b04829 |
336 |
LiX.;XiaoS.;NiuX.;ChenJ. S.;YuY.Adv. Funct. Mater.2021,31,2104798.
doi: 10.1002/adfm.202104798 |
337 |
ZhaoL.;ZhaoJ.;HuY.-S.;LiH.;ZhouZ.;ArmandM.;ChenL.Adv. Energy Mater.2012,2,962.
doi: 10.1002/aenm.201200166 |
338 |
SongZ.;ZhouH.Energy Environ. Sci.2013,6,2280.
doi: 10.1039/c3ee40709h |
339 |
Castillo-MartínezE.;Carretero-GonzálezJ.;ArmandM.Angew. Chem. Int. Ed.2014,53,5341.
doi: 10.1002/anie.201402402 |
340 |
ChaeM. S.;KimH. J.;BuH.;LyooJ.;AttiasR.;DlugatchB.;OlielM.;GoferY.;HongS. T.;AurbachD.Adv. Energy Mater.2020,10,2000564.
doi: 10.1002/aenm.202000564 |
341 |
LiX. L.;BaoJ.;LiY. F.;ChenD.;MaC.;QiuQ. Q.;YueX. Y.;WangQ. C.;ZhouY. N.Adv. Sci.2021,8,2004448.
doi: 10.1002/advs.202004448 |
342 | LiH.;LiuS. Y.;YuanT. C.;WangB.;ShengP.;XuL.;ZhaoG. Y.;BaiH. T.;ChenX.;ChenZ. X.;et alActa Phys. -Chim. Sin.2021,37,1907049. |
李慧;刘双宇;袁天赐;王博;盛鹏;徐丽;赵广耀;白会涛;陈新;陈重学;等.物理化学学报,2021,37,1907049.
doi: 10.3866/PKU.WHXB201907049 |
|
343 |
LiuQ.;HuZ.;ChenM.;ZouC.;JinH.;WangS.;ChouS. L.;DouS. X.Small2019,15,1805381.
doi: 10.1002/smll.201805381 |
344 |
XiaoY.;AbbasiN. M.;ZhuY. F.;LiS.;TanS. J.;LingW.;PengL.;YangT.;WangL.;GuoX. D.Adv. Funct. Mater.2020,30,2001334.
doi: 10.1002/adfm.202001334 |
345 |
RenH.;LiY.;NiQ.;BaiY.;ZhaoH.;WuC.Adv. Mater.2022,34,2106171.
doi: 10.1002/adma.202106171 |
346 |
XiangX.;ZhangK.;ChenJ.Adv. Mater.2015,27,5343.
doi: 10.1002/adma.201501527 |
347 |
KomabaS.;YabuuchiN.;NakayamaT.;OgataA.;IshikawaT.;NakaiI.Inorg. Chem.2012,51,6211.
doi: 10.1021/ic300357d |
348 |
WangP. F.;YaoH. R.;LiuX. Y.;ZhangJ. N.;GuL.;YuX. Q.;YinY. X.;GuoY. G.Adv. Mater.2017,29,1700210.
doi: 10.1002/adma.201700210 |
349 |
LiuY.;FangX.;ZhangA.;ShenC.;LiuQ.;EnayaH. A.;ZhouC.Nano Energy2016,27,27.
doi: 10.1016/j.nanoen.2016.06.026 |
350 |
ChengZ.;ZhaoB.;GuoY. J.;YuL.;YuanB.;HuaW.;YinY. X.;XuS.;XiaoB.;HanX.Adv. Energy Mater.2022,12,2103461.
doi: 10.1002/aenm.202103461 |
351 |
ZhengL.;LiL.;ShunmugasundaramR.;ObrovacM. N.ACS Appl. Mater. Interfaces2018,10,38246.
doi: 10.1021/acsami.8b14209 |
352 |
YuanX. G.;GuoY. J.;GanL.;YangX. A.;HeW. H.;ZhangX. S.;YinY. X.;XinS.;YaoH. R.;HuangZ.Adv. Funct. Mater.2022,32,2111466.
doi: 10.1002/adfm.202111466 |
353 |
LiX.;XuJ.;LiH.;ZhuH.;GuoS.;ZhouH.Adv. Sci.2022,9,2105280.
doi: 10.1002/advs.202105280 |
354 |
DingF.;ZhaoC.;XiaoD.;RongX.;WangH.;LiY.;YangY.;LuY.;HuY.-S.J. Am. Chem. Soc2022,144,8286.
doi: 10.1021/jacs.2c02353 |
355 |
LiangX.;YuT.-Y.;RyuH.-H.;SunY.-K.Energy Storage Mater2022,47,515.
doi: 10.1016/j.ensm.2022.02.043 |
356 |
WangQ.;LiJ.;JinH.;XinS.;GaoH.InfoMat2022,4,e12311.
doi: 10.1002/inf2.12311 |
357 |
WangW.;GangY.;HuZ.;YanZ.;LiW.;LiY.;GuQ.-F.;WangZ.;ChouS.-L.;LiuH.-K.;et alNat. Commun.2020,11,980.
doi: 10.1038/s41467-020-14444-4 |
358 | Peng, J.; Gao, Y.; Zhang, H.; Liu, Z.; Zhang, W.; Li, L.; Qiao, Y.; Yang, W.; Wang, J.; Dou, S.; et al. Angew. Chem. Int. Ed. 2022, 61, e202205867. doi: 10.1002/anie.202205867 |
359 |
WangW.;GangY.;PengJ.;HuZ.;YanZ.;LaiW.;ZhuY.;AppadooD.;YeM.;CaoY.;et alAdv. Funct. Mater.2022,32,2111727.
doi: 10.1002/adfm.202111727 |
360 |
BarpandaP.;LanderL.;NishimuraS.-I.;YamadaA.Adv. Energy Mater.2018,8,1703055.
doi: 10.1002/aenm.201703055 |
361 | CaoX. X.;ZhouJ.;PanA. Q.;LiangS. Q.Acta Phys. -Chim. Sin.2020,36,1905018. |
曹鑫鑫;周江;潘安强;梁叔全.物理化学学报,2020,36,1905018.
doi: 10.3866/PKU.WHXB201905018 |
|
362 |
KimJ.;SeoD.-H.;KimH.;ParkI.;YooJ.-K.;JungS.-K.;ParkY.-U.;Goddard IiiW. A.;KangK.Energy Environ. Sci.2015,8,540.
doi: 10.1039/C4EE03215B |
363 |
KimH.;ParkC. S.;ChoiJ. W.;JungY.Angew. Chem. Int. Ed.2016,55,6662.
doi: 10.1002/anie.201601022 |
364 |
JianZ.;HanW.;LuX.;YangH.;HuY.-S.;ZhouJ.;ZhouZ.;LiJ.;ChenW.;ChenD.;et alAdv. Energy Mater.2013,3,156.
doi: 10.1002/aenm.201200558 |
365 |
ChenM.;HuaW.;XiaoJ.;CortieD.;ChenW.;WangE.;HuZ.;GuQ.;WangX.;IndrisS.;et alNat. Commun.2019,10,1480.
doi: 10.1038/s41467-019-09170-5 |
366 |
LawM.;RamarV.;BalayaP.J. Power Sources2017,359,277.
doi: 10.1016/j.jpowsour.2017.05.069 |
367 |
RajagopalanR.;TangY.;JiaC.;JiX.;WangH.Energy Environ. Sci.2020,13,1568.
doi: 10.1039/c9ee03637g |
368 |
ZhaoQ.;LuY.;ChenJ.Adv. Energy Mater.2017,7,1601792.
doi: 10.1002/aenm.201601792 |
369 |
WuX.;JinS.;ZhangZ.;JiangL.;MuL.;HuY.-S.;LiH.;ChenX.;ArmandM.;ChenL.Sci. Adv.2015,1,e1500330.
doi: 10.1126/sciadv.1500330 |
370 |
KimJ.-K.;KimY.;ParkS.;KoH.;KimY.Energy Environ. Sci.2016,9,1264.
doi: 10.1039/c5ee02806j |
371 |
EftekhariA.J. Power Sources2004,126,221.
doi: 10.1016/j.jpowsour.2003.08.007 |
372 |
HwangJ. Y.;KimJ.;YuT. Y.;MyungS. T.;SunY. K.Energy Environ. Sci.2018,11,2821.
doi: 10.1039/c8ee01365a |
373 |
NathanM. G. T.;YuH.;KimG. T.;KimJ. H.;ChoJ. S.;KimJ.;KimJ. K.Adv. Sci.2022,e2105882.
doi: 10.1002/advs.202105882 |
374 |
XuY. S.;GuoS. J.;TaoX. S.;SunY. G.;MaJ. M.;LiuC. T.;CaoA. M.Adv. Mater.2021,33,e2100409.
doi: 10.1002/adma.202100409 |
375 |
KubotaK.;DahbiM.;HosakaT.;KumakuraS.;KomabaS.Chem. Rec.2018,18,459.
doi: 10.1002/tcr.201700057 |
376 |
LeiK. X.;LiF. J.;MuC. N.;WangJ. B.;ZhaoQ.;ChenC. C.;ChenJ.Energy Environ. Sci.2017,10,552.
doi: 10.1039/c6ee03185d |
377 |
NathanM. G. T.;ParkW. B.;NaveenN.;ParkS.;SohnK. S.;PyoM.J. Electrochem. Soc.2020,167,100507.
doi: 10.1149/1945-7111/ab9568 |
378 |
ChoiJ. U.;KimJ.;HwangJ. Y.;JoJ. H.;SunY. K.;MyungS. T.Nano Energy2019,61,284.
doi: 10.1016/j.nanoen.2019.04.062 |
379 |
RamasamyH. V.;SenthilkumarB.;BarpandaP.;LeeY. S.Chem. Eng. J.2019,368,235.
doi: 10.1016/j.cej.2019.02.172 |
380 |
XiaoZ. T.;MengJ. S.;XiaF. J.;WuJ. S.;LiuF.;ZhangX.;XuL. H.;LinX. M.;MaiL. Q.Energy Environ. Sci.2020,13,3129.
doi: 10.1039/d0ee01607a |
381 |
ChiharaK.;KatogiA.;KubotaK.;KomabaS.Chem. Commun.2017,53,5208.
doi: 10.1039/c6cc10280h |
382 |
LiaoJ. Y.;ZhangX. X.;ZhangQ. H.;HuQ.;LiY. F.;DuY. C.;XuJ. Z.;GuL.;ZhouX. S.Nano Lett.2022,22,4933.
doi: 10.1021/acs.nanolett.2c01604 |
383 |
LiuZ. M.;WangJ.;LuB. G.Sci. Bull.2020,65,1242.
doi: 10.1016/j.scib.2020.04.010 |
384 |
DongJ. M.;LiaoJ. Y.;HeX. D.;HuQ.;YuY. F.;ChenC. H.Chem. Commun.2020,56,10050.
doi: 10.1039/d0cc03795h |
385 |
JiB. F.;YaoW. J.;ZhengY. P.;KidkhunthodP.;ZhouX. L.;TunmeeS.;SattayapornS.;ChengH. M.;HeH. Y.;TangY. B.Nat. Commun.2020,11,1225.
doi: 10.1038/s41467-020-15044-y |
386 |
KegginJ. F.;MilesF. D.Nature1936,137,577.
doi: 10.1038/137577a0 |
387 |
RobinM. B.Inorg. Chem.1962,1,337.
doi: 10.1021/ic50002a028 |
388 |
HwangJ. Y.;MyungS. T.;SunY. K.Adv. Funct. Mater.2018,28,1802938.
doi: 10.1002/adfm.201802938 |
389 |
JiangL.;LuY.;ZhaoC.;LiuL.;ZhangJ.;ZhangQ.;ShenX.;ZhaoJ.;YuX.;LiH.Nat. Energy2019,4,495.
doi: 10.1038/s41560-019-0388-0 |
390 |
BieX. F.;KubotaK.;HosakaT.;ChiharaK.;KomabaS.J. Mater. Chem. A2017,5,4325.
doi: 10.1039/c7ta00220c |
391 |
HeG.;NazarL. F.ACS Energy Lett.2017,2,1122.
doi: 10.1021/acsenergylett.7b00179 |
392 |
WheelerS.;CaponeI.;DayS.;TangC.;PastaM.Chem. Mater.2019,31,2619.
doi: 10.1021/acs.chemmater.9b00471 |
393 |
WuX. Y.;LeonardD. P.;JiX. L.Chem. Mater.2017,29,5031.
doi: 10.1021/acs.chemmater.7b01764 |
394 |
DunnB.;KamathH.;TarasconJ.-M.Science2011,334,928.
doi: 10.1126/science.1212741 |
395 |
CastelvecchiD.;StoyeE.Nature2019,574,308.
doi: 10.1038/d41586-019-02965-y |
396 |
LiuJ.;ZhangJ. G.;YangZ.;LemmonJ. P.;ImhoffC.;GraffG. L.;LiL.;HuJ.;WangC.;XiaoJ.Adv. Funct. Mater.2013,23,929.
doi: 10.1002/adfm.201200690 |
397 |
KangB.;CederG.Nature2009,458,190.
doi: 10.1038/nature07853 |
398 |
JianZ.;LuoW.;JiX.J. Am. Chem. Soc.2015,137,11566.
doi: 10.1021/jacs.5b06809 |
399 |
AnY.;FeiH.;ZengG.;CiL.;XiB.;XiongS.;FengJ.J. Power Sources2018,378,66.
doi: 10.1016/j.jpowsour.2017.12.033 |
400 |
ZhaoJ.;ZouX.;ZhuY.;XuY.;WangC.Adv. Funct. Mater.2016,26,8103.
doi: 10.1002/adfm.201602248 |
401 |
CaoB.;ZhangQ.;LiuH.;XuB.;ZhangS.;ZhouT.;MaoJ.;PangW. K.;GuoZ.;LiA.Adv. Energy Mater.2018,8,1801149.
doi: 10.1002/aenm.201801149 |
402 |
FanL.;MaR.;ZhangQ.;JiaX.;LuB.Angew. Chem. Int. Ed.2019,58,10500.
doi: 10.1002/anie.201904258 |
403 |
XuY.;ZhangC.;ZhouM.;FuQ.;ZhaoC.;WuM.;LeiY.Nat. Commun.2018,9,1720.
doi: 10.1038/s41467-018-04190-z |
404 |
HuangH.;XuR.;FengY.;ZengS.;JiangY.;WangH.;LuoW.;YuY.Adv. Mater.2020,32,1904320.
doi: 10.1002/adma.201904320 |
405 |
ChenC.;WangZ.;ZhangB.;MiaoL.;CaiJ.;PengL.;HuangY.;JiangJ.;HuangY.;ZhangL.Energy Storage Mater.2017,8,161.
doi: 10.1016/j.ensm.2017.05.010 |
406 |
ObrovacM.;ChevrierV.Chem. Rev.2014,114,11444.
doi: 10.1021/cr500207g |
407 |
SultanaI.;RahmanM. M.;ChenY.;GlushenkovA. M.Adv. Funct. Mater.2018,28,1703857.
doi: 10.1002/adfm.201703857 |
408 |
SultanaI.;RamireddyT.;RahmanM. M.;ChenY.;GlushenkovA. M.Chem. Commun.2016,52,9279.
doi: 10.1039/c6cc03649j |
409 |
HanC.;HanK.;WangX.;WangC.;LiQ.;MengJ.;XuX.;HeQ.;LuoW.;WuL.Nanoscale2018,10,6820.
doi: 10.1039/c8nr00237a |
410 |
AnY.;TianY.;CiL.;XiongS.;FengJ.;QianY.ACS Nano2018,12,12932.
doi: 10.1021/acsnano.8b08740 |
411 |
ZhengJ.;YangY.;FanX.;JiG.;JiX.;WangH.;HouS.;ZachariahM. R.;WangC.Energy Environ. Sci.2019,12,615.
doi: 10.1039/c8ee02836b |
412 |
LeiK.;WangC.;LiuL.;LuoY.;MuC.;LiF.;ChenJ.Angew. Chem. Int. Ed.2018,57,4687.
doi: 10.1002/anie.201801389 |
413 |
SunZ.;LiuY.;YeW.;ZhangJ.;WangY.;LinY.;HouL.;WangM.-S.;YuanC.Angew. Chem. Int. Ed.2021,60,7180.
doi: 10.1002/anie.202016082 |
414 |
WuY.;HuangH. B.;FengY.;WuZ. S.;YuY.Adv. Mater.2019,31,1901414.
doi: 10.1002/adma.201901414 |
415 |
XiongP.;BaiP.;TuS.;ChengM.;ZhangJ.;SunJ.;XuY.Small2018,14,1802140.
doi: 10.1002/smll.201802140 |
416 |
ZhangW.;MaoJ.;LiS.;ChenZ.;GuoZ.J. Am. Chem. Soc.2017,139,3316.
doi: 10.1021/jacs.6b12185 |
417 |
LinX.;HuangJ.;TanH.;HuangJ.;ZhangB.Energy Storage Mater.2019,16,97.
doi: 10.1016/j.ensm.2018.04.026 |
418 |
WangC.;WangL.;LiF.;ChengF.;ChenJ.Adv. Mater.2017,29,1702212.
doi: 10.1002/adma.201702212 |
419 |
HuangJ.;LinX.;TanH.;ZhangB.Adv. Energy Mater.2018,8,1703496.
doi: 10.1002/aenm.201703496 |
420 |
ChenX.;ZhangH.;CiC.;SunW.;WangY.ACS Nano2019,13,3600.
doi: 10.1021/acsnano.9b00165 |
421 |
MaoM.;GaoT.;HouS.;WangC.Chem. Soc. Rev.2018,47,8804.
doi: 10.1039/C8CS00319J |
422 |
CanepaP.;Sai GautamG.;HannahD. C.;MalikR.;LiuM.;GallagherK. G.;PerssonK. A.;CederG.Chem. Rev.2017,117,4287.
doi: 10.1021/acs.chemrev.6b00614 |
423 |
MaoM. L.;JiX.;HouS.;GaoT.;WangF.;ChenL.;FanX. L.;ChenJ.;MaJ. M.;WangC. S.Chem. Mater.2019,31,3183.
doi: 10.1021/acs.chemmater.8b05218 |
424 |
AurbachD.;LuZ.;SchechterA.;GoferY.;GizbarH.;TurgemanR.;CohenY.;MoshkovichM.;LeviE.Nature2000,407,724.
doi: 10.1038/35037553 |
425 |
MaoM.;LinZ.;TongY.;YueJ.;ZhaoC.;LuJ.;ZhangQ.;GuL.;SuoL.;HuY.-S.;et alACS Nano2020,14,1102.
doi: 10.1021/acsnano.9b08848 |
426 |
SunX.;BonnickP.;DuffortV.;LiuM.;RongZ.;PerssonK. A.;CederG.;NazarL. F.Energy Environ. Sci.2016,9,2273.
doi: 10.1039/C6EE00724D |
427 |
SunX.;BonnickP.;NazarL. F.ACS Energy Lett.2016,1,297.
doi: 10.1021/acsenergylett.6b00145 |
428 |
LiangY.;FengR.;YangS.;MaH.;LiangJ.;ChenJ.Adv. Mater.2011,23,640.
doi: 10.1002/adma.201003560 |
429 |
GuY.;KatsuraY.;YoshinoT.;TakagiH.;TaniguchiK.Sci. Rep.2015,5,12486.
doi: 10.1038/srep12486 |
430 |
WangP.;BuchmeiserM. R.Adv. Funct. Mater.2019,29,1905248.
doi: 10.1002/adfm.201905248 |
431 |
Zhao-KargerZ.;LiuR.;DaiW.;LiZ.;DiemantT.;VinayanB. P.;Bonatto MinellaC.;YuX.;ManthiramA.;BehmR. J.;et alACS Energy Lett.2018,3,2005.
doi: 10.1021/acsenergylett.8b01061 |
432 |
NguyenD.-T.;HoriaR.;EngA. Y. S.;SongS.-W.;SehZ. W.Mater. Horiz.2021,8,830.
doi: 10.1039/D0MH01403F |
433 |
MaoM. L.;YangC. X.;LinZ. J.;TongY. X.;ZhangQ. H.;GuL.;HongL.;SuoL. M.;HuY. S.;LiH.;et alJACS Au2021,1,1266.
doi: 10.1021/jacsau.1c00144 |
434 |
GershinskyG.;YooH. D.;GoferY.;AurbachD.Langmuir2013,29,10964.
doi: 10.1021/la402391f |
435 |
TruongQ. D.;DevarajuM. K.;HonmaI.J. Power Sources2017,361,195.
doi: 10.1016/j.jpowsour.2017.06.084 |
436 |
ZhangR.;LingC.ACS Appl. Mater. Interfaces2016,8,18018.
doi: 10.1021/acsami.6b03297 |
437 |
ArthurT. S.;SinghN.;MatsuiM.Electrochem. Commun.2012,16,103.
doi: 10.1016/j.elecom.2011.12.010 |
438 |
SinghN.;ArthurT. S.;LingC.;MatsuiM.;MizunoF.Chem. Commun.2013,49,149.
doi: 10.1039/C2CC34673G |
439 |
LossiusL. P.;EmmeneggerF.Electrochim. Acta1996,41,445.
doi: 10.1016/0013-4686(95)00326-6 |
440 |
LuZ.;SchechterA.;MoshkovichM.;AurbachD.J. Electroanal. Chem.1999,466,203.
doi: 10.1016/S0022-0728(99)00146-1 |
441 |
CarterT. J.;MohtadiR.;ArthurT. S.;MizunoF.;ZhangR.;ShiraiS.;KampfJ. W.Angew. Chem. Int. Ed.2014,53,3173.
doi: 10.1002/anie.201310317 |
442 |
CanepaP.;JayaramanS.;ChengL.;RajputN. N.;RichardsW. D.;GautamG. S.;CurtissL. A.;PerssonK. A.;CederG.Energy Environ. Sci.2015,8,3718.
doi: 10.1039/C5EE02340H |
443 |
CanepaP.;GautamG. S.;MalikR.;JayaramanS.;RongZ.;ZavadilK. R.;PerssonK.;CederG.Chem. Mater.2015,27,3317.
doi: 10.1021/acs.chemmater.5b00389 |
444 |
BarileC. J.;SpatneyR.;ZavadilK. R.;GewirthA. A.J. Phys. Chem. C2014,118,10694.
doi: 10.1021/jp503506c |
445 |
WangF.;BorodinO.;GaoT.;FanX.;SunW.;HanF.;FaraoneA.;DuraJ. A.;XuK.;WangC.Nat. Mater.2018,17,543.
doi: 10.1038/s41563-018-0063-z |
446 |
WangX.;WangF.;WangL.;LiM.;WangY.;ChenB.;ZhuY.;FuL.;ZhaL.;ZhangL.Adv. Mater.2016,28,4904.
doi: 10.1002/adma.201505370 |
447 |
LuW.;XieC.;ZhangH.;LiX.ChemSusChem2018,11,3996.
doi: 10.1002/cssc.201801657 |
448 |
ZhangQ.;LuanJ.;HuangX.;WangQ.;SunD.;TangY.;JiX.;WangH.Nat. Commun.2020,11,3961.
doi: 10.1038/s41467-020-17752-x |
449 |
XieX.;LiangS.;GaoJ.;GuoS.;GuoJ.;WangC.;XuG.;WuX.;ChenG.;ZhouJ.Energy Environ. Sci.2020,13,503.
doi: 10.1039/c9ee03545a |
450 |
ParkerJ. F.;ChervinC. N.;PalaI. R.;MachlerM.;BurzM. F.;LongJ. W.;RolisonD. R.Science2017,356,414.
doi: 10.1126/science.aak9991 |
451 |
ZengY.;ZhangX.;QinR.;LiuX.;FangP.;ZhengD.;TongY.;LuX.Adv. Mater.2019,31,e1903675.
doi: 10.1002/adma.201903675 |
452 |
KangZ.;WuC.;DongL.;LiuW.;MouJ.;ZhangJ.;ChangZ.;JiangB.;WangG.;KangF.ACS Sustain. Chem. Eng.2019,7,3364.
doi: 10.1021/acssuschemeng.8b05568 |
453 |
WangZ.;HuangJ.;GuoZ.;DongX.;LiuY.;WangY.;XiaY.Joule2019,3,1289.
doi: 10.1016/j.joule.2019.02.012 |
454 |
WangL.;HuangW.;GuoW.;GuoZ. H.;ChangC.;GaoL.;PuX.Adv. Funct. Mater.2022,32,2108533.
doi: 10.1002/adfm.202108533 |
455 |
SongM.;TanH.;ChaoD.;FanH. J.Adv. Funct. Mater.2018,28,1802564.
doi: 10.1002/adfm.201802564 |
456 |
YangS.;ZhangM.;WuX.;WuX.;ZengF.;LiY.;DuanS.;FanD.;YangY.;WuX.J. Electroanal. Chem.2019,832,69.
doi: 10.1016/j.jelechem.2018.10.051 |
457 |
LeeB.;YoonC. S.;LeeH. R.;ChungK. Y.;ChoB. W.;OhS. H.Sci. Rep.2015,4,6066.
doi: 10.1038/srep06066 |
458 | HuangJ. T.;ZhouJ.;LiangS. Q.Acta Phys. -Chim. Sin.2021,37(3),2005020. |
黄江涛;周江;梁叔全.物理化学学报,2021,37(3),2005020.
doi: 10.3866/PKU.WHXB202005020 |
|
459 |
XuC.;LiB.;DuH.;KangF.Angew. Chem. Int. Ed.2012,51,933.
doi: 10.1002/anie.201106307 |
460 |
LeeB.;LeeH. R.;KimH.;ChungK. Y.;ChoB. W.;OhS. H.Chem. Commun.2015,51,9265.
doi: 10.1039/C5CC02585K |
461 |
SunW.;WangF.;HouS.;YangC.;FanX.;MaZ.;GaoT.;HanF.;HuR.;ZhuM.;et alJ. Am. Chem. Soc.2017,139,9775.
doi: 10.1021/jacs.7b04471 |
462 |
PanH.;ShaoY.;YanP.;ChengY.;HanK. S.;NieZ.;WangC.;YangJ.;LiX.;BhattacharyaP.;et alNat. Energy2016,1,16039.
doi: 10.1038/nenergy.2016.39 |
463 |
KimS. H.;OhS. M.J. Power Sources1998,72,150.
doi: 10.1016/S0378-7753(97)02703-1 |
464 |
YuanC.;ZhangY.;PanY.;LiuX.;WangG.;CaoD.Electrochim. Acta2014,116,404.
doi: 10.1016/j.electacta.2013.11.090 |
465 |
LiaoY.;ChenH.-C.;YangC.;LiuR.;PengZ.;CaoH.;WangK.Energy Storage Mater.2022,44,508.
doi: 10.1016/j.ensm.2021.10.039 |
466 | HengY. L.;GuZ. Y.;GuoJ. Z.;WuX. L.Acta Phys. -Chim. Sin.2021,37(3),2005013. |
衡永丽;谷振一;郭晋芝;吴兴隆.物理化学学报,2021,37(3),2005013.
doi: 10.3866/PKU.WHXB202005013 |
|
467 |
ZavalijP. Y.;WhittinghamM. S.Acta Crystallogr. B1999,55,627.
doi: 10.1107/S0108768199004000 |
468 |
KunduD.;AdamsB. D.;DuffortV.;VajargahS. H.;NazarL. F.Nat. Energy2016,1,16119.
doi: 10.1038/nenergy.2016.119 |
469 |
XiaC.;GuoJ.;LiP.;ZhangX.;AlshareefH. N.Angew. Chem. Int. Ed.2018,57,3943.
doi: 10.1002/anie.201713291 |
470 |
YanM.;HeP.;ChenY.;WangS.;WeiQ.;ZhaoK.;XuX.;AnQ.;ShuangY.;ShaoY.;et alAdv. Mater.2018,30,1703725.
doi: 10.1002/adma.201703725 |
471 |
XingL. L.;ZhangC. Y.;LiM.;HuP.;ZhangX. Y.;DaiY. H.;PanX. L.;SunW. Y.;LiS. L.;XueJ. M.;et alEnergy Storage Mater.2022,52,291.
doi: 10.1016/j.ensm.2022.07.044 |
472 |
YangY.;TangY.;FangG.;ShanL.;GuoJ.;ZhangW.;WangC.;WangL.;ZhouJ.;LiangS.Energy Environ. Sci.2018,11,3157.
doi: 10.1039/c8ee01651h |
473 |
ShanL.;YangY.;ZhangW.;ChenH.;FangG.;ZhouJ.;LiangS.Energy Storage Mater.2019,18,10.
doi: 10.1016/j.ensm.2018.08.008 |
474 |
WanF.;ZhangL.;DaiX.;WangX.;NiuZ.;ChenJ.Nat. Commun.2018,9,1656.
doi: 10.1038/s41467-018-04060-8 |
475 |
ZhangN.;ChenX.;YuM.;NiuZ.;ChengF.;ChenJ.Chem. Soc. Rev.2020,49,4203.
doi: 10.1039/c9cs00349e |
476 |
LinD. C.;LiuY. Y.;CuiY.Nat. Nanotechnol.2017,12,194.
doi: 10.1038/Nnano.2017.16 |
477 |
TianY.;ZengG.;RuttA.;ShiT.;KimH.;WangJ.;KoettgenJ.;SunY.;OuyangB.;ChenT.;et alChem. Rev.2021,121,1623.
doi: 10.1021/acs.chemrev.0c00767 |
478 |
Arroyo-de DompabloM. E.;PonrouchA.;JohanssonP.;PalacinM. R.Chem. Rev.2020,120,6331.
doi: 10.1021/acs.chemrev.9b00339 |
479 |
JiB.;HeH.;YaoW.;TangY.Adv. Mater.2021,33,e2005501.
doi: 10.1002/adma.202005501 |
480 |
SongH.;WangC.Adv. Energy Sustain. Res.2022,3,2100192.
doi: 10.1002/aesr.202100192 |
481 |
PonrouchA.;FronteraC.;BardeF.;PalacinM. R.Nat. Mater.2016,15,169.
doi: 10.1038/Nmat4462 |
482 |
HaringH. E.;ThomasU. B.Trans. Electrochem. Soc.1935,68,293.
doi: 10.1149/1.3493875 |
483 |
SelisS. M.;WondowskiJ. P.;JustusR. F.J. Electrochem. Soc.1964,111,6.
doi: 10.1149/1.2426065 |
484 |
StaniewiczR. J.J. Electrochem. Soc.1980,127,782.
doi: 10.1149/1.2129758 |
485 |
MeitavA.;PeledE.Electrochim. Acta1988,33,1111.
doi: 10.1016/0013-4686(88)80202-0 |
486 |
AurbachD.;SkaletskyR.;GoferY.J. Electrochem. Soc.2019,138,3536.
doi: 10.1149/1.2085455 |
487 |
YoungJ.;SmeuM.J. Phys. Chem. Lett.2018,9,3295.
doi: 10.1021/acs.jpclett.8b01261 |
488 |
WangD.;GaoX.;ChenY.;JinL.;KussC.;BruceP. G.Nat. Mater.2018,17,16.
doi: 10.1038/nmat5036 |
489 |
LiZ.;FuhrO.;FichtnerM.;Zhao-KargerZ.Energy Environ. Sci.2019,12,3496.
doi: 10.1039/c9ee01699f |
490 |
ShyamsunderA.;BlancL. E.;AssoudA.;NazarL. F.ACS Energy Lett.2019,4,2271.
doi: 10.1021/acsenergylett.9b01550 |
491 |
TaK.;ZhangR.;ShinM.;RooneyR. T.;NeumannE. K.;GewirthA. A.ACS Appl. Mater. Interfaces2019,11,21536.
doi: 10.1021/acsami.9b04926 |
492 |
PuS. D.;GongC.;GaoX.;NingZ.;YangS.;MarieJ.-J.;LiuB.;HouseR. A.;HartleyG. O.;LuoJ.;et alACS Energy Lett.2020,5,2283.
doi: 10.1021/acsenergylett.0c01153 |
493 |
JieY.;TanY.;LiL.;HanY.;XuS.;ZhaoZ.;CaoR.;RenX.;HuangF.;LeiZ.;et alAngew. Chem. Int. Ed.2020,59,12689.
doi: 10.1002/anie.202002274 |
494 |
HouS.;JiX.;GaskellK.;WangP. F.;WangL.;XuJ.;SunR.;BorodinO.;WangC.Science2021,374,172.
doi: 10.1126/science.abg3954 |
495 |
Forero-SaboyaJ.;DavoisneC.;DedryvèreR.;YousefI.;CanepaP.;PonrouchA.Energy Environ. Sci.2020,13,3423.
doi: 10.1039/d0ee02347g |
496 |
NielsonK. V.;LuoJ.;LiuT. L.Batteries Supercaps2020,3,766.
doi: 10.1002/batt.202000005 |
497 |
SongH.;SuJ.;WangC.Adv. Mater.2021,33,e2006141.
doi: 10.1002/adma.202006141 |
498 |
PonrouchA.;TchitchekovaD.;FronteraC.;BardéF.;DompabloM. E. A.-d.;PalacínM. R.Electrochem. Commun.2016,66,75.
doi: 10.1016/j.elecom.2016.03.004 |
499 |
WangM.;JiangC.;ZhangS.;SongX.;TangY.;ChengH. M.Nat. Chem.2018,10,667.
doi: 10.1038/s41557-018-0045-4 |
500 |
WuN.;YaoW.;SongX.;ZhangG.;ChenB.;YangJ.;TangY.Adv. Energy Mater.2019,9,1803865.
doi: 10.1002/aenm.201803865 |
501 |
DattaD.;LiJ.;ShenoyV. B.ACS Appl. Mater. Interfaces2014,6,1788.
doi: 10.1021/am404788e |
502 |
IshikawaH.;HiguchiH.;KawaguchiM.Chem. Lett.2018,47,891.
doi: 10.1246/cl.180236 |
503 |
ParkJ.;XuZ. L.;YoonG.;ParkS. K.;WangJ.;HyunH.;ParkH.;LimJ.;KoY. J.;YunY. S.;et alAdv. Mater.2020,32,e1904411.
doi: 10.1002/adma.201904411 |
504 |
OuchiT.;KimH.;SpatoccoB. L.;SadowayD. R.Nat. Commun.2016,7,10999.
doi: 10.1038/ncomms10999 |
505 |
HayashiM.;AraiH.;OhtsukaH.;SakuraiY.J. Power Sources2003,119-121,617.
doi: 10.1016/s0378-7753(03)00307-0 |
506 |
CabelloM.;NacimientoF.;AlcántaraR.;LavelaP.;Pérez VicenteC.;TiradoJ. L.Chem. Mater.2018,30,5853.
doi: 10.1021/acs.chemmater.8b01116 |
507 |
XuX.;DuanM.;YueY.;LiQ.;ZhangX.;WuL.;WuP.;SongB.;MaiL.ACS Energy Lett.2019,4,1328.
doi: 10.1021/acsenergylett.9b00830 |
508 |
KimS.;YinL.;LeeM. H.;ParajuliP.;BlancL.;FisterT. T.;ParkH.;KwonB. J.;IngramB. J.;ZapolP.;et alACS Energy Lett.2020,5,3203.
doi: 10.1021/acsenergylett.0c01663 |
509 |
XuZ. L.;ParkJ.;WangJ.;MoonH.;YoonG.;LimJ.;KoY. J.;ChoS. P.;LeeS. Y.;KangK.Nat. Commun.2021,12,3369.
doi: 10.1038/s41467-021-23703-x |
510 |
JeonB.;HeoJ. W.;HyoungJ.;KwakH. H.;LeeD. M.;HongS.-T.Chem. Mater2020,32,8772.
doi: 10.1021/acs.chemmater.0c01112 |
511 |
RenW.;XiongF.;FanY.;XiongY.;JianZ.ACS Appl. Mater. Interfaces2020,12,10471.
doi: 10.1021/acsami.9b21999 |
512 |
LeeC.;JeongY.-T.;NogalesP. M.;SongH.-Y.;KimY.;YinR.-Z.;JeongS.-K.Electrochem. Commun2019,98,115.
doi: 10.1016/j.elecom.2018.12.003 |
513 |
LipsonA. L.;PanB.;LapidusS. H.;LiaoC.;VaugheyJ. T.;IngramB. J.Chem. Mater.2015,27,8442.
doi: 10.1021/acs.chemmater.5b04027 |
514 |
TojoT.;SugiuraY.;InadaR.;SakuraiY.Electrochim. Acta2016,207,22.
doi: 10.1016/j.electacta.2016.04.159 |
515 |
VoT. N.;HurJ.;KimI. T.ACS Sustain. Chem. Eng.2020,8,2596.
doi: 10.1021/acssuschemeng.9b07374 |
516 |
SeeK. A.;GerbecJ. A.;JunY.-S.;WudlF.;StuckyG. D.;SeshadriR.Adv. Energy Mater.2013,3,1056.
doi: 10.1002/aenm.201300160 |
517 |
TangX.;ZhouD.;ZhangB.;WangS.;LiP.;LiuH.;GuoX.;JaumauxP.;GaoX.;FuY.;et alNat. Commun.2021,12,2857.
doi: 10.1038/s41467-021-23209-6 |
518 |
YuX.;BoyerM. J.;HwangG. S.;ManthiramA.Adv. Energy Mater.2019,9,1803794.
doi: 10.1002/aenm.201803794 |
519 |
LiZ.;VinayanB. P.;DiemantT.;BehmR. J.;FichtnerM.;Zhao-KargerZ.Small2020,16,e2001806.
doi: 10.1002/smll.202001806 |
520 |
ReinsbergP.;BondueC. J.;BaltruschatH.J. Phys. Chem. C2016,120,22179.
doi: 10.1021/acs.jpcc.6b06674 |
521 |
ShigaT.;KatoY.;HaseY.J. Mater. Chem. A2017,5,13212.
doi: 10.1039/c7ta03422a |
522 |
WangR. Y.;WessellsC. D.;HugginsR. A.;CuiY.Nano Lett.2013,13,5748.
doi: 10.1021/nl403669a |
523 |
GheytaniS.;LiangY.;WuF.;JingY.;DongH.;RaoK. K.;ChiX.;FangF.;YaoY.Adv. Sci.2017,4,1700465.
doi: 10.1002/advs.201700465 |
524 |
LeeC.;JeongS.-K.Chem. Lett2016,45,1447.
doi: 10.1246/cl.160769 |
525 |
LeeC.;JeongS.-K.Electrochim. Acta2018,265,430.
doi: 10.1016/j.electacta.2018.01.172 |
526 |
ShigaT.;KondoH.;KatoY.;InoueM.J. Phys. Chem. C2015,119,27946.
doi: 10.1021/acs.jpcc.5b10245 |
527 |
LinM.-C.;GongM.;LuB.;WuY.;WangD.-Y.;GuanM.;AngellM.;ChenC.;YangJ.;HwangB.-J. Nature2015,520,324.
doi: 10.1038/nature14340 |
528 |
ChenH.;XuH.;WangS.;HuangT.;XiJ.;CaiS.;GuoF.;XuZ.;GaoW.;GaoC.Sci. Adv.2017,3,eaao7233.
doi: 10.1126/sciadv.aao7233 |
529 |
StadieN. P.;WangS.;KravchykK. V.;KovalenkoM. V.ACS Nano2017,11,1911.
doi: 10.1021/acsnano.6b07995 |
530 |
JayaprakashN.;DasS.;ArcherL.Chem. Commun.2011,47,12610.
doi: 10.1039/C1CC15779E |
531 |
WangF.;LiuZ.;WangX.;YuanX.;WuX.;ZhuY.;FuL.;WuY.J. Mater. Chem. A2016,4,5115.
doi: 10.1039/C6TA01398H |
532 |
GengL.;ScheifersJ. P.;ZhangJ.;BozhilovK. N.;FokwaB. P.;GuoJ.Chem. Mater.2018,30,8420.
doi: 10.1021/acs.chemmater.8b03312 |
533 |
AiY.;WuS.-C.;WangK.;YangT.-Y.;LiuM.;LiaoH.-J.;SunJ.;ChenJ.-H.;TangS.-Y.;WuD. C.ACS Nano2020,14,8539.
doi: 10.1021/acsnano.0c02831 |
534 |
AngellM.;PanC.-J.;RongY.;YuanC.;LinM.-C.;HwangB.-J.;DaiH.Proc. Natl. Acad. Sci. U. S. A.2017,114,834.
doi: 10.1073/pnas.1619795114 |
535 |
ChuW.;ZhangX.;WangJ.;ZhaoS.;LiuS.;YuH.Energy Storage Mater.2019,22,418.
doi: 10.1016/j.ensm.2019.01.025 |
536 |
ZhangD.;ZhangX.;WangB.;HeS.;LiuS.;TangM.;YuH.J. Mater. Chem. A2021,9,8966.
doi: 10.1039/D1TA01422F |
537 |
YinY. X.;XinS.;GuoY. G.;WanL. J.Angew. Chem. Int. Ed.2013,52,13186.
doi: 10.1002/anie.201304762 |
538 |
EversS.;NazarL. F.Accounts Chem. Res.2013,46,1135.
doi: 10.1021/ar3001348 |
539 |
MaL.;HendricksonK. E.;WeiS.;ArcherL. A.Nano Today2015,10,315.
doi: 10.1016/j.nantod.2015.04.011 |
540 |
YangY.;ZhengG.;CuiY.Chem. Soc. Rev.2013,42,3018.
doi: 10.1039/C2CS35256G |
541 |
XuR.;LuJ.;AmineK.Adv. Energy Mater.2015,5,1500408.
doi: 10.1002/aenm.201500408 |
542 |
NazarL. F.;CuisinierM.;PangQ.MRS Bull.2014,39,436.
doi: 10.1557/mrs.2014.86 |
543 |
BarchaszC.;LeprêtreJ.-C.;AlloinF.;PatouxS.J. Power Sources2012,199,322.
doi: 10.1016/j.jpowsour.2011.07.021 |
544 |
YangY.;ZhengG.;MisraS.;NelsonJ.;ToneyM. F.;CuiY.J. Am. Chem. Soc.2012,134,15387.
doi: 10.1021/ja3052206 |
545 |
XuR.;ZhangX.;YuC.;RenY.;LiJ. C.;BelharouakI.ChemSusChem2014,7,2457.
doi: 10.1002/cssc.201402177 |
546 |
ZhengD.;ZhangX.;LiC.;McKinnonM. E.;SadokR. G.;QuD.;YuX.;LeeH.-S.;YangX.-Q.;QuD.J. Electrochem. Soc.2014,162,A203.
doi: 10.1149/2.1011501jes |
547 |
BarchaszC.;MoltonF.;DubocC.;LeprêtreJ.-C.;PatouxS.;AlloinF.Anal. Chem.2012,84,3973.
doi: 10.1021/ac2032244 |
548 |
XuR.;BelharouakI.;LiJ. C.;ZhangX.;BloomI.;BareñoJ.Adv. Energy Mater.2013,3,833.
doi: 10.1002/aenm.201200990 |
549 |
ZhangS. S.J. Power Sources2013,231,153.
doi: 10.1016/j.jpowsour.2012.12.102 |
550 |
MikhaylikY. V.;AkridgeJ. R.J. Electrochem. Soc.2004,151,A1969.
doi: 10.1149/1.1806394 |
551 |
KumaresanK.;MikhaylikY.;WhiteR. E.J. Electrochem. Soc.2008,155,A576.
doi: 10.1149/1.2937304 |
552 |
ShimJ.;StriebelK. A.;CairnsE. J.J. Electrochem. Soc.2002,149,A1321.
doi: 10.1149/1.1503076 |
553 |
ChangD.-R.;LeeS.-H.;KimS.-W.;KimH.-T. J. Power Sources2002,112,452.
doi: 10.1016/S0378-7753(02)00418-4 |
554 |
MarmorsteinD.;YuT.;StriebelK.;McLarnonF.;HouJ.;CairnsE.J. Power Sources2000,89,219.
doi: 10.1016/S0378-7753(00)00432-8 |
555 |
WangJ.;ChewS.;ZhaoZ.;AshrafS.;WexlerD.;ChenJ.;NgS.;ChouS.;LiuH.Carbon2008,46,229.
doi: 10.1016/j.carbon.2007.11.007 |
556 |
RyuH.;AhnH.;KimK.;AhnJ.;LeeJ.-Y.;CairnsE.J. Power Sources2005,140,365.
doi: 10.1016/j.jpowsour.2004.08.039 |
557 |
RyuH.;AhnH.;KimK.;AhnJ.;ChoK.;NamT.Electrochim. Acta2006,52,1563.
doi: 10.1016/j.electacta.2006.01.086 |
558 |
XuK.;LamY.;ZhangS. S.;JowT. R.;CurtisT. B.J. Phys. Chem. C2007,111,7411.
doi: 10.1021/jp068691u |
559 |
AurbachD.;PollakE.;ElazariR.;SalitraG.;KelleyC. S.;AffinitoJ.J. Electrochem. Soc.2009,156,A694.
doi: 10.1149/1.3148721 |
560 |
RauhR.;AbrahamK.;PearsonG.;SurprenantJ.;BrummerS.J. Electrochem. Soc.1979,126,523.
doi: 10.1149/1.2129079 |
561 |
PeledE.;SternbergY.;GorenshteinA.;LaviY.J. Electrochem. Soc.1989,136,1621.
doi: 10.1149/1.2096981 |
562 |
AurbachD.J. Power Sources2000,89,206.
doi: 10.1016/S0378-7753(00)00431-6 |
563 |
CuisinierM.;HartC.;BalasubramanianM.;GarsuchA.;NazarL. F.Adv. Energy Mater.2015,5,1401801.
doi: 10.1002/aenm.201401801 |
564 |
YaminH.;PeledE.J. Power Sources1983,9,281.
doi: 10.1016/0378-7753(83)87029-3 |
565 |
WangJ.;YangJ.;XieJ.;XuN.Adv. Mater.2002,14,963.
doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P |
566 |
WangJ.;LiuL.;LingZ.;YangJ.;WanC.;JiangC.Electrochim. Acta2003,48,1861.
doi: 10.1016/S0013-4686(03)00258-5 |
567 |
ZhengG.;YangY.;ChaJ. J.;HongS. S.;CuiY.Nano Lett.2011,11,4462.
doi: 10.1021/nl2027684 |
568 |
YeH.;YinY.-X.;XinS.;GuoY.-G.J. Mater. Chem. A2013,1,6602.
doi: 10.1039/C3TA10735C |
569 |
LiD.;HanF.;WangS.;ChengF.;SunQ.;LiW.-C.ACS Appl. Mater. Interfaces2013,5,2208.
doi: 10.1021/am4000535 |
570 |
ChenS.-R.;ZhaiY.-P.;XuG.-L.;JiangY.-X.;ZhaoD.-Y.;LiJ.-T.;HuangL.;SunS.-G.Electrochim. Acta2011,56,9549.
doi: 10.1016/j.electacta.2011.03.005 |
571 |
ChungS.-H.;ManthiramA.J. Mater. Chem. A2013,1,9590.
doi: 10.1039/C3TA11819C |
572 |
JayaprakashN.;ShenJ.;MogantyS. S.;CoronaA.;ArcherL. A.Angew. Chem. Int. Ed.2011,50,5904.
doi: 10.1002/anie.201100637 |
573 |
KimH.;JeongG.;KimY.-U.;KimJ.-H.;ParkC.-M.;SohnH.-J.Chem. Soc. Rev2013,42,9011.
doi: 10.1039/C3CS60177C |
574 |
JiX.;LiuD.-Y.;PrendivilleD. G.;ZhangY.;LiuX.;StuckyG. D.Nano Today2012,7,10.
doi: 10.1016/j.nantod.2011.11.002 |
575 |
LinZ.;LiuZ.;FuW.;DudneyN. J.;LiangC.Adv. Funct. Mater.2013,23,1064.
doi: 10.1002/adfm.201200696 |
576 |
DingF.;XuW.;GraffG. L.;ZhangJ.;SushkoM. L.;ChenX.;ShaoY.;EngelhardM. H.;NieZ.;XiaoJ.J. Am. Chem. Soc.2013,135,4450.
doi: 10.1021/ja312241y |
577 |
JeongS.;LimY.;ChoiY.;ChoG.;KimK.;AhnH.;ChoK.J. Power Sources2007,174,745.
doi: 10.1016/j.jpowsour.2007.06.108 |
578 |
WangJ.;YangJ.;XieJ.;XuN.;LiY.Electrochem. Commun.2002,4,499.
doi: 10.1016/S1388-2481(02)00358-2 |
579 |
WangY.;ZhouD.;PalomaresV.;ShanmukarajD.;SunB.;TangX.;WangC.;ArmandM.;RojoT.;WangG.Energy Environ. Sci.2020,13,3848.
doi: 10.1039/d0ee02203a |
580 |
PanH.;ChenJ.;CaoR.;MurugesanV.;RajputN. N.;HanK. S.;PerssonK.;EstevezL.;EngelhardM. H.;ZhangJ.-G.;et alNat. Energy2017,2,813.
doi: 10.1038/s41560-017-0005-z |
581 |
ZhouT.;LvW.;LiJ.;ZhouG.;ZhaoY.;FanS.;LiuB.;LiB.;KangF.;YangQ.-H.Energy Environ. Sci2017,10,1694.
doi: 10.1039/c7ee01430a |
582 | ChenG. H.;BaiY.;GaoY. S.;WuF.;WuC.Acta Phys. -Chim. Sin.2020,36(5),1905009. |
陈光海;白莹;高永晟;吴锋;吴川.物理化学学报,2020,36(5),1905009.
doi: 10.3866/PKU.WHXB201905009 |
|
583 |
HuangX. L.;ZhouC.;HeW.;SunS.;ChuehY. L.;WangZ. M.;LiuH. K.;DouS. X.ACS Nano2021,15,5876.
doi: 10.1021/acsnano.0c10078 |
584 |
YeH.;XinS.;YinY.-X.;GuoY.-G.Adv. Energy Mater2017,7,1700530.
doi: 10.1002/aenm.201700530 |
585 |
LiL.;SengK. H.;LiD.;XiaY.;LiuH. K.;GuoZ.Nano Res.2014,7,1466.
doi: 10.1007/s12274-014-0506-z |
586 |
LuX.;KirbyB. W.;XuW.;LiG.;KimJ. Y.;LemmonJ. P.;SprenkleV. L.;YangZ.Energy Environ. Sci.2013,6,299.
doi: 10.1039/c2ee23606k |
587 |
HuesoK. B.;PalomaresV.;ArmandM.;RojoT.Nano Res.2017,10,4082.
doi: 10.1007/s12274-017-1602-7 |
588 |
ParkC.-W.;AhnJ.-H.;RyuH.-S.;KimK.-W.;AhnH.-J.Electrochem. Solid-State Lett2006,9,A123.
doi: 10.1149/1.2164607 |
589 |
SehZ. W.;SunJ.;SunY.;CuiY.ACS Cent. Sci.2015,1,449.
doi: 10.1021/acscentsci.5b00328 |
590 |
CarterR.;OakesL.;DouglasA.;MuralidharanN.;CohnA. P.;PintC. L.Nano Lett.2017,17,1863.
doi: 10.1021/acs.nanolett.6b05172 |
591 |
FanL.;MaR.;YangY.;ChenS.;LuB.Nano Energy2016,28,304.
doi: 10.1016/j.nanoen.2016.08.056 |
592 |
ZhangB. W.;LiuY. D.;WangY. X.;ZhangL.;ChenM. Z.;LaiW. H.;ChouS. L.;LiuH. K.;DouS. X.ACS Appl. Mater. Interfaces2017,9,24446.
doi: 10.1021/acsami.7b07615 |
593 |
LuoW.;ZhangY.;XuS.;DaiJ.;HitzE.;LiY.;YangC.;ChenC.;LiuB.;HuL.Nano Lett.2017,17,3792.
doi: 10.1021/acs.nanolett.7b01138 |
594 |
ZhaoY.;GoncharovaL. V.;LushingtonA.;SunQ.;YadegariH.;WangB.;XiaoW.;LiR.;SunX.Adv. Mater.2017,29
doi: 10.1002/adma.201606663 |
595 |
XinS.;YinY. X.;GuoY. G.;WanL. J.Adv. Mater.2014,26,1261.
doi: 10.1002/adma.201304126 |
596 |
DuZ.;ChenX.;HuW.;ChuangC.;XieS.;HuA.;YanW.;KongX.;WuX.;JiH.;et alJ. Am. Chem. Soc.2019,141,3977.
doi: 10.1021/jacs.8b12973 |
597 |
JeongY. C.;KimJ. H.;NamS.;ParkC. R.;YangS. J.Adv. Funct. Mater.2018,28,1707411.
doi: 10.1002/adfm.201707411 |
598 |
SunB.;LiP.;ZhangJ.;WangD.;MunroeP.;WangC.;NottenP. H. L.;WangG.Adv. Mater.2018,30,e1801334.
doi: 10.1002/adma.201801334 |
599 |
WangX.;ChenW.;ZhangL.;YaoT.;LiuW.;LinY.;JuH.;DongJ.;ZhengL.;YanW.;et alJ. Am. Chem. Soc.2017,139,9419.
doi: 10.1021/jacs.7b01686 |
600 |
XuX.;ZhouD.;QinX.;LinK.;KangF.;LiB.;ShanmukarajD.;RojoT.;ArmandM.;WangG.Nat. Commun.2018,9,3870.
doi: 10.1038/s41467-018-06443-3 |
601 | Wu, J.; Tian, Y.; Gao, Y.; Gao, Z.; Meng, Y.; Wang, Y.; Wang, X.; Zhou, D.; Kang, F.; Li, B.; et al. Angew. Chem. Int. Ed. 2022, 61, e202205416. doi: 10.1002/anie.202205416 |
602 |
ZhouD.;HeY.-B.;LiuR.;LiuM.;DuH.;LiB.;CaiQ.;YangQ.-H.;KangF.Adv. Energy Mater.2015,5,1500353.
doi: 10.1002/aenm.201500353 |
603 |
LiZ.;YuanL.;YiZ.;LiuY.;HuangY.Nano Energy2014,9,229.
doi: 10.1016/j.nanoen.2014.07.012 |
604 |
XuJ.;MaJ.;FanQ.;GuoS.;DouS.Adv. Mater.2017,29,1606454.
doi: 10.1002/adma.201606454 |
605 |
XinS.;YuL.;YouY.;CongH. P.;YinY. X.;DuX. L.;GuoY. G.;YuS. H.;CuiY.;GoodenoughJ. B.Nano Lett.2016,16,4560.
doi: 10.1021/acs.nanolett.6b01819 |
606 |
ParkS.-K.;ParkJ.-S.;KangY. C.J. Mater. Chem. A2018,6,1028.
doi: 10.1039/c7ta09676c |
607 |
LuoC.;XuY.;ZhuY.;LiuY.;ZhengS.;LiuY.;LangrockA.;WangC.ACS Nano2013,7,8003.
doi: 10.1021/nn403108w |
608 |
ChungS. H.;ManthiramA.Adv. Mater.2019,31,1901125.
doi: 10.1002/adma.201901125 |
609 |
ZhangW.;LiuY.;GuoZ.Sci. Adv.2019,5,eaav7412.
doi: 10.1126/sciadv.aav7412 |
610 | Medenbach, L.; Adelhelm, P. Cell Concepts of Metal-Sulfur Batteries (Metal 5 Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications. In Electrochem. Energy Storage, Eichel, R. A. Eds.; Springer: Cham, Switzerland, 2019; p. 101. |
611 |
ZhaoQ.;HuY. X.;ZhangK.;ChenJ.Inorg. Chem.2014,53,9000.
doi: 10.1021/ic500919e |
612 |
JiX.;LeeK. T.;NazarL. F.Nat. Mater.2009,8,500.
doi: 10.1038/nmat2460 |
613 |
XiongP.;HanX.;ZhaoX.;BaiP.;LiuY.;SunJ.;XuY.ACS Nano2019,13,2536.
doi: 10.1021/acsnano.8b09503 |
614 |
XueL.;GaoH.;ZhouW.;XinS.;ParkK.;LiY.;GoodenoughJ. B.Adv. Mater.2016,28,9608.
doi: 10.1002/adma.201602633 |
615 |
QinL.;LeiY.;WangH.;DongJ.;WuY.;ZhaiD.;KangF.;TaoY.;YangQ. H.Adv. Energy Mater.2019,9,1901427.
doi: 10.1002/aenm.201901427 |
616 |
GuS.;XiaoN.;WuF.;BaiY.;WuC.;WuY.ACS Energy Lett.2018,3,2858.
doi: 10.1021/acsenergylett.8b01719 |
617 |
LaiN.-C.;CongG.;LuY.-C.J. Mater. Chem. A2019,7,20584.
doi: 10.1039/C9TA06906B |
618 |
JinJ.;TianX.;SrikanthN.;KongL. B.;ZhouK.J. Mater. Chem. A2017,5,10110.
doi: 10.1039/C7TA01384A |
619 |
LiuY.;TaiZ.;ZhangQ.;WangH.;PangW. K.;LiuH. K.;KonstantinovK.;GuoZ.Nano Energy2017,35,36.
doi: 10.1016/j.nanoen.2017.03.029 |
620 |
ZhouX.;WangL.;YaoY.;JiangY.;XuR.;WangH.;WuX.;YuY.Adv. Funct. Mater.2020,30,2003871.
doi: 10.1002/adfm.202003871 |
621 |
HuangX. L.;GuoZ.;DouS. X.;WangZ. M.Adv. Funct. Mater.2021,31,2102326.
doi: 10.1002/adfm.202102326 |
622 |
YeH.;LiY.InfoMat2022,4,e12291.
doi: 10.1002/inf2.12291 |
623 |
ZouQ.;LuY. C.EcoMat2021,3,e12115.
doi: 10.1002/eom2.12115 |
624 |
ZouQ.;LiangZ.;DuG.-Y.;LiuC.-Y.;LiE. Y.;LuY.-C.J. Am. Chem. Soc2018,140,10740.
doi: 10.1021/jacs.8b04536 |
625 |
MuP.;DongT.;JiangH.;JiangM.;ChenZ.;XuH.;ZhangH.;CuiG.Energy Fuels2021,35,1966.
doi: 10.1021/acs.energyfuels.0c04264 |
626 |
YeH.;LiM.;LiuT.;LiY.;LuJ.ACS Energy Lett.2020,5,2234.
doi: 10.1021/acsenergylett.0c00936 |
627 |
YuX.;ManthiramA.Adv. Energy Mater.2017,7,1700561.
doi: 10.1002/aenm.201700561 |
628 |
ZhangG.;PengH.-J.;ZhaoC.-Z.;ChenX.;ZhaoL.-D.;LiP.;HuangJ.-Q.;ZhangQ.Angew. Chem. Int. Ed.2018,57,16732.
doi: 10.1002/anie.201810132 |
629 |
YeH.;SunJ.;LimX. F.;ZhaoY.;LeeJ. Y.Energy Storage Mater.2021,38,338.
doi: 10.1016/j.ensm.2021.03.023 |
630 |
ZhouL.;DanilovD. L.;EichelR. A.;NottenP. H.Adv. Energy Mater.2021,11,2001304.
doi: 10.1002/aenm.202001304 |
631 |
SalamaM.;Rosy AttiasR.;YeminiR.;GoferY.;AurbachD.;NokedM.ACS Energy Lett.2019,4,436.
doi: 10.1021/acsenergylett.8b02212 |
632 |
ZhaoY.;DuA.;DongS.;JiangF.;GuoZ.;GeX.;QuX.;ZhouX.;CuiG.ACS Energy Lett.2021,6,2594.
doi: 10.1021/acsenergylett.1c01243 |
633 |
LiX.;GaoT.;HanF.;MaZ.;FanX.;HouS.;EidsonN.;LiW.;WangC.Adv. Energy Mater.2018,8,1701728.
doi: 10.1002/aenm.201701728 |
634 |
GaoT.;LiX.;WangX.;HuJ.;HanF.;FanX.;SuoL.;PearseA. J.;LeeS. B.;RubloffG. W.;et alAngew. Chem. Int. Ed.2016,55,9898.
doi: 10.1002/anie.201603531 |
635 |
GuoY.;HuZ.;WangJ.;PengZ.;ZhuJ.;JiH.;WanL.-J.Angew. Chem. Int. Ed2020,59,22963.
doi: 10.1002/anie.202008481 |
636 |
LiuS.;ZhangX.;HeS.;TangY.;WangJ.;WangB.;ZhaoS.;SuH.;RenY.;ZhangL.Nano Energy2019,66,104159.
doi: 10.1016/j.nanoen.2019.104159 |
637 |
ZhangX.;JiaoS.;TuJ.;SongW.-L.;XiaoX.;LiS.;WangM.;LeiH.;TianD.;ChenH.Energy Environ. Sci.2019,12,1918.
doi: 10.1039/C9EE00862D |
638 |
LiH.;MengR.;GuoY.;ChenB.;JiaoY.;YeC.;LongY.;TadichA.;YangQ.-H.;JaroniecM.;et alNat. Commun.2021,12,5714.
doi: 10.1038/s41467-021-26056-7 |
639 |
AbrahamK. M.;JiangZ.J. Electrochem. Soc.1996,143,1.
doi: 10.1149/1.1836378 |
640 |
MeiniS.;PianaM.;BeyerH.;SchwämmleinJ.;GasteigerH. A.J. Electrochem. Soc.2012,159,A2135.
doi: 10.1149/2.011301jes |
641 |
DingN.;ChienS. W.;HorT. S. A.;LumR.;ZongY.;LiuZ.J. Mater. Chem. A2014,2,12433.
doi: 10.1039/C4TA01745E |
642 |
AdamsB. D.;RadtkeC.;BlackR.;TrudeauM. L.;ZaghibK.;NazarL. F.Energy Environ. Sci.2013,6,1772.
doi: 10.1039/C3EE40697K |
643 |
XiaoJ.;MeiD.;LiX.;XuW.;WangD.;GraffG. L.;BennettW. D.;NieZ.;SarafL. V.;AksayI. A.;et alNano Lett.2011,11,5071.
doi: 10.1021/nl203332e |
644 |
LiuT.;VivekJ. P.;ZhaoE. W.;LeiJ.;Garcia-AraezN.;GreyC. P.Chem. Rev.2020,120,6558.
doi: 10.1021/acs.chemrev.9b00545 |
645 |
TanP.;JiangH. R.;ZhuX. B.;AnL.;JungC. Y.;WuM. C.;ShiL.;ShyyW.;ZhaoT. S.Appl. Energy2017,204,80.
doi: 10.1016/j.apenergy.2017.07.054 |
646 |
McCloskeyB. D.;SpeidelA.;SchefflerR.;MillerD. C.;ViswanathanV.;HummelshøjJ. S.;NørskovJ. K.;LuntzA. C.J. Phys. Chem. Lett.2012,3,997.
doi: 10.1021/jz300243r |
647 |
LuY.-C.;XuZ.;GasteigerH. A.;ChenS.;Hamad-SchifferliK.;Shao-HornY.J. Am. Chem. Soc.2010,132,12170.
doi: 10.1021/ja1036572 |
648 |
GenorioB.;Staszak-JirkovskýJ.;AssaryR. S.;ConnellJ. G.;StrmcnikD.;DiesendruckC. E.;LopesP. P.;StamenkovicV. R.;MooreJ. S.;CurtissL. A.;et alJ. Phys. Chem. C2016,120,15909.
doi: 10.1021/acs.jpcc.5b12230 |
649 |
Ottakam ThotiylM. M.;FreunbergerS. A.;PengZ.;ChenY.;LiuZ.;BruceP. G.Nat. Mater.2013,12,1050.
doi: 10.1038/nmat3737 |
650 |
WangZ.;SunJ.;ChengY.;NiuC.J. Phys. Chem. Lett.2014,5,3919.
doi: 10.1021/jz501775a |
651 |
ChoiR.;JungJ.;KimG.;SongK.;KimY.-I.;JungS. C.;HanY.-K.;SongH.;KangY.-M.Energy Environ. Sci2014,7,1362.
doi: 10.1039/C3EE43437K |
652 |
BlackR.;LeeJ.-H.;AdamsB.;MimsC. A.;NazarL. F.Angew. Chem. Int. Ed.2013,52,392.
doi: 10.1002/anie.201205354 |
653 |
WangY.;LiangZ.;ZouQ.;CongG.;LuY.-C.J. Phys. Chem. C2016,120,6459.
doi: 10.1021/acs.jpcc.6b00984 |
654 |
YaoK. P. C.;RischM.;SayedS. Y.;LeeY.-L.;HardingJ. R.;GrimaudA.;PourN.;XuZ.;ZhouJ.;MansourA.;et alEnergy Environ. Sci.2015,8,2417.
doi: 10.1039/C5EE00967G |
655 |
MaS.;WuY.;WangJ.;ZhangY.;ZhangY.;YanX.;WeiY.;LiuP.;WangJ.;JiangK.;et alNano Lett.2015,15,8084.
doi: 10.1021/acs.nanolett.5b03510 |
656 |
McCloskeyB. D.;SchefflerR.;SpeidelA.;BethuneD. S.;ShelbyR. M.;LuntzA. C.J. Am. Chem. Soc.2011,133,18038.
doi: 10.1021/ja207229n |
657 |
ZhangX.;WangX.-G.;XieZ.;ZhouZ.Green Energy Environ.2016,1,4.
doi: 10.1016/j.gee.2016.04.004 |
658 |
GaoX.;ChenY.;JohnsonL.;BruceP. G.Nat. Mater.2016,15,882.
doi: 10.1038/nmat4629 |
659 |
ZhuY. G.;JiaC.;YangJ.;PanF.;HuangQ.;WangQ.Chem. Commun.2015,51,9451.
doi: 10.1039/c5cc01616a |
660 |
ZhuY. G.;GohF. W. T.;YanR.;WuS.;AdamsS.;WangQ.Phys. Chem. Chem. Phys.2018,20,27930.
doi: 10.1039/c8cp04744h |
661 |
ChenY.;FreunbergerS. A.;PengZ.;FontaineO.;BruceP. G.Nat. Chem.2013,5,489.
doi: 10.1038/nchem.1646 |
662 |
BergnerB. J.;SchurmannA.;PepplerK.;GarsuchA.;JanekJ.J. Am. Chem. Soc.2014,136,15054.
doi: 10.1021/ja508400m |
663 |
KwakW.-J.;HirshbergD.;SharonD.;ShinH.-J.;AfriM.;ParkJ.-B.;GarsuchA.;ChesneauF. F.;FrimerA. A.;AurbachD.;et alJ. Mater. Chem. A2015,3,8855.
doi: 10.1039/c5ta01399b |
664 |
ZhangW.;ShenY.;SunD.;HuangZ.;ZhouJ.;YanH.;HuangY.Nano Energy2016,30,43.
doi: 10.1016/j.nanoen.2016.09.031 |
665 |
QiaoY.;WuS.;SunY.;GuoS.;YiJ.;HeP.;ZhouH.ACS Energy Lett.2017,2,1869.
doi: 10.1021/acsenergylett.7b00462 |
666 |
LiuT.;LeskesM.;YuW.;MooreA. J.;ZhouL.;BayleyP. M.;KimG.;GreyC. P.Science2015,350,530.
doi: 10.1126/science.aac7730 |
667 |
TułodzieckiM.;LeverickG. M.;AmanchukwuC. V.;KatayamaY.;KwabiD. G.;BardéF.;HammondP. T.;Shao-HornY.Energy Environ. Sci.2017,10,1828.
doi: 10.1039/c7ee00954b |
668 |
KwakW.-J.;HirshbergD.;SharonD.;AfriM.;FrimerA. A.;JungH.-G.;AurbachD.;SunY.-K.Energy Environ. Sci2016,9,2334.
doi: 10.1039/c6ee00700g |
669 |
LiangZ.;LuY. C.J. Am. Chem. Soc.2016,138,7574.
doi: 10.1021/jacs.6b01821 |
670 |
FengN.;HeP.;ZhouH.ChemSusChem2015,8,600.
doi: 10.1002/cssc.201403338 |
671 |
KunduD.;BlackR.;AdamsB.;NazarL. F.ACS Cent. Sci.2015,1,510.
doi: 10.1021/acscentsci.5b00267 |
672 |
ZhuY. G.;WangX.;JiaC.;YangJ.;WangQ.ACS Catal.2016,6,6191.
doi: 10.1021/acscatal.6b01478 |
673 |
LimH.-D.;LeeB.;ZhengY.;HongJ.;KimJ.;GwonH.;KoY.;LeeM.;ChoK.;KangK.Nat. Energy2016,1,16066.
doi: 10.1038/nenergy.2016.66 |
674 |
KwakW.-J.;FreunbergerS. A.;KimH.;ParkJ.;NguyenT. T.;JungH.-G.;ByonH. R.;SunY.-K.ACS Catal2019,9,9914.
doi: 10.1021/acscatal.9b01337 |
675 |
WuS.;QiaoY.;DengH.;HeY.;ZhouH.J. Phys. Chem. Lett.2018,9,6761.
doi: 10.1021/acs.jpclett.8b02899 |
676 |
MatsudaS.;MoriS.;HashimotoK.;NakanishiS.J. Phys. Chem. C2014,118,28435.
doi: 10.1021/jp5088465 |
677 |
YaoK. P. C.;FrithJ. T.;SayedS. Y.;BardéF.;OwenJ. R.;Shao-HornY.;Garcia-AraezN.J. Phys. Chem. C2016,120,16290.
doi: 10.1021/acs.jpcc.6b02932 |
678 |
ZhuC.;WangY.;ShuaiL.;TangY.;QiuM.;XieJ.;LiuJ.;WenW.;ChenH.;NanS.;et alChin. Chem. Lett.2020,31,1997.
doi: 10.1016/j.cclet.2019.11.046 |
679 |
SunD.;ShenY.;ZhangW.;YuL.;YiZ.;YinW.;WangD.;HuangY.;WangJ.;WangD.;et alJ. Am. Chem. Soc.2014,136,8941.
doi: 10.1021/ja501877e |
680 |
LaceyM. J.;FrithJ. T.;OwenJ. R.Electrochem. Commun.2013,26,74.
doi: 10.1016/j.elecom.2012.10.009 |
681 |
YangL.;FrithJ. T.;Garcia-AraezN.;OwenJ. R.Chem. Commun.2015,51,1705.
doi: 10.1039/c4cc09208b |
682 |
ZhangY.;WangL.;ZhangX.;GuoL.;WangY.;PengZ.Adv. Mater.2018,30,1705571.
doi: 10.1002/adma.201705571 |
683 |
ZhangP.;LiuL.;HeX.;LiuX.;WangH.;HeJ.;ZhaoY.J. Am. Chem. Soc.2019,141,6263.
doi: 10.1021/jacs.8b13568 |
684 |
WanH.;SunY.;LiZ.;WangW.;ZhuY.;QianY.Energy Storage Mater.2021,40,159.
doi: 10.1016/j.ensm.2021.05.007 |
685 |
WuS.;QinN.;ZhangH.;WeiC.;WangZ.;LuoW.;LiY.;WangH.;ZhangK.;WangQ.;et alChem. Commun.2022,58,1025.
doi: 10.1039/D1CC05538K |
686 |
XiongQ.;HuangG.;ZhangX. B.Angew. Chem. Int. Ed.2020,59,19311.
doi: 10.1002/anie.202009064 |
687 |
KoY.;ParkH.;KimJ.;LimH.-D.;LeeB.;KwonG.;LeeS.;BaeY.;ParkS. K.;KangK.Adv. Funct. Mater.2019,29
doi: 10.1002/adfm.201805623 |
688 |
WengW.;BarileC. J.;DuP.;AbouimraneA.;AssaryR. S.;GewirthA. A.;CurtissL. A.;AmineK.Electrochim. Acta2014,119,138.
doi: 10.1016/j.electacta.2013.12.027 |
689 |
MatsudaS.;HashimotoK.;NakanishiS.J. Phys. Chem. C2014,118,18397.
doi: 10.1021/jp504894e |
690 |
ZhuY. G.;LiuQ.;RongY.;ChenH.;YangJ.;JiaC.;YuL. J.;KartonA.;RenY.;XuX.;et alNat. Commun.2017,8,14308.
doi: 10.1038/ncomms14308 |
691 |
ZhuY.;GohF. W. T.;WangQ.Nano Mater. Sci.2019,1,173.
doi: 10.1016/j.nanoms.2019.02.008 |
692 |
ZhangX.;ZhangQ.;WangX. G.;WangC.;ChenY. N.;XieZ.;ZhouZ.Angew. Chem. Int. Ed.2018,57,12814.
doi: 10.1002/anie.201807985 |
693 |
HuangZ.;RenJ.;ZhangW.;XieM.;LiY.;SunD.;ShenY.;HuangY.Adv. Mater.2018,30,1803270.
doi: 10.1002/adma.201803270 |
694 |
HuangG.;HanJ.;YangC.;WangZ.;FujitaT.;HirataA.;ChenM.NPG Asia Mater.2018,10,1037.
doi: 10.1038/s41427-018-0095-5 |
695 |
LiuB.;XuW.;YanP.;KimS. T.;EngelhardM. H.;SunX.;MeiD.;ChoJ.;WangC.-M.;ZhangJ.-G.Adv. Energy Mater2017,7,1602605.
doi: 10.1002/aenm.201602605 |
696 |
LeeD. J.;LeeH.;KimY. J.;ParkJ. K.;KimH. T.Adv. Mater.2016,28,857.
doi: 10.1002/adma.201503169 |
697 |
KimB. G.;KimJ.-S.;MinJ.;LeeY.-H.;ChoiJ. H.;JangM. C.;FreunbergerS. A.;ChoiJ. W.Adv. Funct. Mater.2016,26,1747.
doi: 10.1002/adfm.201504437 |
698 |
YeL.;LiaoM.;SunH.;YangY.;TangC.;ZhaoY.;WangL.;XuY.;ZhangL.;WangB.;et alAngew. Chem. Int. Ed.2019,58,2437.
doi: 10.1002/anie.201814324 |
699 |
LiZ.;HuangX.;KongL.;QinN.;WangZ.;YinL.;LiY.;GanQ.;LiaoK.;GuS.;et alEnergy Storage Mater.2022,45,40.
doi: 10.1016/j.ensm.2021.11.037 |
700 |
LiY.;WangX.;DongS.;ChenX.;CuiG.Adv. Energy Mater.2016,6,1600751.
doi: 10.1002/aenm.201600751 |
701 |
ViswanathanV.;ThygesenK. S.;HummelshojJ. S.;NorskovJ. K.;GirishkumarG.;McCloskeyB. D.;LuntzA. C.J. Chem. Phys.2011,135,214704.
doi: 10.1063/1.3663385 |
702 |
LefèvreM.;ProiettiE.;JaouenF.;DodeletJ.-P. Science2009,324,71.
doi: 10.1126/science.1170051 |
703 |
KhetanA.;PitschH.;ViswanathanV.J. Phys. Chem. Lett.2014,5,2419.
doi: 10.1021/jz501154v |
704 |
KhetanA.;PitschH.;ViswanathanV.J. Phys. Chem. Lett.2014,5,1318.
doi: 10.1021/jz500485r |
705 |
AetukuriN. B.;McCloskeyB. D.;GarciaJ. M.;KruppL. E.;ViswanathanV.;LuntzA. C.Nat. Chem.2015,7,50.
doi: 10.1038/nchem.2132 |
706 |
KhetanA.;LuntzA.;ViswanathanV.J. Phys. Chem. Lett.2015,6,1254.
doi: 10.1021/acs.jpclett.5b00324 |
707 |
CaoL.;LvF.;LiuY.;WangW.;HuoY.;FuX.;SunR.;LuZ.Chem. Commun.2015,51,4364.
doi: 10.1039/C4CC09281C |
708 |
FreunbergerS. A.;ChenY.;PengZ.;GriffinJ. M.;HardwickL. J.;BardéF.;NovákP.;BruceP. G.J. Am. Chem. Soc.2011,133,8040.
doi: 10.1021/ja2021747 |
709 |
WalkerW.;GiordaniV.;UddinJ.;BryantsevV. S.;ChaseG. V.;AddisonD.J. Am. Chem. Soc.2013,135,2076.
doi: 10.1021/ja311518s |
710 |
UddinJ.;BryantsevV. S.;GiordaniV.;WalkerW.;ChaseG. V.;AddisonD.J. Phys. Chem. Lett.2013,4,3760.
doi: 10.1021/jz402025n |
711 |
ChenY.;FreunbergerS. A.;PengZ.;BardéF.;BruceP. G.J. Am. Chem. Soc.2012,134,7952.
doi: 10.1021/ja302178w |
712 |
SharonD.;HirsbergD.;AfriM.;GarsuchA.;FrimerA. A.;AurbachD.J. Phys. Chem. C2014,118,15207.
doi: 10.1021/jp506230v |
713 |
McCloskeyB. D.;BethuneD. S.;ShelbyR. M.;MoriT.;SchefflerR.;SpeidelA.;SherwoodM.;LuntzA. C.J. Phys. Chem. Lett.2012,3,3043.
doi: 10.1021/jz301359t |
714 |
AdamsB. D.;BlackR.;WilliamsZ.;FernandesR.;CuisinierM.;BergE. J.;NovakP.;MurphyG. K.;NazarL. F.Adv. Energy Mater.2015,5,1400867.
doi: 10.1002/aenm.201400867 |
715 |
SharonD.;SharonP.;HirshbergD.;SalamaM.;AfriM.;ShimonL. J. W.;KwakW.-J.;SunY.-K.;FrimerA. A.;AurbachD.J. Am. Chem. Soc.2017,139,11690.
doi: 10.1021/jacs.7b06414 |
716 |
HuangZ.;ZengH.;XieM.;LinX.;HuangZ.;ShenY.;HuangY.Angew. Chem. Int. Ed.2019,58,2345.
doi: 10.1002/anie.201812983 |
717 |
QiaoY.;WuS.;YiJ.;SunY.;GuoS.;YangS.;HeP.;ZhouH.Angew. Chem. Int. Ed.2017,56,4960.
doi: 10.1002/anie.201611122 |
718 |
YuW.;YangW.;LiuR.;QinL.;LeiY.;LiuL.;ZhaiD.;LiB.;KangF.Electrochem. Commun.2017,79,68.
doi: 10.1016/j.elecom.2017.04.020 |
719 |
GaoX.;JovanovZ. P.;ChenY.;JohnsonL. R.;BruceP. G.Angew. Chem. Int. Ed.2017,56,6539.
doi: 10.1002/anie.201702432 |
720 |
MitchellR. R.;GallantB. M.;ThompsonC. V.;Shao-HornY.Energy Environ. Sci.2011,4,2952.
doi: 10.1039/C1EE01496J |
721 |
HartmannP.;BenderC. L.;VracarM.;DurrA. K.;GarsuchA.;JanekJ.;AdelhelmP.Nat. Mater.2013,12,228.
doi: 10.1038/nmat3486 |
722 |
SunB.;PompeC.;DongmoS.;ZhangJ. Q.;KretschmerK.;SchroderD.;JanekJ.;WangG. X.Adv. Mater. Technol.2018,3,1800110.
doi: 10.1002/admt.201800110 |
723 |
WangJ. Q.;NiY. X.;LiuJ. X.;LuY.;ZhangK.;NiuZ. Q.;ChenJ.ACS Cent. Sci.2020,6,1955.
doi: 10.1021/acscentsci.0c00849 |
724 |
YadegariH.;BanisM. N.;XiaoB. W.;SunQ.;LiX.;LushingtonA.;WangB. Q.;LiR. Y.;ShamT. K.;CuiX. Y.;et alChem. Mater.2015,27,3040.
doi: 10.1021/acs.chemmater.5b00435 |
725 |
BenderC. L.;HartmannP.;VracarM.;AdelhelmP.;JanekJ.Adv. Energy Mater.2014,4,1301863.
doi: 10.1002/aenm.201301863 |
726 |
LeeB.;SeoD. H.;LimH. D.;ParkI.;ParkK. Y.;KimJ.;KangK.Chem. Mater.2014,26,1048.
doi: 10.1021/cm403163c |
727 |
KangS.;MoY.;OngS. P.;CederG.Nano Lett.2014,14,1016.
doi: 10.1021/nl404557w |
728 |
YadegariH.;SunQ.;SunX.Adv. Mater.2016,28,7065.
doi: 10.1002/adma.201504373 |
729 |
XiaC.;BlackR.;FernandesR.;AdamsB.;NazarL. F.Nat. Chem.2015,7,496.
doi: 10.1038/nchem.2260 |
730 |
WuS. C.;QiaoY.;JiangK. Z.;HeY. B.;GuoS. H.;ZhouH. S.Adv. Funct. Mater.2018,28,1706374.
doi: 10.1002/adfm.201706374 |
731 |
MaJ. L.;MengF. L.;YuY.;LiuD. P.;YanJ. M.;ZhangY.;ZhangX. B.;JiangQ.Nat. Chem.2019,11,64.
doi: 10.1038/s41557-018-0166-9 |
732 |
LutzL.;YinW.;GrimaudA.;Alves Dalla CorteD.;TangM.;JohnsonL.;AzacetaE.;Sarou-KanianV.;NaylorA. J.;HamadS.;et alJ. Phys. Chem. C2016,120,20068.
doi: 10.1021/acs.jpcc.6b07659 |
733 |
Ortiz VitorianoN.;Ruiz de LarramendiI.;SacciR. L.;LozanoI.;BridgesC. A.;ArcelusO.;EnterríaM.;CarrascoJ.;RojoT.;VeithG. M.Energy Storage Mater.2020,29,235.
doi: 10.1016/j.ensm.2020.04.034 |
734 |
HeM.;LauK. C.;RenX.;XiaoN.;McCullochW. D.;CurtissL. A.;WuY.Angew. Chem. Int. Ed.2016,55,15310.
doi: 10.1002/anie.201608607 |
735 |
RenX.;WuY.J. Am. Chem. Soc.2013,135,2923.
doi: 10.1021/ja312059q |
736 |
RenX.;LauK. C.;YuM.;BiX.;KreidlerE.;CurtissL. A.;WuY.ACS Appl. Mater. Interfaces2014,6,19299.
doi: 10.1021/am505351s |
737 |
McCullochW. D.;RenX.;YuM.;HuangZ.;WuY.ACS Appl. Mater. Interfaces2015,7,26158.
doi: 10.1021/acsami.5b08037 |
738 |
YuW.;LauK. C.;LeiY.;LiuR.;QinL.;YangW.;LiB.;CurtissL. A.;ZhaiD.;KangF.ACS Appl. Mater. Interfaces2017,9,31871.
doi: 10.1021/acsami.7b08962 |
739 |
LeiY.;ChenY. C.;WangH. W.;HuJ. Y.;HanD.;DongJ. H.;XuW. X.;LiX. J.;WangY. X.;WuY. Y.;et alACS Appl. Mater. Interfaces2020,12,37027.
doi: 10.1021/acsami.0c06894 |
740 |
CongG.;WangW.;LaiN. C.;LiangZ.;LuY. C.Nat. Mater.2019,18,390.
doi: 10.1038/s41563-019-0286-7 |
741 |
ChenY.;JovanovZ. P.;GaoX.;LiuJ.;HolcC.;JohnsonL. R.;BruceP. G.J. Electroanal. Chem.2018,819,542.
doi: 10.1016/j.jelechem.2018.03.041 |
742 |
SankarasubramanianS.;RamaniV.J. Phys. Chem. C2018,122,19319.
doi: 10.1021/acs.jpcc.8b03755 |
743 |
WangW.;LaiN. C.;LiangZ.;WangY.;LuY. C.Angew. Chem. Int. Ed.2018,57,5042.
doi: 10.1002/anie.201801344 |
744 |
XiaoN.;RooneyR. T.;GewirthA. A.;WuY.Angew. Chem. Int. Ed.2018,57,1227.
doi: 10.1002/anie.201710454 |
745 |
QinL.;XiaoN.;ZhangS.;ChenX.;WuY.Angew. Chem. Int. Ed.2020,59,10498.
doi: 10.1002/anie.202003481 |
746 |
WangW.;LuY.-C.ACS Energy Lett2020,3804.
doi: 10.1021/acsenergylett.0c01997 |
747 |
SunY.;LiuX.;JiangY.;LiJ.;DingJ.;HuW.;ZhongC.J. Mater. Chem. A2019,7,18183.
doi: 10.1039/c9ta05094a |
748 |
ChenX.;AliI.;SongL.;SongP.;ZhangY.;MariaS.;NazmusS.;YangW.;DhakalH. N.;LiH.;et alRenew. Sustain. Energy Rev.2020,134,110085.
doi: 10.1016/j.rser.2020.110085 |
749 |
MeiJ.;LiaoT.;LiangJ.;QiaoY.;DouS. X.;SunZ.Adv. Energy Mater.2019,10,1901997.
doi: 10.1002/aenm.201901997 |
750 |
ZhaoC. X.;LiuJ. N.;YaoN.;WangJ.;RenD.;ChenX.;LiB. Q.;ZhangQ.Angew. Chem. Int. Ed.2021,60,15281.
doi: 10.1002/anie.202104171 |
751 |
LaiY.;WangQ.;WangM.;LiJ.;FangJ.;ZhangZ.J. Electroanal. Chem.2017,801,72.
doi: 10.1016/j.jelechem.2017.07.034 |
752 |
BrillasE.;SauledaR.;CasadoJ.Electrochem. Solid-State Lett.1998,1,168.
doi: 10.1149/1.1390674 |
753 |
BawolP. P.;ReinsbergP. H.;Koellisch-MirbachA.;BondueC. J.;BaltruschatH.ChemSusChem2021,14,428.
doi: 10.1002/cssc.202001605 |
754 |
LiD.;ZhuC.;ZhangM.;WangY.;KangZ.;LiuY.;LiuJ.;LiuJ.;XieH.Chem. Eng. J.2021,408,127335.
doi: 10.1016/j.cej.2020.127335 |
755 |
LiuF.;ChungH.-J.;ElliottJ. A. W.ACS Appl. Energy Mater.2018,1,1489.
doi: 10.1021/acsaem.7b00307 |
756 |
KatsoufisP.;MylonaV.;PolitisC.;AvgouropoulosG.;LianosP.J. Power Sources2020,450,227624.
doi: 10.1016/j.jpowsour.2019.227624 |
757 |
TongF.;ChenX.;WangQ.;WeiS.;GaoW.J. Alloy. Compd.2021,857,157579.
doi: 10.1016/j.jallcom.2020.157579 |
758 |
LiangZ.;LuY. C.Batteries Supercaps2021,4,1588.
doi: 10.1002/batt.202100028 |
759 |
HardwickL. J.;de LeónC. P.Johns. Matthey Technol. Rev.2018,62,134.
doi: 10.1595/205651318x696729 |
760 |
LiuX.;FanX.;LiuB.;DingJ.;DengY.;HanX.;ZhongC.;HuW.Adv. Mater.2021,33,e2006461.
doi: 10.1002/adma.202006461 |
761 |
LinM.-H.;HuangC.-J.;ChengP.-H.;ChengJ.-H.;WangC.-C.J. Mater. Chem. A2020,8,20637.
doi: 10.1039/d0ta06929a |
762 |
KhezriR.;HosseiniS.;LahiriA.;MotlaghS. R.;NguyenM. T.;YonezawaT.;KheawhomS.Int. J. Mol. Sci.2020,21,7303.
doi: 10.3390/ijms21197303 |
763 |
WangH.-F.;TangC.;ZhangQ.Adv. Funct. Mater.2018,28,1803329.
doi: 10.1002/adfm.201803329 |
764 |
WangS. B.;RanQ.;YaoR. Q.;ShiH.;WenZ.;ZhaoM.;LangX. Y.;JiangQ.Nat. Commun.2020,11,1634.
doi: 10.1038/s41467-020-15478-4 |
765 |
LeeS.-M.;KimY.-J.;EomS.-W.;ChoiN.-S.;KimK.-W.;ChoS.-B.J. Power Sources2013,227,177.
doi: 10.1016/j.jpowsour.2012.11.046 |
766 |
LiuP.;ZhangZ.;HaoR.;HuangY.;LiuW.;TanY.;LiP.;YanJ.;LiuK.Chem. Eng. J.2021,403,126425.
doi: 10.1016/j.cej.2020.126425 |
767 |
WangP.;ZhaoF.;ChangH.;SunQ.;ZhangZ.J. Mater. Sci.-Mater. Electron.2020,31,17953.
doi: 10.1007/s10854-020-04347-x |
768 |
HosseiniS.;AbbasiA.;UginetL. O.;HaustraeteN.;PraserthdamS.;YonezawaT.;KheawhomS.Sci. Rep.2019,9,14958.
doi: 10.1038/s41598-019-51412-5 |
769 |
RiedeJ.-C.;TurekT.;KunzU.Electrochim. Acta2018,269,217.
doi: 10.1016/j.electacta.2018.02.110 |
770 |
SunW.;WangF.;ZhangB.;ZhangM.;KupersV.;JiX.;TheileC.;BiekerP.;XuK.;WangC.;et alScience2021,371,46.
doi: 10.1126/science.abb9554 |
771 |
HuangS.;ZhangH.;ZhuangJ.;ZhouM.;GaoM.;ZhangF.;WangQ.Adv. Energy Mater.2022,12,2103622.
doi: 10.1002/aenm.202103622 |
772 |
DaiY.;YuJ.;TanP.;ChengC.;LiuT.;ZhaoS.;ShaoZ.;ZhaoT.;NiM.J. Power Sources2022,525,231108.
doi: 10.1016/j.jpowsour.2022.231108 |
773 |
TianW.-W.;RenJ.-T.;LvX.-W.;YuanZ.-Y.Chem. Eng. J2022,431,133210.
doi: 10.1016/j.cej.2021.133210 |
774 | Tang, K.; Hu, H.; Xiong, Y.; Chen, L.; Zhang, J.; Yuan, C.; Wu, M. Angew. Chem. Int. Ed. 2022, 61, e202202671. doi: 10.1002/anie.202202671 |
775 |
NiuW.;LiZ.;MarcusK.;ZhouL.;LiY.;YeR.;LiangK.;YangY.Adv. Energy Mater.2018,8,1701642.
doi: 10.1002/aenm.201701642 |
776 |
LiuW.;ZhangJ.;BaiZ.;JiangG.;LiM.;FengK.;YangL.;DingY.;YuT.;ChenZ.;et alAdv. Funct. Mater.2018,28,1706675.
doi: 10.1002/adfm.201706675 |
777 |
WangF.;ZhaoH.;MaY.;YangY.;LiB.;CuiY.;GuoZ.;WangL.J. Energy Chem.2020,50,52.
doi: 10.1016/j.jechem.2020.03.006 |
778 |
LiC. S.;SunY.;GebertF.;ChouS. L.Adv. Energy Mater.2017,7,1700869.
doi: 10.1002/aenm.201700869 |
779 |
ShigaT.;HaseY.;KatoY.;InoueM.;TakechiK.Chem. Commun.2013,49,9152.
doi: 10.1039/c3cc43477j |
780 |
LeongK. W.;WangY.;PanW.;LuoS.;ZhaoX.;LeungD. Y. C.J. Power Sources2021,506,230144.
doi: 10.1016/j.jpowsour.2021.230144 |
781 |
SonS. B.;GaoT.;HarveyS. P.;SteirerK. X.;StokesA.;NormanA.;WangC.;CresceA.;XuK.;BanC.Nat. Chem.2018,10,532.
doi: 10.1038/s41557-018-0019-6 |
782 |
LiQ.;XiongW.;YuS.;LiuY.;LiJ.;LiuL.;BiX.;ZhuG.;LiuE.;ZhaoY.;et alJ. Mater. Sci.2021,56,12789.
doi: 10.1007/s10853-021-06135-2 |
783 |
DeyabM. A.J. Power Sources2016,325,98.
doi: 10.1016/j.jpowsour.2016.06.006 |
784 |
NakatsugawaI.;ChinoY.Mater. Trans.2020,61,200.
doi: 10.2320/matertrans.MT-M2019259 |
785 |
LiW.;LiC.;ZhouC.;MaH.;ChenJ.Angew. Chem. Int. Ed.2006,45,6009.
doi: 10.1002/anie.200600099 |
786 |
DongQ.;YaoX.;LuoJ.;ZhangX.;HwangH.;WangD.Chem. Commun.2016,52,13753.
doi: 10.1039/c6cc07818d |
787 |
ZhangY.;GengH.;WeiW.;MaJ.;ChenL.;LiC. C.Energy Storage Mater.2019,20,118.
doi: 10.1016/j.ensm.2018.11.033 |
788 |
WuQ.;ShuK.;SunL.;WangH.Front. Mater.2021,7,612134.
doi: 10.3389/fmats.2020.612134 |
789 |
YangL.;WuY.;ChenS.;XiaoY.;ChenS.;ZhengP.;WangJ.;QuJ.-E.Mater. Chem. Phys2021,257,123787.
doi: 10.1016/j.matchemphys.2020.123787 |
790 |
WangY.;PanW.;KwokH. Y. H.;ZhangH.;LuX.;LeungD. Y. C.J. Power Sources2019,437,226896.
doi: 10.1016/j.jpowsour.2019.226896 |
791 |
WuZ.;ZhangH.;QinK.;ZouJ.;QinK.;BanC.;CuiJ.;NagaumiH.J. Mater. Sci.2020,55,11545.
doi: 10.1007/s10853-020-04755-8 |
792 |
FanL.;LuH.;LengJ.Electrochim. Acta2015,165,22.
doi: 10.1016/j.electacta.2015.03.002 |
793 |
HosseiniS.;LiuZ.-Y.;ChuanC.-T.;SoltaniS. M.;LanjapalliV. V. K.;LiY.-Y.Electrochim. Acta2021,375,137995.
doi: 10.1016/j.electacta.2021.137995 |
794 |
YuJ.;HuZ.;DuZ.J. Electrochem. Soc.2020,167,140514.
doi: 10.1149/1945-7111/abc10b |
795 |
FanL.;LuH.;LengJ.;SunZ.;ChenC.J. Power Sources2015,299,66.
doi: 10.1016/j.jpowsour.2015.08.095 |
796 |
YuS.;YangX.;LiuY.;ZhanF.;WenQ.;LiJ.;LiW.Ionics2020,26,5045.
doi: 10.1007/s11581-020-03618-1 |
797 |
ChengH.;WangT.;LiZ.;GuoC.;LaiJ.;TianZ.ACS Appl. Mater. Interfaces2021,13,51726.
doi: 10.1021/acsami.1c14829 |
798 |
MaY.;SumbojaA.;ZangW.;YinS.;WangS.;PennycookS. J.;KouZ.;LiuZ.;LiX.;WangJ.ACS Appl. Mater. Interfaces2019,11,1988.
doi: 10.1021/acsami.8b14840 |
799 |
WangJ.;LuH.;HongQ.;CaoY.;LiX.;BaiJ.Chem. Eng. J.2017,330,1342.
doi: 10.1016/j.cej.2017.08.072 |
800 |
CaoY.;LuH.;XuB.;YangW.;HongQ.Chem. Eng. J.2019,378,122247.
doi: 10.1016/j.cej.2019.122247 |
801 |
GuoT.;QinX.;GaoX.;HouL.;LiJ.;LiX.;LeiT.;LvJ.Fuller. Nanotub. Carbon Nanostruct.2019,27,299.
doi: 10.1080/1536383x.2018.1562445 |
802 |
LichtS.;CuiB.;StuartJ.;WangB.;LauJ.Energy Environ. Sci.2013,6,3646.
doi: 10.1039/c3ee42654h |
803 |
WeinrichH.;ComeJ.;TempelH.;KunglH.;EichelR.-A.;BalkeN.Nano Energy2017,41,706.
doi: 10.1016/j.nanoen.2017.10.023 |
804 |
TrinhT. A.;BuiT. H.J. Mater. Eng. Perform.2020,29,1245.
doi: 10.1007/s11665-020-04677-1 |
805 |
TianB.;ŚwiatowskaJ.;MauriceV.;ZannaS.;SeyeuxA.;MarcusP.Electrochim. Acta2018,259,196.
doi: 10.1016/j.electacta.2017.10.136 |
806 |
CuiB.;LichtS.J. Mater. Chem. A2014,2,10577.
doi: 10.1039/c4ta01290a |
807 |
PengC.;GuanC.;LinJ.;ZhangS.;BaoH.;WangY.;XiaoG.;ChenG. Z.;WangJ.ChemSusChem2018,11,1880.
doi: 10.1002/cssc.201800237 |
808 |
KongL.;TangC.;PengH. J.;HuangJ. Q.;ZhangQ.SmartMat2020,1,e1007.
doi: 10.1002/smm2.1007 |
809 |
PengX. W.;LiT. Z.;ZhongL. X.;LuJ.SmartMat2021,2,123.
doi: 10.1002/smm2.1044 |
810 |
LiT. Z.;PengX. W.;CuiP.;ShiG.;YangW.;ChenZ. H.;HuangY. F.;ChenY. F.;PengJ. Y.;ZouR.;et alSmartMat2021,2,519.
doi: 10.1002/smm2.1076 |
811 |
ZhouJ. W.;ChengJ. L.;WangB.;PengH. S.;LuJ.Energy Environ. Sci.2020,13,1933.
doi: 10.1039/D0EE00039F |
812 |
WuK. Z.;ZhangL.;YuanY. F.;ZhongL. X.;ChenZ. X.;ChiX.;LuH.;ChenZ. H.;ZouR.;LiT. Z.;et alAdv. Mater.2020,32,2002292.
doi: 10.1002/adma.202002292 |
813 |
YeL.;HongY.;LiaoM.;WangB. J.;WeiD. C.;PengH. S.;YeL.;HongY.;LiaoM.;WangB.;et alEnergy Storage Mater.2020,28,364.
doi: 10.1016/j.ensm.2020.03.015 |
814 |
CaoL. S.;LiD.;PollardT.;DengT.;ZhangB.;YangC. Y.;ChenL.;VatamanuJ.;HuE. Y.;HourwitzM. J.;et alNat. Nanotechnol.2021,16,902.
doi: 10.1038/s41565-021-00905-4 |
815 |
HuangG.;WangJ.;ZhangX. B.ACS Cent. Sci.2020,6,2136.
doi: 10.1021/acscentsci.0c01069 |
816 |
MoF. N.;LiangG. J.;HuangZ. D.;LiH. F.;WangD. H.;ZhiC. Y.Adv. Mater.2020,32,1902151.
doi: 10.1002/adma.201902151 |
817 |
HuangX. Y.;LiuJ.;DingJ.;DengY. D.;HuW. B.;ZhongC.ACS Omega2019,4,19341.
doi: 10.1021/acsomega.9b02740 |
818 |
WangZ. Q.;MengX. Y.;WuZ. Q.;MitraS.J. Energy Chem.2017,26,129.
doi: 10.1016/j.jechem.2016.08.007 |
819 |
TanP.;ChenB.;XuH. R.;ZhangH. C.;CaiW. Z.;NiM.;LiuM. L.;ShaoZ. P.Energy Environ. Sci.2017,10,2056.
doi: 10.1039/C7EE01913K |
820 |
MiaoH.;ChenB.;LiS. H.;WuX. Y.;WangQ.;ZhangC. F.;SunZ. X.;LiH.J. Power Sources2020,450,227653.
doi: 10.1016/j.jpowsour.2019.227653 |
821 |
LiuT.;YangX. Y.;ZhangX. B.Adv. Mater. Technol.2020,5,2000476.
doi: 10.1002/admt.202000476 |
822 |
LeeS. H.;ParkJ. B.;LimH. S.;SunY. K.Adv. Energy Mater.2017,7,1602417.
doi: 10.1002/aenm.201602417 |
823 |
YangQ.;LiQ.;LiuZ.;WangD.;GuoY.;LiX.;TangY.;LiH.;DongB.;ZhiC.Adv. Mater.2020,32,e2001854.
doi: 10.1002/adma.202001854 |
824 |
LiL.;ChenH.;HeE.;WangL.;YeT. T.;LuJ.;JiaoY. D.;WangJ. C.;GaoR.;PengH. S.Angew. Chem. Int. Ed.2021,133,15445.
doi: 10.1002/ange.202104536 |
825 |
LiY.;ZhongC.;LiuJ.;ZengX.;QuS.;HanX.;DengY.;HuW.;LuJ.Adv. Mater.2018,30,1703657.
doi: 10.1002/adma.201703657 |
826 |
MengF. L.;ZhongH. X.;BaoD.;YanJ. M.;ZhangX. B.J. Am. Chem. Soc.2016,138,10226.
doi: 10.1021/jacs.6b05046 |
827 |
WuW. G.;HuangL.;LiY. M.;LiM. L.;ChenY.;YangY.;ChenX. D.;WuY. Y.;GuL.;CaoX. B.Adv. Mater. Technol.2021,7,2100708.
doi: 10.1002/admt.202100708 |
828 |
LiuQ. C.;ChangZ. W.;LiZ. J.;ZhangX. B.Small Methods2018,2,1700231.
doi: 10.1002/smtd.201700231 |
829 |
XuN. N.;WilsonJ. A.;WangY. D.;SuT. S.;WeiY. N.;QiaoJ. L.;ZhouX. D.;ZhangY. X.;SunS. H.Appl. Catal. B: Environ.2020,272,118953.
doi: 10.1016/j.apcatb.2020.118953 |
830 |
BlackR.;OhS. H.;LeeJ. H.;YimT.;AdamsB.;NazarL. F.J. Am. Chem. Soc.2012,134,2902.
doi: 10.1021/ja2111543 |
831 |
LiuX.;WangL.;YuP.;TianC. G.;SunF. F.;MaJ. Y.;LiW.;FuH. G.Angew. Chem.2018,130,16398.
doi: 10.1002/ange.201809009 |
832 |
LiK.;HuZ.;MaJ.;ChenS.;MuD.;ZhangJ.Adv. Mater.2019,31,1902399.
doi: 10.1002/adma.201902399 |
833 |
WuZ.;XuJ.;ZhangQ.;WangH.;YeS.;WangY.;LaiC.Energy Storage Mater.2018,10,62.
doi: 10.1016/j.ensm.2017.08.010 |
834 |
LiK.;ChenS.;ChenS.;LiuX.;PanW.;ZhangJ.Nano Res.2019,12,549.
doi: 10.1007/s12274-018-2251-1 |
835 |
TianH.;GaoT.;LiX.;WangX.;LuoC.;FanX.;YangC.;SuoL.;MaZ.;HanW.;et alNat. Commun.2017,8,14083.
doi: 10.1038/ncomms14083 |
836 |
ZhangS.;TanX.;MengZ.;TianH.;XuF.;HanW.J. Mater. Chem. A2018,6,9984.
doi: 10.1039/C8TA00675J |
837 |
ZhangQ.;WuZ.;LiuF.;LiuS.;LiuJ.;WangY.;YanT.J. Mater. Chem. A2017,5,15235.
doi: 10.1039/c7ta04246a |
838 |
BaiC.;CaiF.;WangL.;GuoS.;LiuX.;YuanZ.Nano Res.2018,11,3548.
doi: 10.1007/s12274-017-1920-9 |
839 |
GongD.;WangB.;ZhuJ.;PodilaR.;RaoA. M.;YuX.;XuZ.;LuB.Adv. Energy Mater.2017,7,1601885.
doi: 10.1002/aenm.201601885 |
840 |
LiW.;WangK.;JiangK.J. Mater. Chem. A2020,8,3785.
doi: 10.1039/C9TA13081K |
841 |
LiX.;LiN.;HuangZ.;ChenZ.;LiangG.;YangQ.;LiM.;ZhaoY.;MaL.;DongB.;et alAdv. Mater.2021,33,2006897.
doi: 10.1002/adma.202006897 |
842 |
TianH.;ZhangS.;MengZ.;HeW.;HanW.ACS Energy Lett.2017,2,1170.
doi: 10.1021/acsenergylett.7b00160 |
843 |
YuD.;KumarA.;NguyenT. A.;NazirM. T.;YasinG.ACS Sustain. Chem. Eng.2020,8,13769.
doi: 10.1021/acssuschemeng.0c04571 |
844 |
XuJ.;WangJ.;GeL.;SunJ.;MaW.;RenM.;CaiX.;LiuW.;YaoJ.J. Colloid Interface Sci.2022,610,98.
doi: 10.1016/j.jcis.2021.12.043 |
845 |
WangF.;TsengJ.;LiuZ.;ZhangP.;WangG.;ChenG.;WuW.;YuM.;WuY.;FengX.Adv. Mater.2020,32,2000287.
doi: 10.1002/adma.202000287 |
846 |
LuK.;HuZ.;MaJ.;MaH.;DaiL.;ZhangJ.Nat. Commun.2017,8,527.
doi: 10.1038/s41467-017-00649-7 |
847 |
YamamotoT.J. Chem. Soc. Chem. Commun.1981,187.
doi: 10.1039/C39810000187 |
848 |
ZengX.;MengX.;JiangW.;LiuJ.;LingM.;YanL.;LiangC.ACS Sustain. Chem. Eng.2020,8,14280.
doi: 10.1021/acssuschemeng.0c05283 |
849 |
ZhangQ.;ZengY.;YeS.;LiuS.J. Power Sources2020,463,228212.
doi: 10.1016/j.jpowsour.2020.228212 |
850 |
MengZ.;TianH.;ZhangS.;YanX.;YingH.;HeW.;LiangC.;ZhangW.;HouX.;HanW.ACS Appl. Mater. Interfaces2018,10,17933.
doi: 10.1021/acsami.8b03212 |
851 |
TangX.;ZhouD.;LiP.;GuoX.;WangC.;KangF.;LiB.;WangG.ACS Cent. Sci.2019,5,365.
doi: 10.1021/acscentsci.8b00921 |
852 |
AnjuV. G.;AusteriaM. P.;SampathS.Adv. Mater. Interfaces2017,4,1700151.
doi: 10.1002/admi.201700151 |
853 |
WuZ. Z.;WangS. Y.;WangR. Y.;LiuJ.;YeS. H.J. Electrochem. Soc.2018,165,A1156.
doi: 10.1149/2.0121807jes |
854 |
RenY. X.;ZhaoT. S.;JiangH. R.;WuM. C.;LiuM.J. Power Sources2017,347,136.
doi: 10.1016/j.jpowsour.2017.02.068 |
855 |
SuZ.;TongC.;HeD.;LaiC.;LiuL.;WangC.;XiK.J. Mater. Chem. A2016,4,8541.
doi: 10.1039/C6TA00706F |
856 |
SunC.;ShiX.;ZhangY.;LiangJ.;QuJ.;LaiC.ACS Nano2020,14,1176.
doi: 10.1021/acsnano.9b09541 |
857 |
ZhaoQ.;LuY.;ZhuZ.;TaoZ.;ChenJ.Nano Lett.2015,15,5982.
doi: 10.1021/acs.nanolett.5b02116 |
858 |
LiuZ.;HuW.;GaoF.;DengH.J. Mater. Chem. A2018,6,7807.
doi: 10.1039/C8TA00356D |
859 |
ZhangT.;LiaoK.;HeP.;ZhouH.Energy Environ. Sci.2016,9,1024.
doi: 10.1039/C5EE02803E |
860 |
ChenQ.;ChenS.;ZhaoL.;MaJ.;WangH.;ZhangJ.Chem. Eng. J.2022,431,133961.
doi: 10.1016/j.cej.2021.133961 |
861 |
LiuF.-C.;LiuW.-M.;ZhanM.-H.;FuZ.-W.;LiH.Energy Environ. Sci.2011,4,1261.
doi: 10.1039/C0EE00528B |
862 |
LiW.;DahnJ. R.;WainwrightD. S.Science1994,264,1115.
doi: 10.1126/science.264.5162.1115 |
863 |
WessellsC.;RuffοR.;HugginsR. A.;CuiY.Electrochem. Solid-State Lett.2010,13,A59.
doi: 10.1149/1.3329652 |
864 |
ZhaoM.;HuangG.;QuF.;WangF.;SongX.Electrochim. Acta2015,151,50.
doi: 10.1016/j.electacta.2014.10.148 |
865 |
GordonD.;WuM. Y.;RamanujapuramA.;BensonJ.;LeeJ. T.;MagasinskiA.;NittaN.;HuangC.;YushinG.Adv. Energy Mater.2016,6,1501805.
doi: 10.1002/aenm.201501805 |
866 |
GuoZ.;ChenL.;WangY.;WangC.;XiaY.ACS Sustain. Chem. Eng.2017,5,1503.
doi: 10.1021/acssuschemeng.6b02127 |
867 |
BinD.;WenY.;WangY.;XiaY.J. Energy Chem.2018,27,1521.
doi: 10.1016/j.jechem.2018.06.004 |
868 |
EftekhariA.Adv. Energy Mater.2018,8,1801156.
doi: 10.1002/aenm.201801156 |
869 |
StojkovićI. B.;CvjetićaninN. D.;MentusS. V.Electrochem. Commun.2010,12,371.
doi: 10.1016/j.elecom.2009.12.037 |
870 |
SuoL.;BorodinO.;GaoT.;OlguinM.;HoJ.;FanX.;LuoC.;WangC.;XuK.Science2015,350,938.
doi: 10.1126/science.aab1595 |
871 |
SuoL.;BorodinO.;SunW.;FanX.;YangC.;WangF.;GaoT.;MaZ.;SchroederM.;von CresceA.Angew. Chem.2016,128,7252.
doi: 10.1002/ange.201602397 |
872 |
YamadaY.;UsuiK.;SodeyamaK.;KoS.;TateyamaY.;YamadaA.Nat. Energy2016,1,16129.
doi: 10.1038/nenergy.2016.129 |
873 |
KoS.;YamadaY.;MiyazakiK.;ShimadaT.;WatanabeE.;TateyamaY.;KamiyaT.;HondaT.;AkikusaJ.;YamadaA.Electrochem. Commun.2019,104,106488.
doi: 10.1016/j.elecom.2019.106488 |
874 |
ChenL.;ZhangJ.;LiQ.;VatamanuJ.;JiX.;PollardT. P.;CuiC.;HouS.;ChenJ.;YangC.ACS Energy Lett.2020,5,968.
doi: 10.1021/acsenergylett.0c00348 |
875 |
LuoJ.-Y.;CuiW.-J.;HeP.;XiaY.-Y.Nat. Chem2010,2,760.
doi: 10.1038/nchem.763 |
876 |
ChenL.;CaoL.;JiX.;HouS.;LiQ.;ChenJ.;YangC.;EidsonN.;WangC.Nat. Commun.2020,11,2638.
doi: 10.1038/s41467-020-16460-w |
877 |
ShangY.;ChenN.;LiY.;ChenS.;LaiJ.;HuangY.;QuW.;WuF.;ChenR.Adv. Mater.2020,32,2004017.
doi: 10.1002/adma.202004017 |
878 |
WangF.;BorodinO.;DingM. S.;GobetM.;VatamanuJ.;FanX.;GaoT.;EidsonN.;LiangY.;SunW.Joule2018,2,927.
doi: 10.1016/j.joule.2018.02.011 |
879 |
JaumauxP.;YangX.;ZhangB.;SafaeiJ.;TangX.;ZhouD.;WangC.;WangG.Angew. Chem. Int. Ed.2021,60,19965.
doi: 10.1002/anie.202107389 |
880 |
XieJ.;LiangZ.;LuY.-C.Nat. Mater2020,19,1006.
doi: 10.1038/s41563-020-0667-y |
881 |
SuoL.;OhD.;LinY.;ZhuoZ.;BorodinO.;GaoT.;WangF.;KushimaA.;WangZ.;KimH.-C.J. Am. Chem. Soc2017,139,18670.
doi: 10.1021/jacs.7b10688 |
882 |
YueJ.;ZhangJ.;TongY.;ChenM.;LiuL.;JiangL.;LvT.;HuY.-S.;LiH.;HuangX.Nat. Chem.2021,13,1061.
doi: 10.1038/s41557-021-00787-y |
883 |
KimH.;HongJ.;ParkK. Y.;KimH.;KimS. W.;KangK.Chem. Rev.2014,114,11788.
doi: 10.1021/cr500232y |
884 |
LiM.;WangC.;ChenZ.;XuK.;LuJ.Chem. Rev.2020,120,6783.
doi: 10.1021/acs.chemrev.9b00531 |
885 |
XuK.Chem. Rev.2014,114,11503.
doi: 10.1021/cr500003w |
886 |
Shakourian-FardM.;KamathG.;SmithK.;XiongH.;SankaranarayananS. K. R. S.J. Phys. Chem. C2015,119,22747.
doi: 10.1021/acs.jpcc.5b04706 |
887 |
XingL.;ZhengX.;SchroederM.;AlvaradoJ.;von Wald CresceA.;XuK.;LiQ.;LiW.Acc. Chem. Res.2018,51,282.
doi: 10.1021/acs.accounts.7b00474 |
888 |
WuY.;RenD.;LiuX.;XuG.-L.;FengX.;ZhengY.;LiY.;YangM.;PengY.;HanX.;et alAdv. Energy Mater.2021,11,2102299.
doi: 10.1002/aenm.202102299 |
889 |
PonrouchA.;MarchanteE.;CourtyM.;TarasconJ.-M.;PalacínM. R.Energy Environ. Sci.2012,5,8572.
doi: 10.1039/c2ee22258b |
890 |
LeeM.;HongJ.;LopezJ.;SunY.;FengD.;LimK.;ChuehW. C.;ToneyM. F.;CuiY.;BaoZ.Nat. Energy2017,2,861.
doi: 10.1038/s41560-017-0014-y |
891 |
BaiP.;HeY.;XiongP.;ZhaoX.;XuK.;XuY.Energy Storage Mater.2018,13,274.
doi: 10.1016/j.ensm.2018.02.002 |
892 |
LiK.;ZhangJ.;LinD.;WangD.-W.;LiB.;LvW.;SunS.;HeY.-B.;KangF.;YangQ.-H.;et alNat. Commun.2019,10,725.
doi: 10.1038/s41467-019-08506-5 |
893 |
ZhangJ.;WangD. W.;LvW.;QinL.;NiuS.;ZhangS.-W.;CaoT.;KangF.;YangQ.-H.Adv. Energy Mater2018,8,1801361.
doi: 10.1002/aenm.201801361 |
894 |
LiangH.-J.;GuZ.-Y.;ZhaoX.-X.;GuoJ.-Z.;YangJ.-L.;LiW.-H.;LiB.;LiuZ.-M.;LiW.-L.;WuX.-L.Angew. Chem. Int. Ed2021,60,26837.
doi: 10.1002/anie.202112550 |
895 |
YangC.;XinS.;MaiL.;YouY.Adv. Energy Mater.2021,11,2000974.
doi: 10.1002/aenm.202000974 |
896 |
LiuX.;JiangX.;ZhongF.;FengX.;ChenW.;AiX.;YangH.;CaoY.ACS Appl. Mater. Interfaces2019,11,27833.
doi: 10.1021/acsami.9b07614 |
897 |
ZengZ.;JiangX.;LiR.;YuanD.;AiX.;YangH.;CaoY.Adv. Sci.2016,3,1600066.
doi: 10.1002/advs.201600066 |
898 |
GuoX.-F.;YangZ.;ZhuY.-F.;LiuX.-H.;HeX.-X.;LiL.;QiaoY.;ChouS.-L. Small Methods2022,6,2200209.
doi: 10.1002/smtd.202200209 |
899 |
EftekhariA.;LiuY.;ChenP.J. Power Sources2016,334,221.
doi: 10.1016/j.jpowsour.2016.10.025 |
900 | Balducci, A. Ionic Liquids in Lithium-Ion Batteries. In Ionic Liquids Ⅱ, Kirchner, B.; Perlt, E., Eds.; Springer: Heidelberg, Germany, 2017; p. 1. |
901 |
HagiwaraR.;MatsumotoK.;HwangJ.;NohiraT.Chem. Rec.2019,19,758.
doi: 10.1002/tcr.201800119 |
902 |
YangQ.;ZhangZ.;SunX.-G.;HuY.-S.;XingH.;DaiS.Chem. Soc. Rev.2018,47,2020.
doi: 10.1039/c7cs00464h |
903 |
MontiD.;JónssonE.;PalacínM. R.;JohanssonP.J. Power Sources2014,245,630.
doi: 10.1016/j.jpowsour.2013.06.153 |
904 |
ChenC.-Y.;MatsumotoK.;NohiraT.;HagiwaraR.Electrochem. Commun.2014,45,63.
doi: 10.1016/j.elecom.2014.05.017 |
905 |
ChagasL. G.;JeongS.;HasaI.;PasseriniS.ACS Appl. Mater. Interfaces2019,11,22278.
doi: 10.1021/acsami.9b03813 |
906 |
YuanH. C.;MaF. X.;WeiX. B.;LanJ. L.;LiuY.;YuY. H.;YangX. P.;ParkH. S.Adv. Energy Mater.2020,10,2001418.
doi: 10.1002/aenm.202001418 |
907 |
ZhouM.;BaiP.;JiX.;YangJ.;WangC.;XuY.Adv. Mater.2021,33,2003741.
doi: 10.1002/adma.202003741 |
908 |
VermaR.;DidwalP. N.;HwangJ. Y.;ParkC. J.Batteries Supercaps2021,4,1428.
doi: 10.1002/batt.202100029 |
909 |
WangY.;LiuD.;SunM.;LiuJ.Mater. Chem. Front.2021,5,7384.
doi: 10.1039/D1QM01011E |
910 |
PauP. C. F.;BergJ.;McMillanW.J. Phys. Chem.1990,94,2671.
doi: 10.1021/j100369a080 |
911 |
YueJ.;SuoL.Energy Fuels2021,35,9228.
doi: 10.1021/acs.energyfuels.1c00817 |
912 |
WessellsC. D.;PeddadaS. V.;HugginsR. A.;CuiY.Nano Lett.2011,11,5421.
doi: 10.1021/nl203193q |
913 |
WessellsC. D.;HugginsR. A.;CuiY.Nat. Commun.2011,2,550.
doi: 10.1038/ncomms1563 |
914 |
LeonardD. P.;WeiZ.;ChenG.;DuF.;JiX.ACS Energy Lett.2018,3,373.
doi: 10.1021/acsenergylett.8b00009 |
915 |
LiangG.;GanZ.;WangX.;JinX.;XiongB.;ZhangX.;ChenS.;WangY.;HeH.;ZhiC.ACS Nano2021,15,17717.
doi: 10.1021/acsnano.1c05678 |
916 |
GeJ.;FanL.;RaoA. M.;ZhouJ.;LuB.Nat. Sustain.2022,5,225.
doi: 10.1038/s41893-021-00810-7 |
917 |
SuD.;McDonaghA.;QiaoS. Z.;WangG.Adv. Mater.2017,29,1604007.
doi: 10.1002/adma.201604007 |
918 |
CharlesD. S.;FeygensonM.;PageK.;NeuefeindJ.;XuW.;TengX.Nat. Commun.2017,8,15520.
doi: 10.1038/ncomms15520 |
919 |
YuanX.;LiY.;ZhuY.;DengW.;LiC.;ZhouZ.;HuJ.;ZhangM.;ChenH.;LiR.ACS Appl. Mater. Interfaces2021,13,38248.
doi: 10.1021/acsami.1c08151 |
920 |
KittnerN.;LillF.;KammenD. M.Nat. Energy2017,2
doi: 10.1038/nenergy.2017.125 |
921 |
PanZ.;QiuY.;YangJ.;LiuM.;ZhouL.;XuY.;ShengL.;ZhaoX.;ZhangY.J. Mater. Chem. A2015,3,4004.
doi: 10.1039/c4ta06498d |
922 |
SubramanianA.;PanZ.;RongG.;LiH.;ZhouL.;LiW.;QiuY.;XuY.;HouY.;ZhengZ.;et alJ. Power Sources2017,343,39.
doi: 10.1016/j.jpowsour.2017.01.043 |
923 |
JiaX.;LiuC.;NealeZ. G.;YangJ.;CaoG.Chem. Rev.2020,120,7795.
doi: 10.1021/acs.chemrev.9b00628 |
924 |
ShinJ.;ChoiD. S.;LeeH. J.;JungY.;ChoiJ. W.Adv. Energy Mater.2019,9,1900083.
doi: 10.1002/aenm.201900083 |
925 |
KunduD.;Hosseini VajargahS.;WanL.;AdamsB.;PrendergastD.;NazarL. F.Energy Environ. Sci.2018,11,881.
doi: 10.1039/c8ee00378e |
926 |
ChaoD.;ZhouW.;YeC.;ZhangQ.;ChenY.;GuL.;DaveyK.;QiaoS. Z.Angew. Chem. Int. Ed.2019,58,7823.
doi: 10.1002/anie.201904174 |
927 |
LiuS.;ZhuH.;ZhangB.;LiG.;ZhuH.;RenY.;GengH.;YangY.;LiuQ.;LiC. C.Adv. Mater.2020,32,e2001113.
doi: 10.1002/adma.202001113 |
928 |
ManalastasW.;Jr.;KumarS.;VermaV.;ZhangL.;YuanD.;SrinivasanM.ChemSusChem2019,12,379.
doi: 10.1002/cssc.201801523 |
929 |
LiuZ.;HuangY.;HuangY.;YangQ.;LiX.;HuangZ.;ZhiC.Chem. Soc. Rev.2020,49,180.
doi: 10.1039/c9cs00131j |
930 |
ShinJ.;LeeJ.;ParkY.;ChoiJ. W.Chem. Sci.2020,11,2028.
doi: 10.1039/d0sc00022a |
931 |
PonrouchA.;BitencJ.;DominkoR.;LindahlN.;JohanssonP.;PalacinM. R.Energy Storage Mater.2019,20,253.
doi: 10.1016/j.ensm.2019.04.012 |
932 |
ChenL.;BaoJ. L.;DongX.;TruhlarD. G.;WangY.;WangC.;XiaY.ACS Energy Lett.2017,2,1115.
doi: 10.1021/acsenergylett.7b00040 |
933 |
SunX.;DuffortV.;MehdiB. L.;BrowningN. D.;NazarL. F.Chem. Mater.2016,28,534.
doi: 10.1021/acs.chemmater.5b03983 |
934 |
WangF.;FanX.;GaoT.;SunW.;MaZ.;YangC.;HanF.;XuK.;WangC.ACS Cent. Sci.2017,3,1121.
doi: 10.1021/acscentsci.7b00361 |
935 |
HuangJ.;WangZ.;HouM.;DongX.;LiuY.;WangY.;XiaY.Nat. Commun.2018,9,2906.
doi: 10.1038/s41467-018-04949-4 |
936 |
WangF.;BlancL. E.;LiQ.;FaraoneA.;JiX.;Chen-MayerH. H.;PaulR. L.;DuraJ. A.;HuE.;XuK.;et alAdv. Energy Mater.2021,11,2102016.
doi: 10.1002/aenm.202102016 |
937 |
ZhangL.;ChenL.;ZhouX.;LiuZ.Adv. Energy Mater.2015,5,1400930.
doi: 10.1002/aenm.201400930 |
938 |
TrocoliR.;La MantiaF.ChemSusChem2015,8,481.
doi: 10.1002/cssc.201403143 |
939 |
LiG.;YangZ.;JiangY.;JinC.;HuangW.;DingX.;HuangY.Nano Energy2016,25,211.
doi: 10.1016/j.nanoen.2016.04.051 |
940 |
WangF.;HuE.;SunW.;GaoT.;JiX.;FanX.;HanF.;YangX.-Q.;XuK.;WangC.Energy Environ. Sci.2018,11,3168.
doi: 10.1039/c8ee01883a |
941 |
ZhaoQ.;HuangW.;LuoZ.;LiuL.;LuY.;LiY.;LiL.;HuJ.;MaH.;ChenJ.Sci. Adv.2018,4,eaao1761.
doi: 10.1126/sciadv.aao1761 |
942 |
ChaoD. L.;ZhouW. H.;XieF. X.;YeC.;LiH.;JaroniecM.;QiaoS. Z.Sci. Adv.2020,6,eaba4098.
doi: 10.1126/sciadv.aba4098 |
943 |
KunduD.;OberholzerP.;GlarosC.;BouzidA.;TervoortE.;PasquarelloA.;NiederbergerM.Chem. Mater.2018,30,3874.
doi: 10.1021/acs.chemmater.8b01317 |
944 |
HäuplerB.;RösselC.;SchwenkeA. M.;WinsbergJ.;SchmidtD.;WildA.;SchubertU. S.NPG Asia Mater.2016,8,e283.
doi: 10.1038/am.2016.82 |
945 |
WanF.;NiuZ.Angew. Chem. Int. Ed.2019,58,16358.
doi: 10.1002/anie.201903941 |
946 |
HuangY.;MouJ.;LiuW.;WangX.;DongL.;KangF.;XuC.Nano-Micro Lett.2019,11,49.
doi: 10.1007/s40820-019-0278-9 |
947 |
HaoJ.;LiX.;ZengX.;LiD.;MaoJ.;GuoZ.Energy Environ. Sci.2020,13,3917.
doi: 10.1039/d0ee02162h |
948 |
ParkerJ. F.;ChervinC. N.;NelsonE. S.;RolisonD. R.;LongJ. W.Energy Environ. Sci.2014,7,1117.
doi: 10.1039/c3ee43754j |
949 | Linden, D. TB Reedy Handbook of Batteries. McGraw-Hill: New York, NY, USA, 2002. |
950 |
LiuC.;XieX.;LuB.;ZhouJ.;LiangS.ACS Energy Lett.2021,6,1015.
doi: 10.1021/acsenergylett.0c02684 |
951 |
ChangN.;LiT.;LiR.;WangS.;YinY.;ZhangH.;LiX.Energy Environ. Sci.2020,13,3527.
doi: 10.1039/d0ee01538e |
952 |
CaoL.;LiD.;HuE.;XuJ.;DengT.;MaL.;WangY.;YangX. Q.;WangC.J. Am. Chem. Soc.2020,142,21404.
doi: 10.1021/jacs.0c09794 |
953 |
ChenC. Y.;MatsumotoK.;KubotaK.;HagiwaraR.;XuQ.Adv. Energy Mater.2019,9,1900196.
doi: 10.1002/aenm.201900196 |
954 |
ZhangQ.;MaY.;LuY.;LiL.;WanF.;ZhangK.;ChenJ.Nat. Commun.2020,11,4463.
doi: 10.1038/s41467-020-18284-0 |
955 |
ZhangT.;TangY.;GuoS.;CaoX.;PanA.;FangG.;ZhouJ.;LiangS.Energy Environ. Sci.2020,13,4625.
doi: 10.1039/d0ee02620d |
956 |
GengL.;WangX.;HanK.;HuP.;ZhouL.;ZhaoY.;LuoW.;MaiL.ACS Energy Lett.2021,7,247.
doi: 10.1021/acsenergylett.1c02088 |
957 |
LinX.;ZhouG.;RobsonM. J.;YuJ.;KwokS. C. T.;CiucciF.Adv. Funct. Mater.2021,32,2109322.
doi: 10.1002/adfm.202109322 |
958 |
ShiJ.;SunT.;BaoJ.;ZhengS.;DuH.;LiL.;YuanX.;MaT.;TaoZ.Adv. Funct. Mater.2021,31,2102035.
doi: 10.1002/adfm.202102035 |
959 |
CaiY.;KumarS.;ChuaR.;VermaV.;YuanD.;KouZ.;RenH.;AroraH.;SrinivasanM.J. Mater. Chem. A2020,8,12716.
doi: 10.1039/d0ta03986a |
960 |
YanC.;LvC.;WangL.;CuiW.;ZhangL.;DinhK. N.;TanH.;WuC.;WuT.;RenY.;et alJ. Am. Chem. Soc.2020,142,15295.
doi: 10.1021/jacs.0c05054 |
961 |
WuC.;GuS.;ZhangQ.;BaiY.;LiM.;YuanY.;WangH.;LiuX.;YuanY.;ZhuN.;et alNat. Commun.2019,10,73.
doi: 10.1038/s41467-018-07980-7 |
962 |
HeS.;WangJ.;ZhangX.;ChenJ.;WangZ.;YangT.;LiuZ.;LiangY.;WangB.;LiuS.Adv. Funct. Mater.2019,29,1905228.
doi: 10.1002/adfm.201905228 |
963 |
LiuS.;PanG. L.;LiG. R.;GaoX. P.J. Mater. Chem. A2015,3,959.
doi: 10.1039/c4ta04644g |
964 |
FangZ.;ZhangY.;HuX.;FuX.;DaiL.;YuD.Angew. Chem. Int. Ed.2019,58,9248.
doi: 10.1002/anie.201903805 |
965 |
DuD.;ZhaoS.;ZhuZ.;LiF.;ChenJ.Angew. Chem. Int. Ed.2020,59,18140.
doi: 10.1002/anie.202005929 |
966 |
YanN.;GaoX.Energy Environ. Mater.2021,5,439.
doi: 10.1002/eem2.12182 |
967 |
LvQ.;ZhuZ.;ZhaoS.;WangL.;ZhaoQ.;LiF.;ArcherL. A.;ChenJ.J. Am. Chem. Soc.2021,143,1941.
doi: 10.1021/jacs.0c11400 |
968 |
YuM.;RenX.;MaL.;WuY.Nat. Commun.2014,5,5111.
doi: 10.1038/ncomms6111 |
969 |
FangZ.;LiY.;LiJ.;ShuC.;ZhongL.;LuS.;MoC.;YangM.;YuD.Angew. Chem. Int. Ed.2021,60,17615.
doi: 10.1002/anie.202104790 |
970 |
WangC.-C.;DuX.-D.;LiJ.;GuoX.-X.;WangP.;ZhangJ.Appl. Catal. B: Environ.2016,193,198.
doi: 10.1016/j.apcatb.2016.04.030 |
971 |
HeY.;ChenK.;LeungM. K. H.;ZhangY.;LiL.;LiG.;XuanJ.;LiJ.Chem. Eng. J.2022,428,131074.
doi: 10.1016/j.cej.2021.131074 |
972 |
SainiD.;GargA. K.;DalalC.;AnandS. R.;SonkarS. K.;SonkerA. K.;WestmanG.ACS Appl. Nano Mater.2022,5,3087.
doi: 10.1021/acsanm.1c04142 |
973 |
YangL.;FanD.;LiZ.;ChengY.;YangX.;ZhangT.Adv. Sustain. Syst.2022,6,2100477.
doi: 10.1002/adsu.202100477 |
974 |
LiC.-Q.;YiS.-S.;ChenD.-l.;LiuY.;LiY.-J.;LuS.-Y.;YueX.-Z.;LiuZ.-Y.J. Mater. Chem. A2019,7,17974.
doi: 10.1039/c9ta03701b |
975 |
LiH.;LiJ.;AiZ.;JiaF.;ZhangL.Angew. Chem. Int. Ed.2018,57,122.
doi: 10.1002/anie.201705628 |
976 |
WanZ.;MaoQ.;ChenQ.Chem. Eng. J.2021,403,126389.
doi: 10.1016/j.cej.2020.126389 |
977 |
GongH.;WangT.;XueH.;FanX.;GaoB.;ZhangH.;ShiL.;HeJ.;YeJ.Energy Storage Mater.2018,13,49.
doi: 10.1016/j.ensm.2017.12.025 |
978 | Zhu, Z.; Lv, Q.; Ni, Y.; Gao, S.; Geng, J.; Liang, J.; Li, F. Angew. Chem. Int. Ed. 2022, 61, e202116699. doi: 10.1002/anie.202116699 |
979 |
LiF.;LiM. L.;WangH. F.;WangX. X.;ZhengL. J.;GuanD. H.;ChangL. M.;XuJ. J.;WangY.Adv. Mater.2022,34,e2107826.
doi: 10.1002/adma.202107826 |
980 |
QianG.;LiaoX.;ZhuY.;PanF.;ChenX.;YangY.ACS Energy Lett.2019,4,690.
doi: 10.1021/acsenergylett.8b02496 |
981 |
HeY.;MatthewsB.;WangJ.;SongL.;WangX.;WuG.J. Mater. Chem. A2018,6,735.
doi: 10.1039/c7ta09301b |
982 |
ZhaiQ.;XiangF.;ChengF.;SunY.;YangX.;LuW.;DaiL.Energy Storage Mater.2020,33,116.
doi: 10.1016/j.ensm.2020.07.003 |
983 |
TaoT.;LuS.;ChenY.Adv. Mater. Technol.2018,3,1700375.
doi: 10.1002/admt.201700375 |
984 | Hikmet, R. A. M.; Hans, F. Lithium Secondary Battery Comprising Individual Cells Connected with One Another, as well as Watches, Computers and Communication Equipment Provided with such a Battery. NL Patent: EP00967672.7, 2001. |
985 |
HuL.;WuH.;La MantiaF.;YangY.;CuiY.ACS Nano2010,4,5843.
doi: 10.1021/nn1018158 |
986 |
ChangJ.;HuangQ.;GaoY.;ZhengZ.Adv. Mater.2021,33,2004419.
doi: 10.1002/adma.202004419 |
987 |
XiangF.;ChengF.;SunY.;YangX.;LuW.;AmalR.;DaiL.Nano Res.2021,
doi: 10.1007/s12274-021-3820-2 |
988 |
LuH.;HagbergJ.;LindberghG.;CornellA.Nano Energy2017,39,140.
doi: 10.1016/j.nanoen.2017.06.043 |
989 |
KimJ.-H.;LeeY.-H.;ChoS.-J.;GwonJ.-G.;ChoH.-J.;JangM.;LeeS.-Y.;LeeS.-Y.Energy Environ. Sci2019,12,177.
doi: 10.1039/c8ee01879k |
990 |
KretschmerK.;SunB.;XieX.;ChenS.;WangG.Green Chem.2016,18,2691.
doi: 10.1039/c5gc02602d |
991 |
ZhangQ.;LiuZ.;ZhaoB.;ChengY.;ZhangL.;WuH.-H.;WangM.-S.;DaiS.;ZhangK.;DingD.;et alEnergy Storage Mater.2019,16,632.
doi: 10.1016/j.ensm.2018.06.026 |
992 |
ZhangC.;HuangZ.;LvW.;YunQ.;KangF.;YangQ.-H.Carbon2017,123,744.
doi: 10.1016/j.carbon.2017.08.027 |
993 |
FangR.;ZhaoS.;PeiS.;QianX.;HouP.-X.;ChengH.-M.;LiuC.;LiF.ACS Nano2016,10,8676.
doi: 10.1021/acsnano.6b04019 |
994 |
WangC.-H.;KurraN.;AlhabebM.;ChangJ.-K.;AlshareefH. N.;GogotsiY.ACS Omega2018,3,12489.
doi: 10.1021/acsomega.8b02032 |
995 |
LiL.;LiuW.;DongH.;GuiQ.;HuZ.;LiY.;LiuJ.Adv. Mater.2021,33,2004959.
doi: 10.1002/adma.202004959 |
996 |
JiangJ.;LiuJ.Interdisciplinary Mater.2022,1,116.
doi: 10.1002/idm2.12007 |
997 |
GuiQ.;BaD.;LiL.;LiuW.;LiY.;LiuJ.Sci. China -Mater.2022,65,10.
doi: 10.1007/s40843-021-1733-1 |
998 |
ZuoW.;LiR.;ZhouC.;LiY.;XiaJ.;LiuJ.Adv. Sci.2017,4,1600539.
doi: 10.1002/advs.201600539 |
999 |
TanJ.;ZhuW.;GuiQ.;LiY.;LiuJ.Adv. Funct. Mater.2021,31,2101027.
doi: 10.1002/adfm.202101027 |
1000 |
ZuoW.;XieC.;XuP.;LiY.;LiuJ.Adv. Mater.2017,29,1703463.
doi: 10.1002/adma.201703463 |
1001 |
JiangY.;YanX.;MaZ.;MeiP.;XiaoW.;YouQ.;ZhangY.Polymers2018,10,1237.
doi: 10.3390/polym10111237 |
1002 |
HuangB.;WangZ.;ChenL.;XueR.;WangF.Solid State Ionics1996,91,279.
doi: 10.1016/S0167-2738(96)83030-X |
1003 |
WangF.;LiL.;YangX.;YouJ.;XuY.;WangH.;MaY.;GaoG.Sustain. Energy Fuels2018,2,492.
doi: 10.1039/C7SE00441A |
1004 |
FanL.-Z.;HeH.;NanC.-W.Nat. Rev. Mater2021,6,1003.
doi: 10.1038/s41578-021-00320-0 |
1005 |
LiuW.;YiC.;LiL.;LiuS.;GuiQ.;BaD.;LiY.;PengD.;LiuJ.Angew. Chem. Int. Ed.2021,60,12931.
doi: 10.1002/anie.202101537 |
1006 |
QianG.;ZhuB.;LiaoX.;ZhaiH.;SrinivasanA.;FritzN. J.;ChengQ.;NingM.;QieB.;LiY.Adv. Mater.2018,30,1704947.
doi: 10.1002/adma.201704947 |
1007 |
SongZ.;WangX.;LvC.;AnY.;LiangM.;MaT.;HeD.;ZhengY.-J.;HuangS.-Q.;YuH.;et alSci. Rep.2015,5,10988.
doi: 10.1038/srep10988 |
1008 |
ZhouG.;LiF.;ChengH.-M.Energy Environ. Sci2014,7,1307.
doi: 10.1039/c3ee43182g |
1009 |
GaikwadA. M.;WhitingG. L.;SteingartD. A.;AriasA. C.Adv. Mater.2011,23,3251.
doi: 10.1002/adma.201100894 |
1010 |
LiuJ.;GuanC.;ZhouC.;FanZ.;KeQ.;ZhangG.;LiuC.;WangJ.Adv. Mater.2016,28,8732.
doi: 10.1002/adma.201603038 |
1011 |
LiN.;ChenZ.;RenW.;LiF.;ChengH.-M.Proc. Natl. Acad. Sci. U. S. A2012,109,17360.
doi: 10.1073/pnas.1210072109 |
1012 |
ZengY.;ZhangX.;MengY.;YuM.;YiJ.;WuY.;LuX.;TongY.Adv. Mater.2017,29,1700274.
doi: 10.1002/adma.201700274 |
1013 |
YangQ.;ChenA.;LiC.;ZouG.;LiH.;ZhiC.Matter2021,4,3146.
doi: 10.1016/j.matt.2021.07.016 |
1014 |
WangD.;HanC.;MoF.;YangQ.;ZhaoY.;LiQ.;LiangG.;DongB.;ZhiC.Energy Storage Mater.2020,28,264.
doi: 10.1016/j.ensm.2020.03.006 |
1015 |
HeJ.;LuC.;JiangH.;HanF.;ShiX.;WuJ.;WangL.;ChenT.;WangJ.;ZhangY.Nature2021,597,57.
doi: 10.1038/s41586-021-03772-0 |
1016 |
LiaoM.;WangC.;HongY.;ZhangY.;ChengX.;SunH.;HuangX.;YeL.;WuJ.;ShiX.Nat. Nanotechnol.2022,17,372.
doi: 10.1038/s41565-021-01062-4 |
1017 |
GschwindF.;Rodriguez-GarciaG.;SandbeckD. J. S.;GrossA.;WeilM.;FichtnerM.;HörmannN.J. Fluor. Chem.2016,182,76.
doi: 10.1016/j.jfluchem.2015.12.002 |
1018 |
ReddyM. A.;FichtnerM.J. Mater. Chem.2011,21,17059.
doi: 10.1039/c1jm13535j |
1019 |
RongeatC.;ReddyM. A.;WitterR.;FichtnerM.ACS Appl. Mater. Interfaces2014,6,2103.
doi: 10.1021/am4052188 |
1020 |
RongeatC.;ReddyM. A.;DiemantT.;BehmR. J.;FichtnerM.J. Mater. Chem. A2014,2,20861.
doi: 10.1039/c4ta02840f |
1021 |
ThieuD. T.;FaweyM. H.;BhatiaH.;DiemantT.;ChakravadhanulaV. S. K.;BehmR. J.;KübelC.;FichtnerM.Adv. Funct. Mater.2017,27,1701051.
doi: 10.1002/adfm.201701051 |
1022 |
ZhangD.;YamamotoK.;OchiA.;WangY.;YoshinariT.;NakanishiK.;NakanoH.;MikiH.;NakanishiS.;IbaH.J. Mater. Chem. A2021,9,406.
doi: 10.1039/d0ta08824b |
1023 |
RongeatC.;ReddyM. A.;WitterR.;FichtnerM.J. Phys. Chem. C2013,117,4943.
doi: 10.1021/jp3117825 |
1024 |
MohammadI.;WitterR.;FichtnerM.;ReddyM. A.ACS Appl. Energy Mater.2018,1,4766.
doi: 10.1021/acsaem.8b00864 |
1025 |
AhmadM. M.;YamaneY.;YamadaK.J. Appl. Phys.2009,106,074106.
doi: 10.1063/1.3234393 |
1026 |
WangJ.;HaoJ.;DuanC.;WangX.;WangK.;MaC.Small2022,18,2104508.
doi: 10.1002/smll.202104508 |
1027 |
WynnD. A.;RothM. M.;PollardB. D.Talanta1984,31,1036.
doi: 10.1016/0039-9140(84)80244-1 |
1028 |
KonishiH.;MinatoT.;AbeT.;OgumiZ.J. Phys. Chem. C2019,123,10246.
doi: 10.1021/acs.jpcc.9b00455 |
1029 |
KucukA. C.;YamanakaT.;MinatoT.;AbeT.J. Electrochem. Soc.2020,167,120508.
doi: 10.1149/1945-7111/abaa18 |
1030 |
DavisV. K.;MunozS.;KimJ.;BatesC. M.;MomčilovićN.;BillingsK. J.;MillerT. F.;GrubbsR. H.;JonesS. C.Mater. Chem. Front.2019,3,2721.
doi: 10.1039/c9qm00512a |
1031 |
DavisV. K.;BatesC. M.;OmichiK.;SavoieB. M.;MomčilovićN.;XuQ.;WolfW. J.;WebbM. A.;BillingsK. J.;ChouN. H.Science2018,362,1144.
doi: 10.1126/science.aat7070 |
1032 |
KonishiH.;KucukA. C.;MinatoT.;AbeT.;OgumiZ.J. Electroanal. Chem.2019,839,173.
doi: 10.1016/j.jelechem.2019.03.028 |
1033 |
OkazakiK.-i.;UchimotoY.;AbeT.;OgumiZ.ACS Energy Lett.2017,2,1460.
doi: 10.1021/acsenergylett.7b00320 |
1034 |
NowrooziM. A.;WisselK.;RohrerJ.;MunnangiA. R.;ClemensO.Chem. Mater.2017,29,3441.
doi: 10.1021/acs.chemmater.6b05075 |
1035 |
NowrooziM. A.;IvlevS.;RohrerJ.;ClemensO.J. Mater. Chem. A2018,6,4658.
doi: 10.1039/c7ta09427b |
1036 |
WisselK.;DasguptaS.;BenesA.;SchochR.;BauerM.;WitteR.;FortesA. D.;ErdemE.;RohrerJ.;ClemensO.J. Mater. Chem. A2018,6,22013.
doi: 10.1039/c8ta01012a |
1037 |
NowrooziM. A.;WisselK.;DonzelliM.;HosseinpourkahvazN.;Plana-RuizS.;KolbU.;SchochR.;BauerM.;MalikA. M.;RohrerJ.;et alCommun. Mater.2020,1,27.
doi: 10.1038/s43246-020-0030-5 |
1038 |
DüvelA.Dalton Trans.2019,48,859.
doi: 10.1039/c8dt03759k |
1039 |
ZhaoX.;Zhao-KargerZ.;FichtnerM.;ShenX.Angew. Chem. Int. Ed.2020,59,5902.
doi: 10.1002/anie.201902842 |
1040 |
LiuQ.;WangY.;YangX.;ZhouD.;WangX.;JaumauxP.;KangF.;LiB.;JiX.;WangG.Chem2021,7,1993.
doi: 10.1016/j.chempr.2021.02.004 |
1041 |
ZhaoX.;RenS.;BrunsM.;FichtnerM.J. Power Sources2014,245,706.
doi: 10.1016/j.jpowsour.2013.07.001 |
1042 |
ZhaoX.;Zhao-KargerZ.;WangD.;FichtnerM.Angew. Chem.2013,125,13866.
doi: 10.1002/ange.201307314 |
1043 |
YuT.;LiQ.;ZhaoX.;XiaH.;MaL.;WangJ.;MengY. S.;ShenX.ACS Energy Lett.2017,2,2341.
doi: 10.1021/acsenergylett.7b00699 |
1044 |
ChenF.;LeongZ. Y.;YangH. Y.Energy Storage Mater.2017,7,189.
doi: 10.1016/j.ensm.2017.02.001 |
1045 |
HuX.;ChenF.;WangS.;RuQ.;ChuB.;WeiC.;ShiY.;YeZ.;ChuY.;HouX.ACS Appl. Mater. Interfaces2019,11,9144.
doi: 10.1021/acsami.8b21652 |
1046 |
GaoP.;ReddyM. A.;MuX.;DiemantT.;ZhangL.;Zhao-KargerZ.;ChakravadhanulaV. S. K.;ClemensO.;BehmR. J.;FichtnerM.Angew. Chem.2016,128,4357.
doi: 10.1002/ange.201509564 |
1047 |
YinQ.;RaoD.;ZhangG.;ZhaoY.;HanJ.;LinK.;ZhengL.;ZhangJ.;ZhouJ.;WeiM.Adv. Funct. Mater.2019,29,1900983.
doi: 10.1002/adfm.201900983 |
1048 |
YinQ.;LuoJ.;ZhangJ.;ZhengL.;CuiG.;HanJ.;O'HareD.J. Mater. Chem. A2020,8,12548.
doi: 10.1039/d0ta04290k |
1049 |
LuoJ.;YinQ.;ZhangJ.;ZhangS.;ZhengL.;HanJ.ACS Appl. Energy Mater.2020,3,4559.
doi: 10.1021/acsaem.0c00224 |
1050 |
YinQ.;LuoJ.;ZhangJ.;ZhangS.;HanJ.;LinY.;ZhouJ.;ZhengL.;WeiM.Adv. Funct. Mater.2020,30,1907448.
doi: 10.1002/adfm.201907448 |
1051 |
ZhaoZ.;YuT.;MiaoY.;ZhaoX.Electrochim. Acta2018,270,30.
doi: 10.1016/j.electacta.2018.03.077 |
1052 |
ZhaoX.;ZhaoZ.;YangM.;XiaH.;YuT.;ShenX.ACS Appl. Mater. Interfaces2017,9,2535.
doi: 10.1021/acsami.6b14755 |
1053 |
ChenR.;LiQ.;YuX.;ChenL.;LiH.Chem. Rev.2019,120,6820.
doi: 10.1021/acs.chemrev.9b00268 |
1054 |
BanerjeeA.;WangX.;FangC.;WuE. A.;MengY. S.Chem. Rev.2020,120,6878.
doi: 10.1021/acs.chemrev.0c00101 |
1055 |
GschwindF.;SteinleD.;SandbeckD.;SchmidtC.;von HauffE.ChemistryOpen2016,5,525.
doi: 10.1002/open.201600109 |
1056 |
ChenC.;YuT.;YangM.;ZhaoX.;ShenX.Adv. Sci.2019,6,1802130.
doi: 10.1002/advs.201802130 |
1057 |
XiaT.;LiY.;HuangL.;JiW.;YangM.;ZhaoX.ACS Appl. Mater. Interfaces2020,12,18634.
doi: 10.1021/acsami.0c03982 |
1058 |
MatsumotoH.;MiyakeT.;IwaharaH.Mater. Res. Bull.2001,36,1177.
doi: 10.1016/S0025-5408(01)00593-1 |
1059 |
DerringtonC.;LindnerA.;O'keeffeM.J. Solid State Chem.1975,15,171.
doi: 10.1016/0022-4596(75)90241-8 |
1060 |
ImanakaN.;OkamotoK.;AdachiG. yAngew. Chem. Int. Ed.2002,41,3890.
doi: 10.1002/1521-3773(20021018)41:20<3890::AID-ANIE3890>3.0.CO;2-M |
1061 |
YamadaK.;KuranagaY.;UedaK.;GotoS.;OkudaT.;FurukawaY.Bull. Chem. Soc. Jpn.1998,71,127.
doi: 10.1246/bcsj.71.127 |
1062 |
MizusakiJ.;AraiK.;FuekiK.Solid State Ionics1983,11,203.
doi: 10.1016/0167-2738(83)90025-5 |
1063 |
MurinI. V.;GlumovO. V.;Mel'nikovaN. A.Russ. J. Electrochem.2009,45,411.
doi: 10.1134/S1023193509040090 |
1064 |
JiangH.;HanX.;DuX.;ChenZ.;LuC.;LiX.;ZhangH.;ZhaoJ.;HanP.;CuiG.Adv. Mater.2022,34,2108665.
doi: 10.1002/adma.202108665 |
1065 |
WangM.;TangY.Adv. Energy Mater.2018,8,1703320.
doi: 10.1002/aenm.201703320 |
1066 |
ZhouX.;LiuQ.;JiangC.;JiB.;JiX.;TangY.;ChengH.-M.Angew. Chem. Int. Ed2020,59,3802.
doi: 10.1002/anie.201814294 |
1067 |
PlackeT.;HeckmannA.;SchmuchR.;MeisterP.;BeltropK.;WinterM.Joule2018,2,2528.
doi: 10.1016/j.joule.2018.09.003 |
1068 |
ZhangL.;WangH.;ZhangX.;TangY.Adv. Funct. Mater.2021,31,2010958.
doi: 10.1002/adfm.202010958 |
1069 |
RüdorffW.;HofmannU.Anorg. Allg. Chem.1938,238,1.
doi: 10.1002/zaac.19382380102 |
1070 | McCullough, F. P.; Beale, A. F. Electrode for Use in Secondary Electrical Energy Storage Devices. US4865931-A, 1989. |
1071 |
SeelJ. A.;DahnJ. R.J. Electrochem. Soc.2000,147,892.
doi: 10.1149/1.1393288 |
1072 |
JiangH.;WeiZ.;MaL.;YuanY.;HongJ. J.;WuX.;LeonardD. P.;HoloubekJ.;RazinkJ. J.;StickleW. F.;et alAngew. Chem. Int. Ed.2019,58,5286.
doi: 10.1002/anie.201814646 |
1073 |
ZhuY.;YinJ.;EmwasA.-H.;MohammedO. F.;AlshareefH. N.Adv. Funct. Mater.2021,31,2107523.
doi: 10.1002/adfm.202107523 |
1074 |
ZhangX.;TangY.;ZhangF.;LeeC.-S.Adv. Energy Mater2016,6,1502588.
doi: 10.1002/aenm.201502588 |
1075 |
JiangB.;SuY.;LiuR.;SunZ.;WuD.Small2022,18,2200049.
doi: 10.1002/smll.202200049 |
1076 |
KravchykK. V.;KovalenkoM. V.Adv. Energy Mater.2020,10,2002151.
doi: 10.1002/aenm.202002151 |
1077 |
KwakK.-H.;SuhH. J.;KimA.;ParkS.;SongJ.;LiS.;KimY.;JeongG.;KimH.;KimY.-J. Nano Energy2019,66,104138.
doi: 10.1016/j.nanoen.2019.104138 |
1078 |
XuY.;FengJ.;MaH.;ZhuJ.;ZhangX.;LangJ.;YangS.;YanX.Adv. Funct. Mater.2022,32,2112223.
doi: 10.1002/adfm.202112223 |
1079 |
GuoQ.;KimK.-i.;JiangH.;ZhangL.;ZhangC.;YuD.;NiQ.;ChangX.;ChenT.;XiaH.;et alAdv. Funct. Mater.2020,30,2002825.
doi: 10.1002/adfm.202002825 |
1080 |
LiH.;OkamotoN. L.;HatakeyamaT.;KumagaiY.;ObaF.;IchitsuboT.Adv. Energy Mater.2018,8,1801475.
doi: 10.1002/aenm.201801475 |
1081 |
AubreyM. L.;LongJ. R.J. Am. Chem. Soc.2015,137,13594.
doi: 10.1021/jacs.5b08022 |
1082 |
YuX.;WangB.;GongD.;XuZ.;LuB.Adv. Mater.2017,29,1604118.
doi: 10.1002/adma.201604118 |
1083 |
ChenH.;GuoF.;LiuY.;HuangT.;ZhengB.;AnanthN.;XuZ.;GaoW.;GaoC.Adv. Mater.2017,29,1605958.
doi: 10.1002/adma.201605958 |
1084 |
ChenC.;LiN.-W.;WangB.;YuanS.;YuL.Nanoscale Adv.2020,2,5496.
doi: 10.1039/d0na00593b |
1085 |
BellaniS.;WangF.;LongoniG.;NajafiL.;Oropesa-NunezR.;CastilloA. E. D. R.;PratoM.;ZhuangX.;PellegriniV.;FengX.;et alNano Lett.2018,18,7155.
doi: 10.1021/acs.nanolett.8b03227 |
1086 |
ShengM.;ZhangF.;JiB.;TongX.;TangY.Adv. Energy Mater.2017,7,1601963.
doi: 10.1002/aenm.201601963 |
1087 |
QinP.;WangM.;LiN.;ZhuH.;DingX.;TangY.Adv. Mater.2017,29,1606805.
doi: 10.1002/adma.201606805 |
1088 |
ZhangM.;ZhongJ.;KongW.;WangL.;WangT.;FeiH.;LuoH.;ZhuJ.;HuJ.;LuB.Energy Environ. Mater.2021,4,413.
doi: 10.1002/eem2.12086 |
1089 |
KimA.;JungH.;SongJ.;LeeJ.;JeongG.;KimY.-J.;KimH.Small2021,17,1902144.
doi: 10.1002/smll.201902144 |
1090 |
ChenG.;ZhangF.;ZhouZ.;LiJ.;TangY.Adv. Energy Mater.2018,8,1801219.
doi: 10.1002/aenm.201801219 |
1091 |
LiZ.;LiuJ.;NiuB.;LiJ.;KangF.Small2018,14,1800745.
doi: 10.1002/smll.201800745 |
1092 |
OuX.;GongD.;HanC.;LiuZ.;TangY.Adv. Energy Mater.2021,11,2102498.
doi: 10.1002/aenm.202102498 |
1093 |
FanJ.;ZhangZ.;LiuY.;WangA.;LiL.;YuanW.Chem. Commun.2017,53,6891.
doi: 10.1039/c7cc02534c |
1094 |
LuY.;ZhangQ.;LiL.;NiuZ.;ChenJ.Chem2018,4,2786.
doi: 10.1016/j.chempr.2018.09.005 |
1095 |
ChenY.;WangC.Acc. Chem. Res.2020,53,2636.
doi: 10.1021/acs.accounts.0c00465 |
1096 |
LuY.;ChenJ.Nat. Rev. Chem.2020,4,127.
doi: 10.1038/s41570-020-0160-9 |
1097 |
ZhaoL.;LakraychiA. E.;ChenZ.;LiangY.;YaoY.ACS Energy Lett.2021,6,3287.
doi: 10.1021/acsenergylett.1c01368 |
1098 |
PoizotP.;GaubicherJ.;RenaultS.;DuboisL.;LiangY.;YaoY.Chem. Rev.2020,120,6490.
doi: 10.1021/acs.chemrev.9b00482 |
1099 |
TangJ.;KongL.;ZhangJ.;ZhanL.;ZhanH.;ZhouY.;ZhanC.React. Funct. Polym.2008,68,1408.
doi: 10.1016/j.reactfunctpolym.2008.07.001 |
1100 |
WangZ.;XuC.;TammelaP.;ZhangP.;EdströmK.;GustafssonT.;StrømmeM.;NyholmL.Energy Technol.2015,3,563.
doi: 10.1002/ente.201402224 |
1101 |
MuenchS.;WildA.;FriebeC.;HäuplerB.;JanoschkaT.;SchubertU. S.Chem. Rev.2016,116,9438.
doi: 10.1021/acs.chemrev.6b00070 |
1102 |
WuM.;CuiY.;BhargavA.;LosovyjY.;SiegelA.;AgarwalM.;MaY.;FuY.Angew. Chem. Int. Ed.2016,55,10027.
doi: 10.1002/anie.201603897 |
1103 |
ZhaoB.;SiY.;GuoW.;FuY.Adv. Funct. Mater.2022,32,2112225.
doi: 10.1002/adfm.202112225 |
1104 |
JeS.;HwangT.;TalapaneniS.;BuyukcakirO.;KimH.;YuJ.;WooS.;JangM.;SonB.;CoskunA.Nat. Commun.2015,6,7278.
doi: 10.1021/acsenergylett.6b00245 |
1105 |
JähnertT.;HagerM. D.;SchubertU. S.Macromol. Rapid Commun.2016,37,725.
doi: 10.1002/marc.201500702 |
1106 |
LiW.;JiangS.;XieY.;YanX.;ZhaoF.;PangX.;ZhangK.;JiaZ.ACS Energy Lett.2022,7,1481.
doi: 10.1021/acsenergylett.2c00063 |
1107 |
HuY.;GaoY.;FanL.;ZhangY.;WangB.;QinZ.;ZhouJ.;LuB.Adv. Energy Mater.2020,10,2070198.
doi: 10.1002/aenm.202002780 |
1108 |
ArmandM.;GrugeonS.;VezinH.;LaruelleS.;RibièreP.;PoizotP.;TarasconJ.-M.Nat. Mater2009,8,120.
doi: 10.1038/NMAT2372 |
1109 |
KimD. J.;HermannK. R.;ProkofjevsA.;OtleyM. T.;PezzatoC.;OwczarekM.;StoddartJ. F.J. Am. Chem. Soc.2017,139,6635.
doi: 10.1021/jacs.7b01209 |
1110 |
YangJ.;XiongP.;ShiY.;SunP.;WangZ.;ChenZ.;XuY.Adv. Funct. Mater.2020,30,1909597.
doi: 10.1002/adfm.201909597 |
1111 | Lu, X.; Pan, X.; Zhang, D.; Fang, Z.; Xu, S.; Ma, Y.; Liu, Q.; Shao, G.; Fu, D.; Teng, J.; et al. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2110912118. doi: 10.1073/pnas.2110912118 |
1112 |
TianB.;DingZ.;NingG.-H.;TangW.;PengC.;LiuB.;SuJ.;SuC.;LohK. P.Chem. Commun.2017,53,2914.
doi: 10.1039/c6cc09084b |
1113 |
PengC.;NingG.-H.;SuJ.;ZhongG.;TangW.;TianB.;SuC.;YuD.;ZuL.;YangJ.;et alNat. Energy2017,2,17074.
doi: 10.1038/nenergy.2017.74 |
1114 |
LuoC.;BorodinO.;JiX.;HouS.;GaskellK. J.;FanX.;ChenJ.;DengT.;WangR.;JiangJ.Proc. Natl. Acad. Sci. U. S. A.2018,115,2004.
doi: 10.1073/pnas.1717892115 |
1115 |
LuoC.;JiX.;HouS.;EidsonN.;FanX.;LiangY.;DengT.;JiangJ.;WangC.Adv. Mater.2018,30,1706498.
doi: 10.1002/adma.201706498 |
1116 |
LiuX.;YeZ.Adv. Energy Mater.2021,11,2003281.
doi: 10.1002/aenm.202003281 |
1117 |
WangJ.;LakraychiA. E.;LiuX.;SieuwL.;MorariC.;PoizotP.;VladA.Nat. Mater.2021,20,665.
doi: 10.1038/s41563-020-00869-1 |
1118 |
LeeS.;KwonG.;KuK.;YoonK.;JungS. K.;LimH. D.;KangK.Adv. Mater.2018,30,1704682.
doi: 10.1002/adma.201704682 |
1119 |
LuY.;HouX.;MiaoL.;LiL.;ShiR.;LiuL.;ChenJ.Angew. Chem.2019,131,7094.
doi: 10.1002/ange.201902185 |
1120 |
WalterM.;KravchykK. V.;BöferC.;WidmerR.;KovalenkoM. V.Adv. Mater.2018,30,1705644.
doi: 10.1002/adma.201705644 |
1121 |
ZhangJ.;ChenZ.;AiQ.;TerlierT.;HaoF.;LiangY.;GuoH.;LouJ.;YaoY.Joule2021,5,1845.
doi: 10.1016/j.joule.2021.05.017 |
1122 |
HuangW.;ZhuZ.;WangL.;WangS.;LiH.;TaoZ.;ShiJ.;GuanL.;ChenJ.Angew. Chem. Int. Ed.2013,52,9162.
doi: 10.1002/anie.201302586 |
1123 |
YokojiT.;MatsubaraH.;SatohM.J. Mater. Chem. A2014,2,19347.
doi: 10.1039/c4ta02812k |
1124 |
WanW.;LeeH.;YuX.;WangC.;NamK.-W.;YangX.-Q.;ZhouH.RSC Adv.2014,4,19878.
doi: 10.1039/c4ra01166j |
1125 |
CuiC.;JiX.;WangP.-F.;XuG.-L.;ChenL.;ChenJ.;KimH.;RenY.;ChenF.;YangC.ACS Energy Lett.2019,5,224.
doi: 10.1021/acsenergylett.9b02466 |
1126 |
SongZ.;QianY.;ZhangT.;OtaniM.;ZhouH.Adv. Sci.2015,2,1500124.
doi: 10.1002/advs.201500124 |
1127 |
TangM.;ZhuS.;LiuZ.;JiangC.;WuY.;LiH.;WangB.;WangE.;MaJ.;WangC.Chem2018,4,2600.
doi: 10.1016/j.chempr.2018.08.014 |
1128 |
ZhangC.;HeY.;MuP.;WangX.;HeQ.;ChenY.;ZengJ.;WangF.;XuY.;JiangJ. X.Adv. Funct. Mater.2018,28,1705432.
doi: 10.1002/adfm.201705432 |
1129 |
MaW.;LuoL. W.;DongP.;ZhengP.;HuangX.;ZhangC.;JiangJ. X.;CaoY.Adv. Funct. Mater.2021,31,2105027.
doi: 10.1002/adfm.202105027 |
1130 |
ParkJ.;LeeM.;FengD.;HuangZ.;HinckleyA. C.;YakovenkoA.;ZouX.;CuiY.;BaoZ.J. Am. Chem. Soc.2018,140,10315.
doi: 10.1021/jacs.8b06020 |
1131 |
JiangQ.;XiongP.;LiuJ.;XieZ.;WangQ.;YangX. Q.;HuE.;CaoY.;SunJ.;XuY.Angew. Chem. Int. Ed.2020,59,5273.
doi: 10.1002/anie.201914395 |
1132 |
GaoH.;NealeA. R.;ZhuQ.;BahriM.;WangX.;YangH.;XuY.;ClowesR.;BrowningN. D.;LittleM. A.J. Am. Chem. Soc.2022,144,9434.
doi: 10.1021/jacs.2c02196 |
1133 |
MaT.;LiuL.;WangJ.;LuY.;ChenJ.Angew. Chem. Int. Ed.2020,59,11533.
doi: 10.1002/anie.202002773 |
1134 |
FanX.;WangF.;JiX.;WangR.;GaoT.;HouS.;ChenJ.;DengT.;LiX.;ChenL.;et alAngew. Chem. Int. Ed.2018,57,7146.
doi: 10.1002/anie.201803703 |
1135 |
SuiD.;XuL.;ZhangH.;SunZ.;KanB.;MaY.;ChenY.Carbon2020,157,656.
doi: 10.1016/j.carbon.2019.10.106 |
1136 |
LiL.;ZuoZ.;WangF.;GaoJ.;CaoA.;HeF.;LiY.Adv. Mater.2020,32,2000140.
doi: 10.1002/adma.202000140 |
1137 |
LeeK.;SerdiukI. E.;KwonG.;MinD. J.;KangK.;ParkS. Y.;KwonJ. E.Energy Environ. Sci.2020,13,4142.
doi: 10.1039/d0ee01003k |
1138 |
LeeJ.;KimH.;ParkM. J.Chem. Mater.2016,28,2408.
doi: 10.1021/acs.chemmater.6b00624 |
1139 |
ZhangK.;GuoC.;ZhaoQ.;NiuZ.;ChenJ.Adv. Sci.2015,2,1500018.
doi: 10.1002/advs.201500018 |
1140 |
LiM.;YangJ.;ShiY.;ChenZ.;BaiP.;SuH.;XiongP.;ChengM.;ZhaoJ.;XuY.Adv. Mater.2022,34,2107226.
doi: 10.1002/adma.202107226 |
1141 |
ZhuZ.;HongM.;GuoD.;ShiJ.;TaoZ.;ChenJ.J. Am. Chem. Soc.2014,136,16461.
doi: 10.1021/ja507852t |
1142 |
LiB.;ZhaoJ.;ZhangZ.;ZhaoC.;SunP.;BaiP.;YangJ.;ZhouZ.;XuY.Adv. Funct. Mater.2019,29,1807137.
doi: 10.1002/adfm.201807137 |
1143 |
WangY.;BaiP.;LiB.;ZhaoC.;ChenZ.;LiM.;SuH.;YangJ.;XuY.Adv. Energy Mater.2021,11,2101972.
doi: 10.1002/aenm.202101972 |
1144 |
BaiS.;KimB.;KimC.;TamwattanaO.;ParkH.;KimJ.;LeeD.;KangK.Nat. Nanotechnol.2021,16,77.
doi: 10.1038/s41565-020-00788-x |
1145 |
JiangC.;TangM.;ZhuS.;ZhangJ.;WuY.;ChenY.;XiaC.;WangC.;HuW.Angew. Chem. Int. Ed.2018,57,16072.
doi: 10.1002/anie.201809907 |
1146 |
HuZ.;ZhaoX.;LiZ.;LiS.;SunP.;WangG.;ZhangQ.;LiuJ.;ZhangL.Adv. Mater.2021,33,2104039.
doi: 10.1002/adma.202104039 |
1147 |
LiC.;GuoZ.;YangB.;LiuY.;WangY.;XiaY.Angew. Chem. Int. Ed.2017,56,9126.
doi: 10.1002/anie.201705017 |
1148 |
CaiF.;HuZ.;ChouS. L.Adv. Sustain. Syst.2018,2,1800060.
doi: 10.1002/adsu.201800060 |
1149 |
TakechiK.;ShigaT.;AsaokaT.Chem. Commun.2011,47,3463.
doi: 10.1039/c0cc05176d |
1150 |
GoodarziM.;NazariF.;IllasF.J. Phys. Chem. C2018,122,25776.
doi: 10.1021/acs.jpcc.8b06395 |
1151 |
HuangB.;FrapperG.J. Am. Chem. Soc.2018,140,413.
doi: 10.1021/jacs.7b11123 |
1152 |
LiuY.;WangR.;LyuY.;LiH.;ChenL.Energy Environ. Sci.2014,7,677.
doi: 10.1039/c3ee43318h |
1153 |
QiaoY.;YiJ.;WuS.;LiuY.;YangS.;HeP.;ZhouH.Joule2017,1,359.
doi: 10.1016/j.joule.2017.07.001 |
1154 |
YangS.;QiaoY.;HeP.;LiuY.;ChengZ.;ZhuJ.-j.;ZhouH.Energy Environ. Sci.2017,10,972.
doi: 10.1039/c6ee03770d |
1155 |
ZhaoZ.;HuangJ.;PengZ.Angew. Chem. Int. Ed.2018,57,3874.
doi: 10.1002/anie.201710156 |
1156 |
XuS.;DasS. K.;ArcherL. A.RSC Adv.2013,3,6656.
doi: 10.1039/c3ra40394g |
1157 |
ZhangX.;ZhangQ.;ZhangZ.;ChenY.;XieZ.;WeiJ.;ZhouZ.Chem. Commun.2015,51,14636.
doi: 10.1039/c5cc05767a |
1158 |
ZhangZ.;ZhangQ.;ChenY.;BaoJ.;ZhouX.;XieZ.;WeiJ.;ZhouZ.Angew. Chem.2015,127,6650.
doi: 10.1002/ange.201501214 |
1159 |
LiY.;ZhouJ.;ZhangT.;WangT.;LiX.;JiaY.;ChengJ.;GuanQ.;LiuE.;PengH.Adv. Funct. Mater.2019,29,1808117.
doi: 10.1002/adfm.201808117 |
1160 |
QieL.;LinY.;ConnellJ. W.;XuJ.;DaiL.Angew. Chem. Int. Ed.2017,56,6970.
doi: 10.1002/anie.201701826 |
1161 |
ZhangB. W.;JiaoY.;ChaoD. L.;YeC.;WangY. X.;DaveyK.;LiuH. K.;DouS. X.;QiaoS. Z.Adv. Funct. Mater.2019,29,1904206.
doi: 10.1002/adfm.201904206 |
1162 |
SongL.;WangT.;WuC.;FanX.;HeJ.Chem. Commun.2019,55,12781.
doi: 10.1039/c9cc05392a |
1163 |
WangC.;ZhangQ.;ZhangX.;WangX. G.;XieZ.;ZhouZ.Small2018,14,1800641.
doi: 10.1002/smll.201800641 |
1164 |
LianZ.;LuY.;WangC.;ZhuX.;MaS.;LiZ.;LiuQ.;ZangS.Adv. Sci.2021,8,2102550.
doi: 10.1002/advs.202102550 |
1165 |
ZhangX.;WangC.;LiH.;WangX.-G.;ChenY.-N.;XieZ.;ZhouZ.J. Mater. Chem. A2018,6,2792.
doi: 10.1039/c7ta11015d |
1166 |
GeB.;SunY.;GuoJ.;YanX.;FernandezC.;PengQ.Small2019,15,1902220.
doi: 10.1002/smll.201902220 |
1167 |
ZhouJ.;LiX.;YangC.;LiY.;GuoK.;ChengJ.;YuanD.;SongC.;LuJ.;WangB.Adv. Mater.2019,31,1804439.
doi: 10.1002/adma.201804439 |
1168 |
QiG.;ZhangJ.;ChenL.;WangB.;ChengJ.Adv. Funct. Mater.2022,32,2112501.
doi: 10.1002/adfm.202112501 |
1169 |
ZhangY.;ZhongR.-L.;LuM.;WangJ.-H.;JiangC.;GaoG.-K.;DongL.-Z.;ChenY.;LiS.-L.;LanY.-Q.ACS Cent. Sci2020,7,175.
doi: 10.1021/acscentsci.0c01390 |
1170 |
EgertonR.;LiP.;MalacM.Micron2004,35,399.
doi: 10.1016/j.micron.2004.02.003 |
1171 |
TaylorK. A.;GlaeserR. M.Science1974,186,1036.
doi: 10.1126/science.186.4168.1036 |
1172 |
TaylorK. A.;GlaeserR. M.J. Ultrastruct. Res.1976,55,448.
doi: 10.1016/S0022-5320(76)80099-8 |
1173 |
DubochetJ.;McDowallA. W.J. Microsc.1981,124,3.
doi: 10.1111/j.1365-2818.1981.tb02483.x |
1174 |
ZhangJ.;JiaK.;HuangY.;WangY.;LiuN.;ChenY.;LiuX.;LiuX.;ZhuY.;ZhengL.Nano Lett.2021,21,9587.
doi: 10.1021/acs.nanolett.1c03344 |
1175 |
ZhengL.;LiuN.;LiuY.;LiN.;ZhangJ.;WangC.;ZhuW.;ChenY.;YingD.;XuJ.ACS Nano2021,15,16562.
doi: 10.1021/acsnano.1c06233 |
1176 |
LiuN.;ZhengL.;XuJ.;WangJ.;HuC.;LanJ.;ZhangX.;ZhangJ.;XuK.;ChengH.;et alBiophys. Rep.2021,7,227.
doi: 10.52601/bpr.2021.210007 |
1177 |
LiuN.;ZhangJ.;ChenY.;LiuC.;ZhangX.;XuK.;WenJ.;LuoZ.;ChenS.;GaoP.J. Am. Chem. Soc.2019,141,4016.
doi: 10.1021/jacs.8b13038 |
1178 |
SinhaS.;WarnerJ. H.Small Struct.2021,2,2000049.
doi: 10.1002/sstr.202000049 |
1179 |
XuJ.;CuiX.;LiuN.;ChenY.;WangH. W.SmartMat2021,2,202.
doi: 10.1002/smm2.1045 |
1180 |
ChenY.;EganG. C.;WanJ.;ZhuS.;JacobR. J.;ZhouW.;DaiJ.;WangY.;DannerV. A.;YaoY.;et alNat. Commun.2016,7,12332.
doi: 10.1038/ncomms12332 |
1181 |
LiuS.;ShenY.;ZhangY.;CuiB.;XiS.;ZhangJ.;XuL.;ZhuS.;ChenY.;DengY.Adv. Mater.2022,34,2106973.
doi: 10.1002/adma.202106973 |
1182 |
LiuS.;HuZ.;WuY.;ZhangJ.;ZhangY.;CuiB.;LiuC.;HuS.;ZhaoN.;HanX.Adv. Mater.2020,32,2006034.
doi: 10.1002/adma.202006034 |
1183 |
LiuC.;ZhouW.;ZhangJ.;ChenZ.;LiuS.;ZhangY.;YangJ.;XuL.;HuW.;ChenY.Adv. Energy Mater.2020,10,2001397.
doi: 10.1002/aenm.202001397 |
1184 |
LiuZ.;DuanC.;DouS.;YuanQ.;XuJ.;LiuW. D.;ChenY.Small2022,2200954.
doi: 10.1002/smll.202200954 |
1185 |
LiuC.;ShenY.;ZhangJ.;LiG.;ZhengX.;HanX.;XuL.;ZhuS.;ChenY.;DengY.Adv. Energy Mater.2022,12,2103505.
doi: 10.1002/aenm.202103505 |
1186 |
DouS.;XuJ.;CuiX.;LiuW.;ZhangZ.;DengY.;HuW.;ChenY.Adv. Energy Mater.2020,10,2001331.
doi: 10.1002/aenm.202001331 |
1187 |
LiY.;LiY.;CuiY.Chem2018,4,2250.
doi: 10.1016/j.chempr.2018.09.007 |
1188 |
LiY.;LiY.;PeiA.;YanK.;SunY.;WuC.-L.;JoubertL.-M.;ChinR.;KohA. L.;YuY.Science2017,358,506.
doi: 10.1126/science.aam6014 |
1189 |
WangH.;LiY.;LiY.;LiuY.;LinD.;ZhuC.;ChenG.;YangA.;YanK.;ChenH.Nano Lett.2019,19,1326.
doi: 10.1021/acs.nanolett.8b04906 |
1190 |
WangX.;ZhangM.;AlvaradoJ.;WangS.;SinaM.;LuB.;BouwerJ.;XuW.;XiaoJ.;ZhangJ.-G.Nano Lett2017,17,7606.
doi: 10.1021/acs.nanolett.7b03606 |
1191 |
LiY.;HuangW.;LiY.;PeiA.;BoyleD. T.;CuiY.Joule2018,2,2167.
doi: 10.1016/j.joule.2018.08.004 |
1192 |
HuangJ.;GuoX.;DuX.;LinX.;HuangJ.-Q.;TanH.;ZhuY.;ZhangB.Energy Environ. Sci.2019,12,1550.
doi: 10.1039/c8ee03632b |
1193 |
AlvaradoJ.;SchroederM. A.;ZhangM.;BorodinO.;GobroggeE.;OlguinM.;DingM. S.;GobetM.;GreenbaumS.;MengY. S.Mater. Today2018,21,341.
doi: 10.1016/j.mattod.2018.02.005 |
1194 |
XingX.;LiY.;WangX.;PetrovaV.;LiuH.;LiuP.Energy Storage Mater.2019,21,474.
doi: 10.1016/j.ensm.2019.06.022 |
1195 |
ZachmanM. J.;TuZ.;ChoudhuryS.;ArcherL. A.;KourkoutisL. F.Nature2018,560,345.
doi: 10.1038/s41586-018-0397-3 |
1196 |
YuS. H.;ZachmanM. J.;KangK.;GaoH.;HuangX.;DiSalvoF. J.;ParkJ.;KourkoutisL. F.;AbruñaH. D.Adv. Energy Mater.2019,9,1902773.
doi: 10.1002/aenm.201902773 |
1197 |
LiuY.;LinD.;LiY.;ChenG.;PeiA.;NixO.;LiY.;CuiY.Nat. Commun.2018,9,3656.
doi: 10.1038/s41467-018-06077-5 |
1198 | KeC.;XiaoB.;LiM.;LuJ.;HeY.;ZhangL.;ZhangQ.Energy Storage Sci. Technol.2021,10,1219. |
柯承志;肖本胜;李苗;陆敬予;何洋;张力;张桥保.储能科学与技术,2021,10,1219.
doi: 10.19799/j.cnki.2095-4239.2021.0042 |
|
1199 | LuJ.;KeC.;GongZ.;LiD.;CiL.;ZhangL.;ZhangQ.Acta Phys. Sin.2021,70,198102. |
陆敬予;柯承志;龚正良;李德平;慈立杰;张力;张桥保.物理学报,2021,70,198102.
doi: 10.7498/aps.70.20210531 |
|
1200 | ZhangQ.-B.;WuX.-W.;LuJ.-Y.;YiT.-F.Battery Materials—Synthesis, Characterization and ApplicationBeijing, China:Chemical Industry Press,2022. |
张桥保;吴贤文;陆敬予;伊廷锋.电池材料——合成, 表征与应用,北京:化学工业出版社,2022. | |
1201 |
KarkiK.;WuL.;MaY.;ArmstrongM. J.;HolmesJ. D.;GarofaliniS. H.;ZhuY.;StachE. A.;WangF.J. Am. Chem. Soc.2018,140,17915.
doi: 10.1021/jacs.8b07740 |
1202 |
KimS.;YaoZ.;LimJ. M.;HersamM. C.;WolvertonC.;DravidV. P.;HeK.Adv. Mater.2018,30,1804925.
doi: 10.1002/adma.201804925 |
1203 |
LiJ.;HwangS.;GuoF.;LiS.;ChenZ.;KouR.;SunK.;SunC.-J.;GanH.;YuA.;et alNat. Commun.2019,10,2224.
doi: 10.1038/s41467-019-09931-2 |
1204 |
ShimoyamadaA.;YamamotoK.;YoshidaR.;KatoT.;IriyamaY.;HirayamaT.Microscopy2015,64,401.
doi: 10.1093/jmicro/dfv050 |
1205 |
SunZ.;LiM.;XiaoB.;LiuX.;LinH.;JiangB.;LiuH.;LiM.;PengD.-L.;ZhangQ.eTransportation2022,14,100203.
doi: 10.1016/j.etran.2022.100203 |
1206 |
LiJ.;JohnsonG.;ZhangS.;SuD.Joule2019,3,4.
doi: 10.1016/j.joule.2018.12.007 |
1207 |
ChengY.;ZhangL.;ZhangQ.;LiJ.;TangY.;DelmasC.;ZhuT.;WinterM.;WangM.-S.;HuangJ.Mater. Today2021,42,137.
doi: 10.1016/j.mattod.2020.09.003 |
1208 |
ZhangQ.;ChenH.;LuoL.;ZhaoB.;LuoH.;HanX.;WangJ.;WangC.;YangY.;ZhuT.Energy Environ. Sci.2018,11,669.
doi: 10.1039/c8ee00239h |
1209 |
AnW.;GaoB.;MeiS.;XiangB.;FuJ.;WangL.;ZhangQ.;ChuP. K.;HuoK.Nat. Commun.2019,10,1447.
doi: 10.1038/s41467-019-09510-5 |
1210 |
ZhangJ.;SunZ.;KangZ.;LinH.;LiuH.;HeY.;ZengZ.;ZhangQ.Adv. Funct. Mater.2022,2204976.
doi: 10.1002/adfm.202204976 |
1211 |
ZhangJ.;XiaoB.;ZhaoJ.;LiM.;LinH.;KangZ.;WuX.;LiuH.;PengD.-L.;ZhangQ.J. Energy Chem.2022,71,370.
doi: 10.1016/j.jechem.2022.04.007 |
1212 |
WilliamsonM. J.;TrompR. M.;VereeckenP. M.;HullR.;RossF. M.Nat. Mater.2003,2,532.
doi: 10.1038/nmat944 |
1213 |
ZhengH.;SmithR. K.;JunY.-w.;KisielowskiC.;DahmenU.;AlivisatosA. P.Science2009,324,1309.
doi: 10.1126/science.1172104 |
1214 |
LuJ.;AabdinZ.;LohN. D.;BhattacharyaD.;MirsaidovU.Nano Lett.2014,14,2111.
doi: 10.1021/nl500766j |
1215 |
WuF.;YaoN.Nano Energy2015,11,196.
doi: 10.1016/j.nanoen.2014.11.004 |
1216 |
YukJ. M.;ParkJ.;ErciusP.;KimK.;HellebuschD. J.;CrommieM. F.;LeeJ. Y.;ZettlA.;AlivisatosA. P.Science2012,336,61.
doi: 10.1126/science.1217654 |
1217 |
MehdiB. L.;QianJ.;NasybulinE.;ParkC.;WelchD. A.;FallerR.;MehtaH.;HendersonW. A.;XuW.;WangC. M.Nano Lett.2015,15,2168.
doi: 10.1021/acs.nanolett.5b00175 |
1218 |
YuanY.;AmineK.;LuJ.;Shahbazian-YassarR.Nat. Commun.2017,8,15806.
doi: 10.1038/ncomms15806 |
1219 |
ZhangW.;BockD. C.;PelliccioneC. J.;LiY.;WuL.;ZhuY.;MarschilokA. C.;TakeuchiE. S.;TakeuchiK. J.;WangF.Adv. Energy Mater.2016,6,1502471.
doi: 10.1002/aenm.201502471 |
1220 |
XuG.-L.;AmineR.;XuY.-F.;LiuJ.;GimJ.;MaT.;RenY.;SunC.-J.;LiuY.;ZhangX.;et alEnergy Environ. Sci.2017,10,1677.
doi: 10.1039/C7EE00827A |
1221 |
LiuD.;ShadikeZ.;LinR.;QianK.;LiH.;LiK.;WangS.;YuQ.;LiuM.;GanapathyS.;et alAdv. Mater.2019,31,1806620.
doi: 10.1002/adma.201806620 |
1222 |
LiH.;GuoS.;ZhouH.J. Energy Chem.2021,59,191.
doi: 10.1016/j.jechem.2020.11.020 |
1223 |
OrikasaY.;MaedaT.;KoyamaY.;MurayamaH.;FukudaK.;TanidaH.;AraiH.;MatsubaraE.;UchimotoY.;OgumiZ.J. Am. Chem. Soc.2013,135,5497.
doi: 10.1021/ja312527x |
1224 |
LiuH.;Strobridge FionaC.;Borkiewicz OlafJ.;Wiaderek KamilaM.;Chapman KarenaW.;Chupas PeterJ.;Grey ClareP.Science2014,344,1252817.
doi: 10.1126/science.1252817 |
1225 |
ZhangX.;GuoS.;LiuP.;LiQ.;XuS.;LiuY.;JiangK.;HeP.;ChenM.;WangP.;et alAdv. Energy Mater.2019,9,1900189.
doi: 10.1002/aenm.201900189 |
1226 |
ConderJ.;BouchetR.;TrabesingerS.;MarinoC.;GublerL.;VillevieilleC.Nat. Energy2017,2,17069.
doi: 10.1038/nenergy.2017.69 |
1227 |
BianchiniM.;SuardE.;CroguennecL.;MasquelierC.J. Phys. Chem. C2014,118,25947.
doi: 10.1021/jp509027g |
1228 |
GoonetillekeD.;SharmaN.;PangW. K.;PetersonV. K.;PetibonR.;LiJ.;DahnJ. R.Chem. Mater.2019,31,376.
doi: 10.1021/acs.chemmater.8b03525 |
1229 |
VerhallenT. W.;LvS.;WagemakerM.Front. Energy Res.2018,6,62.
doi: 10.3389/fenrg.2018.00062 |
1230 |
ZhangX.;VerhallenT. W.;LabohmF.;WagemakerM.Adv. Energy Mater.2015,5,1500498.
doi: 10.1002/aenm.201500498 |
1231 |
LiuD. X.;WangJ.;PanK.;QiuJ.;CanovaM.;CaoL. R.;CoA. C.Angew. Chem. Int. Ed.2014,53,9498.
doi: 10.1002/anie.201404197 |
1232 |
SeidlhoferB.-K.;JerliuB.;TrappM.;HügerE.;RisseS.;CubittR.;SchmidtH.;SteitzR.;BallauffM.ACS Nano2016,10,7458.
doi: 10.1021/acsnano.6b02032 |
1233 |
HirayamaM.;ShibusawaT.;YamaguchiR.;KimK.;TaminatoS.;YamadaN. L.;YonemuraM.;SuzukiK.;KannoR.J. Mater. Res.2016,31,3142.
doi: 10.1557/jmr.2016.320 |
1234 |
KitadaK.;PecherO.;MagusinP. C. M. M.;GrohM. F.;WeatherupR. S.;GreyC. P.J. Am. Chem. Soc.2019,141,7014.
doi: 10.1021/jacs.9b01589 |
1235 |
SchweikertN.;HofmannA.;SchulzM.;ScheuermannM.;BolesS. T.;HanemannT.;HahnH.;IndrisS.J. Power Sources2013,228,237.
doi: 10.1016/j.jpowsour.2012.11.124 |
1236 |
GunnarsdóttirA. B.;AmanchukwuC. V.;MenkinS.;GreyC. P.J. Am. Chem. Soc.2020,142,20814.
doi: 10.1021/jacs.0c10258 |
1237 |
FreytagA. I.;PauricA. D.;KrachkovskiyS. A.;GowardG. R.J. Am. Chem. Soc.2019,141,13758.
doi: 10.1021/jacs.9b06885 |
1238 |
SalagerE.;Sarou-KanianV.;SathiyaM.;TangM.;LericheJ.-B.;MelinP.;WangZ.;VezinH.;BessadaC.;DeschampsM.;et alChem. Mater.2014,26,7009.
doi: 10.1021/cm503280s |
1239 |
LiuJ.;YinT.;TianB.;ZhangB.;QianC.;WangZ.;ZhangL.;LiangP.;ChenZ.;YanJ.;et alAdv. Energy Mater.2019,9,1900579.
doi: 10.1002/aenm.201900579 |
1240 |
FukumitsuH.;OmoriM.;TeradaK.;SuehiroS.Electrochemistry2015,83,993.
doi: 10.5796/electrochemistry.83.993 |
1241 |
ZengZ.;LiuN.;ZengQ.;LeeS. W.;MaoW. L.;CuiY.Nano Energy2016,22,105.
doi: 10.1016/j.nanoen.2016.02.005 |
1242 |
ChengQ.;WeiL.;LiuZ.;NiN.;SangZ.;ZhuB.;XuW.;ChenM.;MiaoY.;ChenL.-Q.;et alNat. Commun.2018,9,2942.
doi: 10.1038/s41467-018-05289-z |
1243 |
HaY.;Tremolet de VillersB. J.;LiZ.;XuY.;StradinsP.;ZakutayevA.;BurrellA.;HanS.-D.J. Phys. Chem. Lett2020,11,286.
doi: 10.1021/acs.jpclett.9b03284 |
1244 |
KimY. A.;KojimaM.;MuramatsuH.;UmemotoS.;WatanabeT.;YoshidaK.;SatoK.;IkedaT.;HayashiT.;EndoM.;et alSmall2006,2,667.
doi: 10.1002/smll.200500496 |
1245 |
WeiZ.;SalehiA.;LinG.;HuJ.;JinX.;AgarE.;LiuF.J. Power Sources2020,449,227361.
doi: 10.1016/j.jpowsour.2019.227361 |
1246 |
YamanakaT.;NakagawaH.;TsubouchiS.;DomiY.;DoiT.;AbeT.;OgumiZ.Electrochem. Commun.2017,77,32.
doi: 10.1016/j.elecom.2017.01.020 |
1247 |
PengY.;ChenZ.;ZhangR.;ZhouW.;GaoP.;WuJ.;LiuH.;LiuJ.;HuA.;ChenX.Nano-Micro Lett.2021,13,192.
doi: 10.1007/s40820-021-00722-3 |
1248 |
MarinoC.;BoulaouedA.;FullenwarthJ.;MaurinD.;LouvainN.;BantigniesJ.-L.;StievanoL.;MonconduitL.J. Phys. Chem. C2017,121,26598.
doi: 10.1021/acs.jpcc.7b06685 |
1249 |
ZhangY.;ZhaoL.;LiangY.;WangX.;YaoY.eScience2022,2,110.
doi: 10.1016/j.esci.2022.01.002 |
1250 |
PatelM. U. M.;Demir-CakanR.;MorcretteM.;TarasconJ.-M.;GaberscekM.;DominkoR.ChemSusChem2013,6,1177.
doi: 10.1002/cssc.201300142 |
1251 |
PatelM. U. M.;DominkoR.ChemSusChem2014,7,2167.
doi: 10.1002/cssc.201402215 |
1252 |
BoruahB. D.;WenB.;De VolderM.Nano Lett.2021,21,3527.
doi: 10.1021/acs.nanolett.1c00298 |
1253 |
HanY.;AxnandaS.;CrumlinE. J.;ChangR.;MaoB.;HussainZ.;RossP. N.;LiY.;LiuZ.J. Phys. Chem. B2018,122,666.
doi: 10.1021/acs.jpcb.7b05982 |
1254 |
LuY.-C.;CrumlinE. J.;VeithG. M.;HardingJ. R.;MutoroE.;BaggettoL.;DudneyN. J.;LiuZ.;Shao-HornY.Sci. Rep.2012,2,715.
doi: 10.1038/srep00715 |
1255 |
ZhuangG. V.;XuK.;YangH.;JowT. R.;RossP. N.J. Phys. Chem. B2005,109,17567.
doi: 10.1021/jp052474w |
1256 |
YuanY.;LiuC.;BylesB. W.;YaoW.;SongB.;ChengM.;HuangZ.;AmineK.;PomerantsevaE.;Shahbazian-YassarR.;et alJoule2019,3,471.
doi: 10.1016/j.joule.2018.10.026 |
1257 |
ZhangJ.;DongZ.;WangX.;ZhaoX.;TuJ.;SuQ.;DuG.J. Power Sources2014,270,1.
doi: 10.1016/j.jpowsour.2014.07.089 |
1258 |
SchmiegelJ.-P.;LeißingM.;WeddelingF.;HorsthemkeF.;ReiterJ.;FanQ.;NowakS.;WinterM.;PlackeT.J. Electrochem. Soc.2020,167,060516.
doi: 10.1149/1945-7111/ab8409 |
1259 |
MichalakB.;BerkesB. B.;SommerH.;BergfeldtT.;BrezesinskiT.;JanekJ.Anal. Chem.2016,88,2877.
doi: 10.1021/acs.analchem.5b04696 |
1260 |
LuceroM.;QiuS.;FengZ.Carbon Energy2021,3,762.
doi: 10.1002/cey2.131 |
1261 |
LiW.;LiM.;HuY.;LuJ.;LushingtonA.;LiR.;WuT.;ShamT. K.;SunX.Small Methods2018,2,1700341.
doi: 10.1002/smtd.201700341 |
1262 |
TangF.;WuZ.;YangC.;OsenbergM.;HilgerA.;DongK.;MarkötterH.;MankeI.;SunF.;ChenL.Small Methods2021,5,2100557.
doi: 10.1002/smtd.202100557 |
1263 |
LlewellynA. V.;MatruglioA.;BrettD. J.;JervisR.;ShearingP. R.Condens. Matter2020,5,75.
doi: 10.3390/condmat5040075 |
1264 |
TanG.;XuR.;XingZ.;YuanY.;LuJ.;WenJ.;LiuC.;MaL.;ZhanC.;LiuQ.Nat. Energy2017,2,17090.
doi: 10.1038/nenergy.2017.90 |
1265 |
BakS.-M.;ShadikeZ.;LinR.;YuX.;YangX.-Q.NPG Asia Mater2018,10,580.
doi: 10.1038/s41427-018-0056-z |
1266 |
DongB.;StockhamM. P.;ChaterP. A.;SlaterP. R.Dalton Trans.2020,49,11727.
doi: 10.1039/d0dt02112a |
1267 |
WuZ.;Kong PangW.;ChenL.;JohannessenB.;GuoZ.Batteries Supercaps2021,4,1547.
doi: 10.1002/batt.202100006 |
1268 |
TangY.;ZhangY.;MalyiO. I.;BucherN.;XiaH.;XiS.;ZhuZ.;LvZ.;LiW.;WeiJ.Adv. Mater.2018,30,1802200.
doi: 10.1002/adma.201802200 |
1269 |
AkadaK.;SudayamaT.;AsakuraD.;KitauraH.;NagamuraN.;HoribaK.;OshimaM.;HosonoE.;HaradaY.Sci. Rep.2019,9,12452.
doi: 10.1038/s41598-019-48842-6 |
1270 |
SunF.;MoroniR.;DongK.;MarkötterH.;ZhouD.;HilgerA.;ZielkeL.;ZengerleR.;ThieleS.;BanhartJ.ACS Energy Lett.2017,2,94.
doi: 10.1021/acsenergylett.6b00589 |
1271 |
SunF.;GaoR.;ZhouD.;OsenbergM.;DongK.;KardjilovN.;HilgerA.;MarkötterH.;BiekerP. M.;LiuX.ACS Energy Lett.2019,4,306.
doi: 10.1021/acsenergylett.8b02242 |
1272 |
ChernovaN. A.;NolisG. M.;OmenyaF. O.;ZhouH.;LiZ.;WhittinghamM. S.J. Mater. Chem.2011,21,9865.
doi: 10.1039/c1jm00024a |
1273 |
GoodenoughJ. B.;WickhamD. G.;CroftW. J.J. Phys. Chem. Solids1958,5,107.
doi: 10.1016/0022-3697(58)90136-7 |
1274 |
XiaoJ.;ChernovaN. A.;WhittinghamM. S.Chem. Mater.2008,20,7454.
doi: 10.1021/cm802316d |
1275 |
SalahA. A.;MaugerA.;ZaghibK.;GoodenoughJ. B.;RavetN.;GauthierM.;GendronF.;JulienC. M.J. Electrochem. Soc.2006,A1692.
doi: 10.1149/1.2213527 |
1276 |
RavetN.;GauthierM.;ZaghibK.;GoodenoughJ. B.;MaugerA.;GendronF.;JulienC. M.Chem. Mater.2007,19,2595.
doi: 10.1021/cm070485r |
1277 |
ZaghibK.;MaugerA.;GoodenoughJ. B.;GendronF.;JulienC. M.Chem. Mater.2007,3740.
doi: 10.1021/cm0710296 |
1278 |
WhittinghamM. S.;SongY.;LuttaS.;ZavalijP. Y.;ChernovaN. A.J. Mater. Chem.2005,15,3362.
doi: 10.1039/b501961c |
1279 |
ZaghibK.;RavetN.;GauthierM.;GendronF.;MaugerA.;GoodenoughJ. B.;JulienC. M.J. Power Sources2006,163,560.
doi: 10.1016/j.jpowsour.2006.09.030 |
1280 |
OmenyaF.;ChernovaN. A.;UpretiS.;ZavalijP. Y.;NamK.-W.;YangX.-Q.;WhittinghamM. S.Chem. Mater.2011,23,4733.
doi: 10.1021/cm2017032 |
1281 |
UpretiS.;ChernovaN. A.;XiaoJ.;MillerJ. K.;YakubovichO. V.;CabanaJ.;GreyC. P.;ChevrierV. L.;CederG.;MusfeldtJ. L.;et alChem. Mater.2011,24,166.
doi: 10.1021/cm2026619 |
1282 |
XiaoJ.;ChernovaN. A.;UpretiS.;ChenX.;LiZ.;DengZ.;ChoiD.;XuW.;NieZ.;GraffG. L.;et alPhys. Chem. Chem. Phys.2011,13,18099.
doi: 10.1039/c1cp22658d |
1283 | ZhaoZ.;LiuH.;XuX.;PanY.;LiQ.;LiH.;HuH.;LiQ.Energy Storage Sci. Technol.2022,11,818. |
赵志强;刘恒均;徐熙祥;潘圆圆;李庆浩;李洪森;胡涵;李强.储能科学与技术,2022,11,818.
doi: 10.19799/j.cnki.2095-4239.2021.0713 |
|
1284 | GuoY. C.Ferromagnetism.Beijing, China:Peking University Press,2014. |
郭贻诚.铁磁学,北京:北京大学出版社,2014. | |
1285 | DaiD. S.Magnetic Basis of Matter.Beijing, China:Peking University Press,2016. |
戴道生.物质磁性基础,北京:北京大学出版社,2016. | |
1286 |
SantoroR. P.;NewnhamR. E.Acta Crystallograph.1967,22,344.
doi: 10.1107/S0365110X67000672 |
1287 |
LiJ.;GarleaV. O.;ZarestkyJ. L.;VakninD.Phys. Rev. B2006,73,024410.
doi: 10.1103/PhysRevB.73.024410 |
1288 |
ChappelE.;NúñEz-RegueiroM. D.;ChouteauG.;SulpiceA.;DelmasC.Solid State Commun.2001,119,83.
doi: 10.1016/S0038-1098(01)00220-4 |
1289 |
ChappelE.;Núñez-RegueiroM. D.;de BrionS.;ChouteauG.;BianchiV.;CaurantD.;BaffierN.Phys. Rev. B2002,66,132412.
doi: 10.1103/PhysRevB.66.132412 |
1290 |
ChenJ.;VacchioM. J.;WangS.;ChernovaN.;ZavalijP. Y.;WhittinghamM. S.Solid State Ionics2008,178,1676.
doi: 10.1016/j.ssi.2007.10.015 |
1291 |
Ait-SalahA.;ZaghibK.;MaugerA.;GendronF.;JulienC. M.Phys. Status Sol. A2006,203,R1.
doi: 10.1002/pssa.200521452 |
1292 |
SalahA. A.;MaugerA.;JulienC. M.;GendronF.Mater. Sci. Eng. B2006,129,232.
doi: 10.1016/j.mseb.2006.01.022 |
1293 |
AxmannP.;StinnerC.;Wohlfahrt-MehrensM.;MaugerA.;GendronF.;JulienC. M.Chem. Mater.2009,21,1636.
doi: 10.1021/cm803408y |
1294 |
GardinerG. R.;IslamM. S.Chem. Mater.2009,22,1242.
doi: 10.1021/cm902720z |
1295 |
MalikR.;BurchD.;BazantM.;CederG.Nano Lett.2010,10,4123.
doi: 10.1021/nl1023595 |
1296 |
YangJ.;TseJ. S.J. Phys. Chem. A2011,115,13045.
doi: 10.1021/jp205057d |
1297 |
WernerJ.;NeefC.;KooC.;ZvyaginS.;PonomaryovA.;KlingelerR.Phys. Rev. Mater.2020,4,115403.
doi: 10.1103/PhysRevMaterials.4.115403 |
1298 |
NakamuraT.;YamadaY.;TabuchiM.J. Appl. Phys.2005,98,093905.
doi: 10.1063/1.2128469 |
1299 |
Abdel-GhanyA.;ZaghibK.;GendronF.;MaugerA.;JulienC. M.Electrochim. Acta2007,52,4092.
doi: 10.1016/j.electacta.2006.11.044 |
1300 |
LiZ.;ZhangY.;LiX.;GuF.;ZhangL.;LiuH.;XiaQ.;LiQ.;YeW.;GeC.;et alJ. Am. Chem. Soc.2021,143,12800.
doi: 10.1021/jacs.1c06115 |
1301 |
WangH.;ZhaoL.;ZhangH.;LiuY.Energy Environ. Sci.2022,15,311.
doi: 10.1039/D1EE03070A |
1302 |
LiQ.;LiH.;XiaQ.;HuZ.;ZhuY.;YanS.;GeC.;ZhangQ.;WangX.;ShangX.;et alNat. Mater.2021,20,76.
doi: 10.1038/s41563-020-0756-y |
1303 |
LiH.;HuZ.;XiaQ.;ZhangH.;LiZ.;WangH.;LiX.;ZuoF.;ZhangF.;WangX.;et alAdv. Mater.2021,33,e2006629.
doi: 10.1002/adma.202006629 |
1304 |
LiX.;SuJ.;LiZ.;ZhaoZ.;ZhangF.;ZhangL.;YeW.;LiQ.;WangK.;WangX.;et alSci. Bull.2022,67,1145.
doi: 10.1016/j.scib.2022.04.001 |
1305 |
HuJ.;ZengH.;ChenX.;WangZ.;WangH.;WangR.;WuL.;HuangQ.;KongL.;ZhengJ.;et alJ. Phys. Chem. Lett.2019,10,4794.
doi: 10.1021/acs.jpclett.9b01557 |
1306 |
ChernovaN. A.;MaM.;XiaoJ.;WhittinghamM. S.;GreyC. P.Chem. Mater.2007,19,4682.
doi: 10.1021/cm0708867 |
1307 |
WatanabeE.;ZhaoW.;SugaharaA.;Mortemard de BoisseB.;LanderL.;AsakuraD.;OkamotoY.;MizokawaT.;OkuboM.;YamadaA.Chem. Mater.2019,31,2358.
doi: 10.1021/acs.chemmater.8b04775 |
1308 |
HuangY.;FangJ.;OmenyaF.;O'SheaM.;ChernovaN. A.;ZhangR.;WangQ.;QuackenbushN. F.;PiperL. F. J.;ScanlonD. O.;et alJ. Mater. Chem. A2014,2,12827.
doi: 10.1039/c4ta00434e |
1309 |
LeiY.;NiJ.;HuZ.;WangZ.;GuiF.;LiB.;MingP.;ZhangC.;EliasY.;AurbachD.;et alAdv. Energy Mater.2020,10,2002506.
doi: 10.1002/aenm.202002506 |
1310 |
KopeȼM.;YamadaA.;KobayashiG.;NishimuraS.;KannoR.;MaugerA.;GendronF.;JulienC. M.J. Power Sources2009,189,1154.
doi: 10.1016/j.jpowsour.2008.12.096 |
1311 |
KlinserG.;TopolovecS.;KrenH.;KollerS.;GoesslerW.;KrennH.;WürschumR.Appl. Phys. Lett.2016,109,213901.
doi: 10.1063/1.4968547 |
1312 |
KlinserG.;TopolovecS.;KrenH.;KollerS.;KrennH.;WürschumR.Solid State Ionics2016,293,64.
doi: 10.1016/j.ssi.2016.06.004 |
1313 |
TopolovecS.;KrenH.;KlinserG.;KollerS.;KrennH.;WürschumR.J. Solid State Electrochem.2016,20,1491.
doi: 10.1007/s10008-015-3110-6 |
1314 |
WürschumR.;TopolovecS.;KlinserG.;SprengelW.;KrenH.;KollerS.;KrennH.;HugenschmidtC.;ReinerM.;GiglT.;et alMater. Sci. Forum2016,879,2125.
doi: 10.4028/www.scientific.net/MSF.879.2125 |
1315 |
KlinserG.;StücklerM.;KrenH.;KollerS.;GoesslerW.;KrennH.;WürschumR.J. Power Sources2018,396,791.
doi: 10.1016/j.jpowsour.2018.06.090 |
1316 |
GershinskyG.;BarE.;MonconduitL.;ZitounD.Energy Environ. Sci.2014,7,2012.
doi: 10.1039/c4ee00490f |
1317 |
JamnikJ.;MaierJ.Phys. Chem. Chem. Phys.2003,5,5215.
doi: 10.1039/b309130a |
1318 |
ZhukovskiiY. F.;BalayaP.;KotominE. A.;MaierJ.Phys. Rev. Lett.2006,96,058302.
doi: 10.1103/PhysRevLett.96.058302 |
1319 |
MaierJ.Faraday Discuss.2007,134,51.
doi: 10.1039/b603559k |
1320 |
FuL.;ChenC.-C.;MaierJ.Solid State Ionics2018,318,54.
doi: 10.1016/j.ssi.2017.09.008 |
1321 |
DuanC. G.;VelevJ. P.;SabirianovR. F.;ZhuZ.;ChuJ.;JaswalS. S.;TsymbalE. Y.Phys. Rev. Lett.2008,101,137201.
doi: 10.1103/PhysRevLett.101.137201 |
1322 |
HjortstamO.;TryggJ.;WillsJ. M.;JohanssonB.;ErikssonO.Phys. Rev. B1996,53,9204.
doi: 10.1103/PhysRevB.53.9204 |
1323 |
LaruelleS.;GrugeonS.;PoizotP.;DolléM.;DupontL.;TarasconJ.-M.J. Electrochem. Soc2002,149,A627.
doi: 10.1149/1.1467947 |
1324 |
GrugeonS.;LaruelleS.;DupontL.;TarasconJ. M.Solid State Sci.2003,5,895.
doi: 10.1016/s1293-2558(03)00114-6 |
1325 |
LiX.;LiZ.;LiuY.;LiuH.;ZhaoZ.;ZhengY.;ChenL.;YeW.;LiH.;LiQ.Chin. J. Catal.2022,43,158.
doi: 10.1016/s1872-2067(21)63867-6 |
1326 |
ZhangL.-Q.;XiaQ.-T.;LiZ.-H.;HanY.-Y.;XuX.-X.;ZhaoX.-L.;WangX.;PanY.-Y.;LiH.-S.;LiQ.Chin. Phys. Lett.2022,39,028202.
doi: 10.1088/0256-307x/39/2/028202 |
[1] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[2] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-. |
[3] | YAN Hui, ZHANG Huan, ZHANG Ding, ZHU Zhi, QI Lu. Hydrothermal Synthesis of Spherical Li4Ti5O12 as Anode Material for High Power Lithium-Ion Secondary Battery [J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2118-2122. |
[4] | WU Ke; WANG Yin-Ping; WANG Jian; LI Yong-Wei; AN Ping; QI Lu. Electrochemical Performance of Novel Li4Ti5O12/LiMn2O4 System [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 5-9. |
[5] | HOU Xian-Quan; JIANG Wei-Jun; QI Lu; HAN Li-Juan. Synthesis and Properties of Layered LiNi0.8Co0.2-xMgxO2 Cathode Material [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 40-45. |
[6] |
WANG Jian; QI Yu-Jun; LI Yong-Wei; QI Lu . Discharge Performances of C/LiNi1/3Co1/3Mn1/3O2 [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 46-50. |
[7] | WANG Jian; LI Tong-Jin; QI Lu. Progress in High Power Lithium-ion Secondary Battery [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 75-79. |
[8] | DENG Zheng-Hua; LI Ren-Gui; WANG Lu; DENG Jia-Min; GAO Jian-Dong; MA Zhi-Gang; DU Hong-Chang; SUO Ji-Shuan. Research and Development of Separators for Lithium-ion Battery [J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 90-93. |
[9] | DAI Ke-Hua; WANG Yin-Jie; FENG Hua-Jun; XIE Yan-Ting; QI Lu. Preparation Conditions of LiMn0.45Ni0.45Co0.1O2 via Hydroxide Co-precipitation [J]. Acta Phys. -Chim. Sin., 2007, 23(12): 1927-1931. |
[10] | CHEN Ling;LI Xue-Li;ZHAO Qiang;CAI Wen-Bin;JIANG Zhi-Yu. Bipolar Pulse Current Charge Method for Inhibiting the Formation of Lithium Dendrite [J]. Acta Phys. -Chim. Sin., 2006, 22(09): 1155-1158. |
[11] | TAO Bin-Wu;LIU Jian-Hua;LI Song-Mei;ZHAO Liang. Electrochemical Properties of a V2O5/C Composite in Aqueous Solution Used for Zinc Secondary Battery [J]. Acta Phys. -Chim. Sin., 2005, 21(03): 338-342. |
[12] | Tang Zhi-Yuan;Xu Guo-Xiang. The Application of Poly (1-aminoanthraquinone) for Positive Electrode Material in Lithium Secondary Battery [J]. Acta Phys. -Chim. Sin., 2003, 19(04): 307-310. |
[13] | Zhou Jia-Hong, Xue Kuan-Hong, Sun Dong-Mei, Xu Shi-Min, Kong Jing-Lin. AC Impednce Study of the Aqueous Zn/V2O5 Secondary Battery [J]. Acta Phys. -Chim. Sin., 2000, 16(05): 454-458. |
[14] | Wu Yu-Ping, Jiang Chang-Yin, Wan Chun-Rong, Fang Shi-Bi, Jiang Ying-Yan. Effects of the Addition of Crosslinker on Properties of Carbon Anode Materials [J]. Acta Phys. -Chim. Sin., 1999, 15(12): 1106-1111. |
[15] | Wu Yu-Ping, Fang Shi-Bi, Jiang Ying-Yan, Wan Chun-Rong. Modification of Carbon Anode of Lithium lon Secondary Battery [J]. Acta Phys. -Chim. Sin., 1999, 15(02): 133-137. |
|