Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (2): 2209001.doi: 10.3866/PKU.WHXB202209001
• REVIEW • Previous Articles
Siran Xu1, Qi Wu3, Bang-An Lu1, Tang Tang2, Jia-Nan Zhang1,*(), Jin-Song Hu2,*(
)
Received:
2022-09-02
Accepted:
2022-10-10
Published:
2022-10-25
Contact:
Jia-Nan Zhang,Jin-Song Hu
E-mail:zjn@zzu.edu.cn;hujs@iccas.ac.cn
About author:
Email: hujs@iccas.ac.cn (J.H.)Supported by:
MSC2000:
Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media[J].Acta Phys. -Chim. Sin., 2023, 39(2): 2209001.
Fig 2
(a) Volcano-type dependence between HBE and exchange current densities log(i0) on monometallic surface 33; (b) steady state CVs of Pt(110) and Pt(100) in different pH electrolytes 34; (c) HBE on Pt(110) (solid symbols) and Pt(100) (empty symbols) surfaces obtained from CVs as a function of solution Pt 34; (d) a correlation between the exchange current density and Hupd peak position for supported Pt-group nanoparticles 35. (a) Adapted with permission from Ref. 33, Copyright 2013, Royal Society of Chemistry. (b, c) Adapted with permission from Ref. 34, Copyright 2015, Nature Publishing Group. (d) Adapted with permission from Ref. 35, Copyright 2016, American Association for the Advancement of Science."
Fig 3
(a) Schematic representation of the alkaline HER on a Ni(OH)2/Pt(111) heterointerface 46; (b) using Pt(553) as the H adsorption site, the volcanic diagram between OH binding energy and alkaline HER activity; (c) 3D volcano curves considering dissociation energy of H2O and adsorption energy of OHad and Had during alkaline HER process; (d) reaction energy diagram to illustrate the HER reaction mechanism 41. (a) Adapted with permission from Ref. 46, Copyright 2012, Nature Publishing Group; (b–d) Adapted with permission from Ref. 41, Copyright 2020, Nature Publishing Group."
Fig 4
(a) Schematic illustration showing reaction paths in alkaline HER on the surface of a Ni catalyst doped with oxophilic metal (M) atoms; (b) comparison plot of DFT calculation of hydrogen binding energy (ΔEH) and hydroxyl binding energy (ΔEOH) for Ni(111) and M—Ni(111) surfaces; (c) volcano plot of M—Ni and Ni catalysts with ?10 and Tafel slope as a function 49; (d) HER mechanism of PtSA-NiO/Ni 51"
Fig 5
(a) AEM pathway on single metal site. Metal site, the lattice oxygen and oxygen from the electrolyte are marked in yellow, green color and green ball, respectively. The black arrow means join, and the yellow arrow means release. (b–d) LOM mechanism with oxygen vacancy, single metal and dual-metal as active site, respectively. Chemically inert lattice oxygen, active lattice oxygen involving OER, and oxygen in the electrolyte are marked with green, red, and green spheres, respectively, and dotted lines represent oxygen vacancies."
Fig 6
(a) The scaling relationship between the free energy of the water dissociation on top of oxygen (ΔG*OOH ? ΔG*O (eV)) and the free energy of proton removal (ΔG*O ? ΔG*OH (eV)) 70; (b) The schematic representations of cation/anion redox chemistry guided by d–d Coulomb interaction (U) and charge transfer energy (Δ), which manifest conventional metal cation oxidation (left), oxygen anion oxidation (middle) and direct oxygen anion release (right) for OER, respectively; (c) Schematic formation of oxygen holes in |O 2p lone-pair states for NaxMn3O7; (d) Projected density of states of NaxMn3O7 slabs (x = 2, 1.5, 1, 0.5) 79; (e) Schematic energy bands of CoO2 and zinc-substituted CoO2 slabs in consideration of Mott-Hubbard splitting; (f) Transformation of OER mechanism due to Na+ introduction, including AEM (left) and LOM (right) 84. (a) Adapted with permission from Ref. 70, Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA; (c, d) Adapted with permission from Ref. 79, Copyright 2021, Nature Publishing Group; (e–f) Adapted with permission from Ref. 84, Copyright 2019, Nature Publishing Group."
Fig 7
(a) Schematic of the synthesis route of Co2P/CoN-NCNT prepared with two-step pyrolysis process; (b) HRTEM images of Co2P/CoN-NCNT core-shell structure; (c) Calculated free-energy diagram of different catalyst samples 104; (d) Synthesis process of Ru2B3@BNC catalysts; (e) HER activity of Ru2B3@BNC in 1 mol·L−1 KOH; (f) Calculated free-energy diagram of H adsorption 105; (g) Synthesis process, (h) TEM image and (i) HRTEM image of Ir-NBD-C; (j) LSV curves and Tafel slopes of Ir-NBD-C and other samples 112; (k) Synthesis and microstructure design of Ru1SACs@FeCo-LDH catalyst in alkaline; (l) FE-SEM image with the yellow dashed line showing the defect intensity curve; (m) Long-term stability measure of RuxSACs@FeCo-LDH catalyst during overall water splitting 119. (a–c) Adapted with permission from Ref. 104, Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA. (d–f) Adapted with permission from Ref. 105, Copyright 2020, Royal Society of Chemistry. (g–j) Adapted with permission from Ref. 112, Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA. (k–m) Adapted with permission from Ref. 119, Copyright 2022, Royal Society of Chemistry."
Fig 8
(a–c) Schematic of the roll-to-roll system and design principle of catalyst prepared by electrophoretic deposition 130; (d) diagram of high-throughput production step and structure of MoS2-based ink-type electrocatalysts; (e) LSV curves of MoS2-based electrocatalysts 5; (f) synthesis and characterization of the h-NiMoFe catalyst; (g) LSV curves of h-NiMoFe, Ni foam and commercial Pt/C 126. (a–c) Adapted with permission from Ref. 130, Copyright 2015, American Chemical Society. (d, e) Adapted with permission from Ref. 5, Copyright 2020, Nature Publishing Group. (f, g) Adapted with permission from Ref. 126, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA."
Fig 9
(a) Diagram of the formation of bubbles on the catalyst surface; (b) Schematic diagram of synthesis steps and corresponding morphologies of FeCoNi-HNTAs catalyst; Superaerophobic and superhydrophilic measurements of (c) FeCoNi-HNTAs, (d) FeCoNi-LDH-HWAs, (e) MoS2/NF and (f) NF; (g) Comparison of overall water splitting performance of catalysts; (h) Long-term stability measurement of FeCoNi-HNTAs 134; (i) Illustration of synthesis of NiMoB-HF/NF hollow nanotube catalyst; Optical photos of H2 bubbles attached to Nickel foam (j-k) and NiMoB-HF/NF (m–n) at (j, m) low current density (20 mA∙cm−2) and (k, n) large current density (100 mA∙cm−2), respectivity; Schematic diagram of bubbles attached to Ni foam surface (l) and NiMoB-HF/NF (o). (p–r) Long-term stability measurement of NiMoB-HF/NF at different current densities 135. (b–h) Adapted with permission from Ref. 134, Copyright 2018, Nature Publishing Group. (i–r) Adapted with permission from Ref. 135, Copyright 2022, Nature Publishing Group."
Table 1
Introduce of electrode performance of AEMWE."
Electrode | GDL | Substrate | Anode/Cathode | Cell Voltage/V (precious-metal) | Current density (mA?cm?2) | Stability/h | Ref. |
NiFeOOH | Ti paper | Ti paper | Anode | 1.8 | 3600 | 100 (500 mA?cm?2) | |
Ni/C | MPLs | SUS paper | Anode/Cathode | 1.9 | 500 | 120 | |
NiFeV LDH | Ni foam | Ni foam | Anode | 1.8 | 2100 | 100 | |
Pt | CNTSs | SUS paper | Cathode | 1.9 | 4000 | 3 (1 A?cm?2) | |
Ir-Ni/Mo5N6 | Ni foam | Ni foam | Anode/Cathode | 2.0 | 2100 | 30 | |
Ni0.75Fe2.25O4 | Ni foam | Ni foam | Anode | 1.9 | 2000 | 21 | |
g-CN-CNF-800 | – | Ni foam | Anode | 1.9 | 734 | – | |
CE-CCO | Ni foam | Ni foam | Anode | 1.8 | 1390 | 64 (500 mA?cm?2) |
Table 2
Introduction of common electrolytic cell characteristics."
AWE | AEMWE | PEMWE | SOEC | |
Common electrode materials | Ni-based materials | Ni, Co, Fe, etc.non-noble metal catalyst | Ir, Ru and other precious metals and their alloys/mixed oxides | Y2O3, ZrO3 |
Membrane | Insulation materials such as asbestos cloth or polysulfone | Anion exchange membrane | Proton Exchange Membrane | Solid Oxide |
Current density | ~0.8 A?cm?2 | ~2 A?cm?2 | ~4 A?cm?2 | ~0.4 A?cm?2 |
Electrolyte | KOH, NaOH | No corrosive medium | No corrosive medium | – |
Operating temperature/℃ | ≤ 90 | ≤ 60 | ≤ 80 | ≥ 800 |
Hydrogen purity | 99.8% | 99.99% | 99.99% | – |
Intermittent energy response speed | Slow | Fast | Fast (< 5 s) | – |
Start/Stop Rate | Slow | Fast | Fast | Difficult |
Industrialization degree | Mature | Laboratory | Preliminary | Expected Stage |
Advantages | Mature technology, low cost | Low cost, high efficiency and excellent performance | High security and efficiency | Expected efficiency of 100% |
Disadvantages | Low efficiency and poor performance | Limited anionic conductivity, not commercialized | High cost | High temperature accelerates material deactivation |
Fig 11
(a) Schematic cross section of an AEM water electrolysis system; (b) AEM electrolyzer components; (c) plane diagram of PEM electrolyzer; (d) the components and assembly of the membrane-free flow electrolyzer 148. Adapted with permission from Ref. 148, Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA."
Table 3
The performance of industrial catalysts (≥ 500 mA∙cm?2) in alkaline media in the past five years."
Number | Application | Catalyst | η (Current density) | Stability (Current density) | Ref. |
1 | HER | RuxSACs@FeCo-LDH | 110 mV (1 A?cm?2) | 1000 h (1 A?cm?2) | |
OER | 246 mV (1 A?cm?2) | 1000 h (1 A?cm?2) | |||
2 | HER | Mo2S3@NiMo3S4 | 174 mV (1 A?cm?2) | 24 h (500 mA?cm?2) | |
OER | 390 mV (1 A?cm?2) | ||||
3 | HER | Fe-Ni2P@C/NF | 313 mV (1 A?cm?2) | 15 h (20 mA?cm?2) | |
4 | OER | FeWO4-Ni3S2@C | 340 mV (1 A?cm?2) | 100 h (1 A?cm?2) | |
HER | 370 mV (1 A?cm?2) | 100 h (1 A?cm?2) | |||
5 | OER | NiO/RuO2/NF | 560 mV (1 A?cm?2) | 72 h (1.5 A?cm?2) | |
HER | 270 mV (1 A?cm?2) | 72 h (1.5 A?cm?2) | |||
6 | HER | Ni-Mo-B/NF | 260 mV (500 mA?cm?2) | – | |
OER | 293 mV (5 A?cm?2) | – | |||
7 | HER | IrNi-FeNi3 | 288 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |
OER | 330 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |||
8 | HER | K2Fe4O7 | 343 mV (2 A?cm?2) | 60 h (1.5 A?cm?2) | |
OER | 421 mV (2 A?cm?2) | 60 h (1.5 A?cm?2) | |||
9 | HER | Pt/Ni-Mo | 113 mV (2 A?cm?2) | 140 h (2 A?cm?2) | |
10 | HER | H-NiMoFe/NF | 100 mV (1 A?cm?2) | – | |
11 | HER | Co3Mo/Cu | 96 mV (400 mA?cm?2) | 1000 h (50 mA?cm?2) | |
12 | HER | CoOx-RuO2/NF | 215 mV (1.5 A?cm?2) | 48 h (1.5 A?cm?2) | |
OER | 420 mV (1.5 A?cm?2) | 48 h (1.5 A?cm?2) | |||
13 | HER | Co-P foam | 290 mV (1 A?cm?2) | 3000 h (1 A?cm?2) | |
OER | 380 mV (1 A?cm?2) | 3000 h (1 A?cm?2) | |||
14 | HER | F-Co2P-Fe2P-IF | 304 mV (2 A?cm?2) | 10 h (2 A?cm?2) | |
15 | HER | Co2P-Fe2P/CF | 254 mV (1 A?cm?2) | 300 h (0.1–1 A?cm?2) | |
OER | 317 mV (1 A?cm?2) | 250 h (0.1–1 A?cm?2) | |||
16 | HER | HC-MoS2/Mo2C | 412 mV (1 A?cm?2) | 24 h (?400 mV) | |
17 | HER | MoS2/Ni3S2/NF | 200 mV (1 A?cm?2) | 12 h (1 A?cm?2) | |
18 | HER | NC/Ni3Mo3N/NF | 954 mV (1 A?cm?2) | 50 h (1.1 A?cm?2) | |
19 | HER | A-NiCo LDH/NF | 381 mV (1 A?cm?2) | 72 h (1 A?cm?2) | |
20 | HER | NiCo/NiCo-OH | 184 mV (500 mA?cm?2) | 24 h (500 mA?cm?2) | |
21 | OER | NiFe/NiFe-OH | 296 mV (500 mA?cm?2) | 24 h (500 mA?cm?2) | |
22 | HER | NiMoOx/NiMoS/NF | 186 mV (500 mA?cm?2) | 25 h (500 mA?cm?2) | |
OER | 278 mV (500 mA?cm?2) | 25 h (500 mA?cm?2) | |||
23 | HER | Ni0.2Mo0.8N/Ni | ~90 mV (500 mA?cm?2 | 60 h (100 mA?cm?2) | |
24 | HER OER | Ni@C-MoO2/NF | 332 mV (2 A?cm?2) 400 mV (1 A?cm?2) | 172 h (1 A?cm?2) 172 h (1 A?cm?2) | |
25 | HER | Ni2P nanoarray/NF | 368 mV (1.5 A?cm?2) | 24 h | |
26 | HER | MoS2/Mo2C | 220 mV (1 A?cm?2) | – | |
27 | HER | Fe-Ni2P | 300 mV (1 A?cm?2) | – | |
OER | 183 mV (1 A?cm?2) | – | |||
28 | HER | Ni-Co-P/NF | 350 mV (1.5 A?cm?2) | 24 h (10 mA?cm?2) | |
29 | OER | NiFe nanowire | 258 mV (1 A?cm?2) | 120 h (1 A?cm?2) | |
30 | HER | Ni-P-B/NF | 254 mV (500 mA?cm?2) | 240 h (1 A?cm?2) | |
OER | 335 mV (500 mA?cm?2) | 240 h (1 A?cm?2) | |||
31 | OER | Se-FeOOH/IF | 348 mV (500 mA?cm?2) | 14 h (10 mA?cm?2) | |
32 | OER | Fe-CoP/NF | 428 mV (1 A?cm?2) | 30 h (1 A?cm?2) | |
33 | OER | FeP/Ni2P | ~310 mV (1.5 A?cm?2) | 24 h (100 mA?cm?2) | |
34 | HER | Co-B-P/NF | ~225 mV (2 A?cm?2) | 20 h (1 A?cm?2) |
1 |
Jiang W.-J. ; Tang T. ; Zhang Y. ; Hu J.-S. Acc. Chem. Res. 2020, 53 (6), 1111.
doi: 10.1021/acs.accounts.0c00127 |
2 |
Chen Z. ; Xu Y. ; Ding D. ; Song G. ; Gan X. ; Li H. ; Wei W. ; Chen J. ; Li Z. ; Gong Z. ; et al Nat. Commun. 2022, 13 (1), 763.
doi: 10.1038/s41467-022-28413-6 |
3 |
Huang L.-B. ; Zhao L. ; Zhang Y. ; Chen Y.-Y. ; Zhang Q.-H. ; Luo H. ; Zhang X. ; Tang T. ; Gu L. ; Hu J.-S. Adv. Energy Mater. 2018, 8 (21), 1800734.
doi: 10.1002/aenm.201800734 |
4 |
Luo Y. ; Zhang Z. ; Chhowalla M. ; Liu B. Adv. Mater. 2022, 34 (16), 2108133.
doi: 10.1002/adma.202108133 |
5 |
Zhang C. ; Luo Y. ; Tan J. ; Yu Q. ; Yang F. ; Zhang Z. ; Yang L. ; Cheng H.-M. ; Liu B. Nat. Commun. 2020, 11 (1), 3724.
doi: 10.1038/s41467-020-17121-8 |
6 |
Li D. ; Liu H. ; Feng L. Energy & Fuels 2020, 34 (11), 13491.
doi: 10.1021/acs.energyfuels.0c03084 |
7 | Yu J. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011004. |
于吉红. 物理化学学报, 2021, 37 (7), 2011004.
doi: 10.3866/PKU.WHXB202011004 |
|
8 |
Wu T. ; Xu S. ; Zhang Z. ; Luo M. ; Wang R. ; Tang Y. ; Wang J. ; Huang F. Adv. Sci. 2022, 9, 2202750.
doi: 10.1002/advs.202202750 |
9 |
Jin H. ; Ruqia B. ; Park Y. ; Kim H. J. ; Oh H.-S. ; Choi S.-I. ; Lee K. Adv. Energy Mater. 2021, 11 (4), 2003188.
doi: 10.1002/aenm.202003188 |
10 |
Yeo K.-R. ; Lee K.-S. ; Kim H. ; Lee J. ; Kim S.-K. Energy Environ. Sci. 2022, 15 (8), 3449.
doi: 10.1039/D2EE01042A |
11 |
López-Fernández E. ; Gómez-Sacedón C. ; Gil-Rostra J. ; Espinós J. P. ; González-Elipe A. R. ; Yubero F. ; de Lucas-Consuegra A. Chem. Eng. J. 2022, 433, 133774.
doi: 10.1016/j.cej.2021.133774 |
12 |
Zakaria Z. ; Kamarudin S. K. Int. J. Energy Res. 2021, 45 (13), 18337.
doi: 10.1002/er.6983 |
13 |
Khataee A. ; Shirole A. ; Jannasch P. ; Krüger A. ; Cornell A. J. Mater. Chem. A 2022, 10 (30), 16061.
doi: 10.1039/D2TA03291K |
14 |
Mayerhöfer B. ; Ehelebe K. ; Speck F. D. ; Bierling M. ; Bender J. ; Kerres J. A. ; Mayrhofer K. J. J. ; Cherevko S. ; Peach R. ; Thiele S. J. Mater. Chem. A 2021, 9 (25), 14285.
doi: 10.1039/D1TA00747E |
15 |
Wan L. ; Liu J. ; Xu Z. ; Xu Q. ; Pang M. ; Wang P. ; Wang B. Small 2022, 18 (21), 2200380.
doi: 10.1002/smll.202200380 |
16 |
Cao X. ; Novitski D. ; Holdcroft S. ACS Mater. Lett. 2019, 1 (3), 362.
doi: 10.1021/acsmaterialslett.9b00195 |
17 |
Cho M. K. ; Park H.-Y. ; Choe S. ; Yoo S. J. ; Kim J. Y. ; Kim H.-J. ; Henkensmeier D. ; Lee S. Y. ; Sung Y.-E. ; Park H. S. ; et al J. Power Sources 2017, 347, 283.
doi: 10.1016/j.jpowsour.2017.02.058 |
18 |
Zhang X.-Y. ; Yu W.-L. ; Zhao J. ; Dong B. ; Liu C.-G. ; Chai Y.-M. Appl. Mater. Today 2021, 22, 100913.
doi: 10.1016/j.apmt.2020.100913 |
19 |
Villagra A. ; Millet P. Int. J. Hydrogen Energy 2019, 44 (20), 9708.
doi: 10.1016/j.ijhydene.2018.11.179 |
20 |
Dong Z.-H. ; Jiang Z. ; Tang T. ; Yao Z.-C. ; Xue D. ; Niu S. ; Zhang J. ; Hu J.-S. J. Mater. Chem. A 2022, 10 (24), 12764.
doi: 10.1039/D2TA02374A |
21 |
Zheng Y. ; Jiao Y. ; Vasileff A. ; Qiao S.-Z. Angew. Chem. Int. Ed. 2018, 57 (26), 7568.
doi: 10.1002/anie.201710556 |
22 |
Xu Q. ; Zhang J. ; Zhang H. ; Zhang L. ; Chen L. ; Hu Y. ; Jiang H. ; Li C. Energy Environ. Sci. 2021, 14 (10), 5228.
doi: 10.1039/D1EE02105B |
23 |
Xue S. ; Haid R. W. ; Kluge R. M. ; Ding X. ; Garlyyev B. ; Fichtner J. ; Watzele S. ; Hou S. ; Bandarenka A. S. Angew. Chem. Int. Ed. 2020, 59 (27), 10934.
doi: 10.1002/anie.202000383 |
24 |
Danilovic N. ; Subbaraman R. ; Strmcnik D. ; Chang K.-C. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Angew. Chem. Int. Ed. 2012, 51 (50), 12495.
doi: 10.1002/anie.201204842 |
25 |
Lao M. ; Li P. ; Jiang Y. ; Pan H. ; Dou S. X. ; Sun W. Nano Energy 2022, 98, 107231.
doi: 10.1016/j.nanoen.2022.107231 |
26 |
Mao B. ; Sun P. ; Jiang Y. ; Meng T. ; Guo D. ; Qin J. ; Cao M. Angew. Chem. Int. Ed. 2020, 59 (35), 15232.
doi: 10.1002/anie.202006722 |
27 |
Morales-Guio C. G. ; Stern L.-A. ; Hu X. Chem. Soc. Rev. 2014, 43 (18), 6555.
doi: 10.1039/C3CS60468C |
28 |
Yu Z.-Y. ; Duan Y. ; Feng X.-Y. ; Yu X. ; Gao M.-R. ; Yu S.-H. Adv. Mater. 2021, 33 (31), 2007100.
doi: 10.1002/adma.202007100 |
29 |
Anantharaj S. ; Noda S. ; Jothi V. R. ; Yi S. ; Driess M. ; Menezes P. W. Angew. Chem. Int. Ed. 2021, 60 (35), 18981.
doi: 10.1002/anie.202015738 |
30 | Li M. ; Zheng X. ; Li L. ; Wei Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2007054. |
李孟婷; 郑星群; 李莉; 魏子栋. 物理化学学报, 2021, 37 (9), 2007054.
doi: 10.3866/PKU.WHXB202007054 |
|
31 |
Hu C. ; Zhang L. ; Gong J. Energy Environ. Sci. 2019, 12 (9), 2620.
doi: 10.1039/C9EE01202H |
32 |
Deng C. ; Toe C. Y. ; Li X. ; Tan J. ; Yang H. ; Hu Q. ; He C. Adv. Energy Mater. 2022, 12 (25), 2201047.
doi: 10.1002/aenm.202201047 |
33 |
Sheng W. ; Myint M. ; Chen J. G. ; Yan Y. Energy Environ. Sci. 2013, 6 (5), 1509.
doi: 10.1039/C3EE00045A |
34 |
Sheng W. ; Zhuang Z. ; Gao M. ; Zheng J. ; Chen J. G. ; Yan Y. Nat. Commun. 2015, 6 (1), 5848.
doi: 10.1038/ncomms6848 |
35 |
Zheng J. ; Sheng W. ; Zhuang Z. ; Xu B. ; Yan Y. Sci. Adv. 2016, 2 (3), e1501602.
doi: 10.1126/sciadv.1501602 |
36 |
Mahmood J. ; Li F. ; Jung S.-M. ; Okyay M. S. ; Ahmad I. ; Kim S.-J. ; Park N. ; Jeong H. Y. ; Baek J.-B. Nat. Nanotechnol. 2017, 12 (5), 441.
doi: 10.1038/nnano.2016.304 |
37 |
Cheng T. ; Wang L. ; Merinov B. V. ; Goddard W. A. J. Am. Chem. Soc. 2018, 140 (25), 7787.
doi: 10.1021/jacs.8b04006 |
38 |
Ledezma-Yanez I. ; Wallace W. D. Z. ; Sebastián-Pascual P. ; Climent V. ; Feliu J. M. ; Koper M. T. M. Nat. Energy 2017, 2 (4), 17031.
doi: 10.1038/nenergy.2017.31 |
39 |
Rebollar L. ; Intikhab S. ; Zhang S. ; Deng H. ; Zeng Z. ; Snyder J. D. ; Tang M. H. J. Catal. 2021, 398, 161.
doi: 10.1016/j.jcat.2021.04.008 |
40 |
Liu E. ; Li J. ; Jiao L. ; Doan H. T. T. ; Liu Z. ; Zhao Z. ; Huang Y. ; Abraham K. M. ; Mukerjee S. ; Jia Q. J. Am. Chem. Soc. 2019, 141 (7), 3232.
doi: 10.1021/jacs.8b13228 |
41 |
McCrum I. T. ; Koper M. T. M. Nat. Energy 2020, 5 (11), 891.
doi: 10.1038/s41560-020-00710-8 |
42 |
Jeong S. ; Mai H. D. ; Nam K.-H. ; Park C.-M. ; Jeon K.-J. ACS Nano 2022, 16 (1), 930.
doi: 10.1021/acsnano.1c08506 |
43 | Wu Y. ; Luo J. Acta Phys. -Chim. Sin. 2016, 32 (11), 2745. |
吴昱; 罗键. 物理化学学报, 2016, 32 (11), 2745.
doi: 10.3866/PKU.WHXB201608083 |
|
44 |
Tang T. ; Ding L. ; Yao Z.-C. ; Pan H.-R. ; Hu J.-S. ; Wan L.-J. Adv. Funct. Mater. 2022, 32 (2), 2107479.
doi: 10.1002/adfm.202107479 |
45 |
Subbaraman R. ; Tripkovic D. ; Strmcnik D. ; Chang K.-C. ; Uchimura M. ; Paulikas A. P. ; Stamenkovic V. ; Markovic N. M. Science 2011, 334 (6060), 1256.
doi: 10.1126/science.1211934 |
46 |
Subbaraman R. ; Tripkovic D. ; Chang K.-C. ; Strmcnik D. ; Paulikas A. P. ; Hirunsit P. ; Chan M. ; Greeley J. ; Stamenkovic V. ; Markovic N. M. Nat. Mater. 2012, 11 (6), 550.
doi: 10.1038/nmat3313 |
47 |
Wang X. ; Zheng Y. ; Sheng W. ; Xu Z. J. ; Jaroniec M. ; Qiao S.-Z. Mater. Today 2020, 36, 125.
doi: 10.1016/j.mattod.2019.12.003 |
48 |
Wei J. ; Zhou M. ; Long A. ; Xue Y. ; Liao H. ; Wei C. ; Xu Z. J. Nano-Micro Lett. 2018, 10 (4), 75.
doi: 10.1007/s40820-018-0229-x |
49 |
Kim J. ; Jung H. ; Jung S.-M. ; Hwang J. ; Kim D. Y. ; Lee N. ; Kim K.-S. ; Kwon H. ; Kim Y.-T. ; Han J. W. ; Kim J. K. J. Am. Chem. Soc. 2021, 143 (3), 1399.
doi: 10.1021/jacs.0c10661 |
50 |
Gong M. ; Zhou W. ; Tsai M.-C. ; Zhou J. ; Guan M. ; Lin M.-C. ; Zhang B. ; Hu Y. ; Wang D.-Y. ; Yang J. ; et al Nat. Commun. 2014, 5 (1), 4695.
doi: 10.1038/ncomms5695 |
51 |
Zhou K. L. ; Wang Z. ; Han C. B. ; Ke X. ; Wang C. ; Jin Y. ; Zhang Q. ; Liu J. ; Wang H. ; Yan H. Nat. Commun. 2021, 12 (1), 3783.
doi: 10.1038/s41467-021-24079-8 |
52 |
Li J. ; Xia Z. ; Xue Q. ; Zhang M. ; Zhang S. ; Xiao H. ; Ma Y. ; Qu Y. Small 2021, 17 (39), 2103018.
doi: 10.1002/smll.202103018 |
53 |
Guo T. ; Li L. ; Wang Z. Adv. Energy Mater. 2022, 12 (24), 2200827.
doi: 10.1002/aenm.202200827 |
54 |
Kasian O. ; Geiger S. ; Li T. ; Grote J.-P. ; Schweinar K. ; Zhang S. ; Scheu C. ; Raabe D. ; Cherevko S. ; Gault B. ; et al Energy Environ. Sci. 2019, 12 (12), 3548.
doi: 10.1039/C9EE01872G |
55 |
He R. ; Huang X. ; Feng L. Energy Fuels 2022, 36 (13), 6675.
doi: 10.1021/acs.energyfuels.2c01429 |
56 |
Zagalskaya A. ; Alexandrov V. ACS Catal. 2020, 10 (6), 3650.
doi: 10.1021/acscatal.9b05544 |
57 |
Sun H. ; Yan Z. ; Liu F. ; Xu W. ; Cheng F. ; Chen J. Adv. Mater. 2020, 32 (3), 1806326.
doi: 10.1002/adma.201806326 |
58 |
Zagalskaya A. ; Evazzade I. ; Alexandrov V. ACS Energy Lett. 2021, 6 (3), 1124.
doi: 10.1021/acsenergylett.1c00234 |
59 |
Pan Y. ; Xu X. ; Zhong Y. ; Ge L. ; Chen Y. ; Veder J.-P. M. ; Guan D. ; O'Hayre R. ; Li M. ; Wang G. ; et al Nat. Commun. 2020, 11 (1), 2002.
doi: 10.1038/s41467-020-15873-x |
60 |
Wang X. ; Zhong H. ; Xi S. ; Lee W. S. V. ; Xue J. Adv. Mater. 2022, 2107956
doi: 10.1002/adma.202107956 |
61 |
Wu Y. ; Zhao Y. ; Zhai P. ; Wang C. ; Gao J. ; Sun L. ; Hou J. Adv. Mater. 2022, 34 (29), 2202523.
doi: 10.1002/adma.202202523 |
62 |
Zhang N. ; Chai Y. Energy Environ. Sci. 2021, 14 (9), 4647.
doi: 10.1039/D1EE01277K |
63 |
Grimaud A. ; Diaz-Morales O. ; Han B. ; Hong W. T. ; Lee Y.-L. ; Giordano L. ; Stoerzinger K. A. ; Koper M. T. M. ; Shao-Horn Y. Nat. Chem. 2017, 9 (5), 457.
doi: 10.1038/nchem.2695 |
64 |
Li X. ; Liu H. ; Sun Y. ; Zhu L. ; Yin X. ; Sun S. ; Fu Z. ; Lu Y. ; Wang X. ; Cheng Z. Adv. Sci. 2020, 7 (22), 2002242.
doi: 10.1002/advs.202002242 |
65 |
Mefford J. T. ; Rong X. ; Abakumov A. M. ; Hardin W. G. ; Dai S. ; Kolpak A. M. ; Johnston K. P. ; Stevenson K. J. Nat. Commun. 2016, 7 (1), 11053.
doi: 10.1038/ncomms11053 |
66 |
Huang W. ; Li J. ; Liao X. ; Lu R. ; Ling C. ; Liu X. ; Meng J. ; Qu L. ; Lin M. ; Hong X. ; et al Adv. Mater. 2022, 34 (18), 2200270.
doi: 10.1002/adma.202200270 |
67 |
Grimaud A. ; Hong W. T. ; Shao-Horn Y. ; Tarascon J. M. Nat. Mater. 2016, 15 (2), 121.
doi: 10.1038/nmat4551 |
68 |
Zhang N. ; Feng X. ; Rao D. ; Deng X. ; Cai L. ; Qiu B. ; Long R. ; Xiong Y. ; Lu Y. ; Chai Y. Nat. Commun. 2020, 11 (1), 4066.
doi: 10.1038/s41467-020-17934-7 |
69 |
Bai L. ; Hsu C.-S. ; Alexander D. T. L. ; Chen H. M. ; Hu X. Nat. Energy 2021, 6 (11), 1054.
doi: 10.1038/s41560-021-00925-3 |
70 |
Man I. C. ; Su H.-Y. ; Calle-Vallejo F. ; Hansen H. A. ; Martínez J. I. ; Inoglu N. G. ; Kitchin J. ; Jaramillo T. F. ; Nørskov J. K. ; Rossmeisl J. ChemCatChem 2011, 3 (7), 1159.
doi: 10.1002/cctc.201000397 |
71 |
May K. J. ; Carlton C. E. ; Stoerzinger K. A. ; Risch M. ; Suntivich J. ; Lee Y.-L. ; Grimaud A. ; Shao-Horn Y. J. Phys. Chem. Lett. 2012, 3 (22), 3264.
doi: 10.1021/jz301414z |
72 |
Wang Z. ; Heng N. ; Wang X. ; He J. ; Zhao Y. J. Catal. 2019, 374, 51.
doi: 10.1016/j.jcat.2019.04.016 |
73 |
Gao L. ; Cui X. ; Sewell C. D. ; Li J. ; Lin Z. Chem. Soc. Rev. 2021, 50 (15), 8428.
doi: 10.1039/D0CS00962H |
74 |
Xiao Z. ; Huang Y.-C. ; Dong C.-L. ; Xie C. ; Liu Z. ; Du S. ; Chen W. ; Yan D. ; Tao L. ; Shu Z. ; et al J. Am. Chem. Soc. 2020, 142 (28), 12087.
doi: 10.1021/jacs.0c00257 |
75 |
Zeng L. ; Zhao Z. ; Lv F. ; Xia Z. ; Lu S.-Y. ; Li J. ; Sun K. ; Wang K. ; Sun Y. ; Huang Q. ; et al Nat. Commun. 2022, 13 (1), 3822.
doi: 10.1038/s41467-022-31406-0 |
76 |
Shi Z. ; Wang Y. ; Li J. ; Wang X. ; Wang Y. ; Li Y. ; Xu W. ; Jiang Z. ; Liu C. ; Xing W. ; Ge J. Joule 2021, 5 (8), 2164.
doi: 10.1016/j.joule.2021.05.018 |
77 |
Eum D. ; Kim B. ; Song J.-H. ; Park H. ; Jang H.-Y. ; Kim S. J. ; Cho S.-P. ; Lee M. H. ; Heo J. H. ; Park J. ; et al Nat. Mater. 2022, 21 (6), 664.
doi: 10.1038/s41563-022-01209-1 |
78 |
Li J. Nano-Micro Lett. 2022, 14 (1), 112.
doi: 10.1007/s40820-022-00857-x |
79 |
Huang Z.-F. ; Xi S. ; Song J. ; Dou S. ; Li X. ; Du Y. ; Diao C. ; Xu Z. J. ; Wang X. Nat. Commun. 2021, 12 (1), 3992.
doi: 10.1038/s41467-021-24182-w |
80 |
Assat G. ; Tarascon J.-M. Nat. Energy 2018, 3 (5), 373.
doi: 10.1038/s41560-018-0097-0 |
81 |
Yang H. ; Li F. ; Zhan S. ; Liu Y. ; Li W. ; Meng Q. ; Kravchenko A. ; Liu T. ; Yang Y. ; Fang Y. ; et al Nat. Catal. 2022, 5 (5), 414.
doi: 10.1038/s41929-022-00783-6 |
82 |
Nong H. N. ; Reier T. ; Oh H.-S. ; Gliech M. ; Paciok P. ; Vu T. H. T. ; Teschner D. ; Heggen M. ; Petkov V. ; Schlögl R. ; et al Nat. Catal. 2018, 1 (11), 841.
doi: 10.1038/s41929-018-0153-y |
83 |
Ren X. ; Wei C. ; Sun Y. ; Liu X. ; Meng F. ; Meng X. ; Sun S. ; Xi S. ; Du Y. ; Bi Z. ; et al Adv. Mater. 2020, 32 (30), 2001292.
doi: 10.1002/adma.202001292 |
84 |
Huang Z.-F. ; Song J. ; Du Y. ; Xi S. ; Dou S. ; Nsanzimana J. M. V. ; Wang C. ; Xu Z. J. ; Wang X. Nat. Energy 2019, 4 (4), 329.
doi: 10.1038/s41560-019-0355-9 |
85 |
Xu X. ; Pan Y. ; Zhong Y. ; Shi C. ; Guan D. ; Ge L. ; Hu Z. ; Chin Y.-Y. ; Lin H.-J. ; Chen C.-T. ; et al Adv. Sci. 2022, 9 (14), 2200530.
doi: 10.1002/advs.202200530 |
86 |
Li X. ; Cheng Z. ; Wang X. Electrochem. Energy Rev. 2021, 4 (1), 136.
doi: 10.1007/s41918-020-00084-1 |
87 |
Han W.-K. ; Wei J.-X. ; Xiao K. ; Ouyang T. ; Peng X. ; Zhao S. ; Liu Z.-Q. Angew. Chem. Int. Ed. 2022, 61 (31), e202206050.
doi: 10.1002/anie.202206050 |
88 |
Li Z. ; Yang J. ; Chen Z. ; Zheng C. ; Wei L. Q. ; Yan Y. ; Hu H. ; Wu M. ; Hu Z. Adv. Funct. Mater. 2021, 31 (9), 2008822.
doi: 10.1002/adfm.202008822 |
89 |
Tang T. ; Jiang W.-J. ; Niu S. ; Liu N. ; Luo H. ; Chen Y.-Y. ; Jin S.-F. ; Gao F. ; Wan L.-J. ; Hu J.-S. J. Am. Chem. Soc. 2017, 139 (24), 8320.
doi: 10.1021/jacs.7b03507 |
90 |
Li S. ; Li E. ; An X. ; Hao X. ; Jiang Z. ; Guan G. Nanoscale 2021, 13 (30), 12788.
doi: 10.1039/D1NR02592A |
91 |
Ji Y. ; Yang L. ; Ren X. ; Cui G. ; Xiong X. ; Sun X. ACS Sustain. Chem. Eng. 2018, 6 (8), 9555.
doi: 10.1021/acssuschemeng.8b01841 |
92 |
Song F. ; Bai L. ; Moysiadou A. ; Lee S. ; Hu C. ; Liardet L. ; Hu X. J. Am. Chem. Soc. 2018, 140 (25), 7748.
doi: 10.1021/jacs.8b04546 |
93 |
Xu S. ; Zhao H. ; Li T. ; Liang J. ; Lu S. ; Chen G. ; Gao S. ; Asiri A. M. ; Wu Q. ; Sun X. J. Mater. Chem. A 2020, 8 (38), 19729.
doi: 10.1039/D0TA05628F |
94 |
Guo Y. ; Park T. ; Yi J. W. ; Henzie J. ; Kim J. ; Wang Z. ; Jiang B. ; Bando Y. ; Sugahara Y. ; Tang J. ; et al Adv. Mater. 2019, 31 (17), 1807134.
doi: 10.1002/adma.201807134 |
95 |
Zhao Y. ; Wei S. ; Pan K. ; Dong Z. ; Zhang B. ; Wu H.-H. ; Zhang Q. ; Lin J. ; Pang H. Chem. Eng. J. 2021, 421, 129645.
doi: 10.1016/j.cej.2021.129645 |
96 |
Song J. ; Chen Y. ; Huang H. ; Wang J. ; Huang S.-C. ; Liao Y.-F. ; Fetohi A. E. ; Hu F. ; Chen H.-Y. ; Li L. ; et al Adv. Sci. 2022, 9 (6), 2104522.
doi: 10.1002/advs.202104522 |
97 |
Chen P. ; Xu K. ; Tao S. ; Zhou T. ; Tong Y. ; Ding H. ; Zhang L. ; Chu W. ; Wu C. ; Xie Y. Adv. Mater. 2016, 28 (34), 7527.
doi: 10.1002/adma.201601663 |
98 |
Shao W. ; Xiao M. ; Yang C. ; Cheng M. ; Cao S. ; He C. ; Zhou M. ; Ma T. ; Cheng C. ; Li S. Small 2022, 18 (7), 2105763.
doi: 10.1002/smll.202105763 |
99 |
Wang P. ; Luo Y. ; Zhang G. ; Chen Z. ; Ranganathan H. ; Sun S. ; Shi Z. Nano-Micro Lett. 2022, 14 (1), 120.
doi: 10.1007/s40820-022-00860-2 |
100 |
Li S. ; Wang L. ; Su H. ; Hong A. N. ; Wang Y. ; Yang H. ; Ge L. ; Song W. ; Liu J. ; Ma T. ; et al Adv. Funct. Mater. 2022, 32 (23), 2200733.
doi: 10.1002/adfm.202200733 |
101 |
Niu S. ; Jiang W.-J. ; Wei Z. ; Tang T. ; Ma J. ; Hu J.-S. ; Wan J.-S. J. Am. Chem. Soc. 2019, 41 (17), 7005.
doi: 10.1021/jacs.9b01214 |
102 |
Joo J. ; Kim T. ; Lee J. ; Choi S.-I. ; Lee K. Adv. Mater. 2019, 31 (14), 1806682.
doi: 10.1002/adma.201806682 |
103 |
Wang Y. Z. ; Yang M. ; Ding Y.-M. ; Li N.-W. ; Yu L. Adv. Funct. Mater. 2022, 32 (6), 2108681.
doi: 10.1002/adfm.202108681 |
104 |
Guo Y. ; Yuan P. ; Zhang J. ; Xia H. ; Cheng F. ; Zhou M. ; Li J. ; Qiao Y. ; Mu S. ; Xu Q. Adv. Funct. Mater. 2018, 28 (51), 1805641.
doi: 10.1002/adfm.201805641 |
105 |
Qiao Y. ; Yuan P. ; Pao C.-W. ; Cheng Y. ; Pu Z. ; Xu Q. ; Mu S. ; Zhang J. Nano Energy 2020, 75, 104881.
doi: 10.1016/j.nanoen.2020.104881 |
106 |
Luo X. ; Ji P. ; Wang P. ; Cheng R. ; Chen D. ; Lin C. ; Zhang J. ; He J. ; Shi Z. ; Li N. ; et al Adv. Energy Mater. 2020 2020, 10 (17), 1903891.
doi: 10.1002/aenm.201903891 |
107 |
Ahsan M. A. ; He T. ; Noveron J. C. ; Reuter K. ; Puente-Santiago A. R. ; Luque R. Chem. Soc. Rev. 2022, 51 (3), 812.
doi: 10.1039/D1CS00498K |
108 |
Wang Y. ; Cui X. ; Zhang J. ; Qiao J. ; Huang H. ; Shi J. ; Wang G. Prog. Mater. Sci. 2022, 128, 100964.
doi: 10.1016/j.pmatsci.2022.100964 |
109 |
Li J. ; Cheng Y. ; Zhang J. ; Fu J. ; Yan W. ; Xu Q. ACS Appl. Mater. Interfaces 2019, 11 (31), 27798.
doi: 10.1021/acsami.9b07469 |
110 |
Jiang S. ; Xue D. ; Zhang J.-N. Chem. -Asian J. 2022, 17 (14), e202200319.
doi: 10.1002/asia.202200319 |
111 |
Liang Q. ; Li Q. ; Xie L. ; Zeng H. ; Zhou S. ; Huang Y. ; Yan M. ; Zhang X. ; Liu T. ; Zeng J. ; et al ACS Nano 2022, 16 (5), 7993.
doi: 10.1021/acsnano.2c00901 |
112 |
Xue D. ; Cheng J. ; Yuan P. ; Lu B.-A. ; Xia H. ; Yang C.-C. ; Dong C.-L. ; Zhang H. ; Shi F. ; Mu S.-C. ; et al Adv. Funct. Mater. 2022, 32 (21), 2113191.
doi: 10.1002/adfm.202113191 |
113 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3 (8), 634.
doi: 10.1038/nchem.1095 |
114 |
Hu Q. ; Gao K. ; Wang X. ; Zheng H. ; Cao J. ; Mi L. ; Huo Q. ; Yang H. ; Liu J. ; He C. Nat. Commun. 2022, 13 (1), 3958.
doi: 10.1038/s41467-022-31660-2 |
115 |
Cao D. ; Wang J. ; Xu H. ; Cheng D. Small 2021, 17 (31), 2101163.
doi: 10.1002/smll.202101163 |
116 |
Yao H. ; Wang X. ; Li K. ; Li C. ; Zhang C. ; Zhou J. ; Cao Z. ; Wang H. ; Gu M. ; Huang M. ; Jiang H. Appl. Catal. B: Environ. 2022, 312, 121378.
doi: 10.1016/j.apcatb.2022.121378 |
117 |
Chen X. ; Wan J. ; Wang J. ; Zhang Q. ; Gu L. ; Zheng L. ; Wang N. ; Yu R. Adv. Mater. 2021, 33 (44), 2104764.
doi: 10.1002/adma.202104764 |
118 |
Wei J. ; Xiao K. ; Chen Y. ; Guo X.-P. ; Huang B. ; Liu Z.-Q. Energy Environ. Sci. 2022,
doi: 10.1039/D2EE02151J |
119 |
Mu X. ; Gu X. ; Dai S. ; Chen J. ; Cui Y. ; Chen Q. ; Yu M. ; Chen C. ; Liu S. ; Mu S. Energy Environ. Sci. 2022, 15, 4048.
doi: 10.1039/D2EE01337A |
120 |
Zhu J. ; Tu Y. ; Cai L. ; Ma H. ; Chai Y. ; Zhang L. ; Zhang W. Small 2022, 18 (4), 2104824.
doi: 10.1002/smll.202104824 |
121 |
Hu F. ; Yu D. ; Ye M. ; Wang H. ; Hao Y. ; Wang L. ; Li L. ; Han X. ; Peng S. Adv. Energy Mater. 2022, 12 (19), 2200067.
doi: 10.1002/aenm.202200067 |
122 |
He T. ; Wang W. ; Shi F. ; Yang X. ; Li X. ; Wu J. ; Yin Y. ; Jin M. Nature 2021, 598 (7879), 76.
doi: 10.1038/s41586-021-03870-z |
123 |
Wang J. ; Han L. ; Huang B. ; Shao Q. ; Xin H. L. ; Huang X. Nat. Commun. 2019, 10 (1), 5692.
doi: 10.1038/s41467-019-13519-1 |
124 |
He Y. ; Liu L. ; Zhu C. ; Guo S. ; Golani P. ; Koo B. ; Tang P. ; Zhao Z. ; Xu M. ; Zhu C. ; et al Nat. Catal. 2022, 5 (3), 212.
doi: 10.1038/s41929-022-00753-y |
125 |
Liu J. ; Qian G. ; Yu T. ; Chen J. ; Zhu C. ; Li Y. ; He J. ; Luo L. ; Yin S. Chem. Eng. J. 2022, 431, 134247.
doi: 10.1016/j.cej.2021.134247 |
126 |
Wen Q. ; Yang K. ; Huang D. ; Cheng G. ; Ai X. ; Liu Y. ; Fang J. ; Li H. ; Yu L. ; Zhai T. Adv. Energy Mater. 2021, 11 (46), 2102353.
doi: 10.1002/aenm.202102353 |
127 |
Chen Y.-Y. ; Zhang Y. ; Zhang X. ; Tang T. ; Luo H. ; Niu S. ; Dai Z.-H. ; Wan L.-J. ; Hu J.-S. Adv. Mater. 2017, 29 (39), 1703311.
doi: 10.1002/adma.201703311 |
128 |
Zhang G. ; Zeng J. ; Yin J. ; Zuo C. ; Wen P. ; Chen H. ; Qiu Y. Appl. Catal. B: Environ. 2021, 286, 119902.
doi: 10.1016/j.apcatb.2021.119902 |
129 |
Zeng Y. ; Zhao M. ; Huang Z. ; Zhu W. ; Zheng J. ; Jiang Q. ; Wang Z. ; Liang H. Adv. Energy Mater. 2022, 12, 2201713.
doi: 10.1002/aenm.202201713 |
130 |
Oakes L. ; Hanken T. ; Carter R. ; Yates W. ; Pint C. L. ACS Appl. Mater. Interfaces 2015, 7 (26), 14201.
doi: 10.1021/acsami.5b01315 |
131 |
Luo Y. ; Zhang Z. ; Yang F. ; Li J. ; Liu Z. ; Ren W. ; Zhang S. ; Liu B. Energy Environ. Sci. 2021, 14 (8), 4610.
doi: 10.1039/D1EE01487K |
132 |
Shan X. ; Liu J. ; Mu H. ; Xiao Y. ; Mei B. ; Liu W. ; Lin G. ; Jiang Z. ; Wen L. ; Jiang L. Angew. Chem. Int. Ed. 2020, 59 (4), 1659.
doi: 10.1002/anie.201911617 |
133 |
Xu W. ; Lu Z. ; Sun X. ; Jiang L. ; Duan X. Acc. Chem. Res. 2018, 51 (7), 1590.
doi: 10.1021/acs.accounts.8b00070 |
134 |
Li H. ; Chen S. ; Zhang Y. ; Zhang Q. ; Jia X. ; Zhang Q. ; Gu L. ; Sun X. ; Song L. ; Wang X. Nat. Commun. 2018, 9 (1), 2452.
doi: 10.1038/s41467-018-04888-0 |
135 |
Liu H. ; Li X. ; Chen L. ; Zhu X. ; Dong P. ; Chee M. O. L. ; Ye M. ; Guo Y. ; Shen J. Adv. Funct. Mater. 2022, 32 (4), 2107308.
doi: 10.1002/adfm.202107308 |
136 |
Du N. ; Roy C. ; Peach R. ; Turnbull M. ; Thiele S. ; Bock C. Chem. Rev. 2022, 122 (13), 11830.
doi: 10.1021/acs.chemrev.1c00854 |
137 |
Park J. E. ; Park S. ; Kim M.-J. ; Shin H. ; Kang S. Y. ; Cho Y.-H. ; Sung Y.-E. ACS Catal. 2022, 12 (1), 135.
doi: 10.1021/acscatal.1c04117 |
138 |
Razmjooei F. ; Morawietz T. ; Taghizadeh E. ; Hadjixenophontos E. ; Mues L. ; Gerle M. ; Wood B. D. ; Harms C. ; Gago A. S. ; Ansar S. A. ; et al Joule 2021, 5 (7), 1776.
doi: 10.1016/j.joule.2021.05.006 |
139 |
Lee J. ; Jung H. ; Park Y. S. ; Woo S. ; Yang J. ; Jang M. J. ; Jeong J. ; Kwon N. ; Lim B. ; Han J. W. ; et al Small 2021, 17 (28), 2100639.
doi: 10.1002/smll.202100639 |
140 |
Park J. E. ; Sung Y.-E. ; Choi C. J. Mater. Chem. A 2022, 10, 20517.
doi: 10.1039/D2TA04526E |
141 |
Wang H. ; Tong Y. ; Li K. ; Chen P. J. Colloid Interface Sci. 2022, 628, 306.
doi: 10.1016/j.jcis.2022.08.056 |
142 |
Lee J. ; Jung H. ; Park Y. S. ; Woo S. ; Kwon N. ; Xing Y. ; Oh S. H. ; Choi S. M. ; Han J. W. ; Lim B. Chem. Eng. J. 2021, 420, 127670.
doi: 10.1016/j.cej.2020.127670 |
143 |
Park J. E. ; Kim M.-J. ; Lim M. S. ; Kang S. Y. ; Kim J. K. ; Oh S.-H. ; Her M. ; Cho Y.-H. ; Sung Y.-E. Appl. Catal. B: Environ. 2018, 237, 140.
doi: 10.1016/j.apcatb.2018.05.073 |
144 |
Park Y. S. ; Yang J. ; Lee J. ; Jang M. J. ; Jeong J. ; Choi W.-S. ; Kim Y. ; Yin Y. ; Seo M. H. ; Chen Z. ; et al Appl. Catal. B: Environ. 2020, 278, 119276.
doi: 10.1016/j.apcatb.2020.119276 |
145 |
Hongmei Yu Z. S. M. H. B. Y. F. D. Y. Y. Strateg. Study Chin. Acad. Eng. 2021, 23 (2), 146.
doi: 10.15302/J-SSCAE-2021.02.020 |
146 |
Liu Z. ; Sajjad S. D. ; Gao Y. ; Yang H. ; Kaczur J. J. ; Masel R. I. Int. J. Hydrogen Energy 2017, 42 (50), 29661.
doi: 10.1016/j.ijhydene.2017.10.050 |
147 |
Jang D. ; Cho H.-S. ; Kang S. Appl. Energy 2021, 287, 116554.
doi: 10.1016/j.apenergy.2021.116554 |
148 |
Yan X. ; Biemolt J. ; Zhao K. ; Zhao Y. ; Cao X. ; Yang Y. ; Wu X. ; Rothenberg G. ; Yan N. Nat. Commun. 2021, 12 (1), 4143.
doi: 10.1038/s41467-021-24284-5 |
149 |
Phillips R. ; Dunnill C. W. RSC Adv. 2016, 6 (102), 100643.
doi: 10.1039/C6RA22242K |
150 |
Gou W. ; Chen Y. ; Zhong Y. ; Xue Q. ; Li J. ; Ma Y. Chem. Commun. 2022, 58 (55), 7626.
doi: 10.1039/D2CC02182J |
151 |
Wang T. ; Tao L. ; Zhu X. ; Chen C. ; Chen W. ; Du S. ; Zhou Y. ; Zhou B. ; Wang D. ; Xie C. ; et al Nat. Catal. 2022, 5 (1), 66.
doi: 10.1038/s41929-021-00721-y |
152 |
Wu T. ; Xu S. ; Zhang Z. ; Luo M. ; Wang R. ; Tang Y. ; Wang J. ; Huang F. Adv. Sci. 2022, 9 (25), 2202750.
doi: 10.1002/advs.202202750 |
153 |
Li D. ; Li Z. ; Zou R. ; Shi G. ; Huang Y. ; Yang W. ; Yang W. ; Liu C. ; Peng X. Appl. Catal. B: Environ. 2022, 307, 121170.
doi: 10.1016/j.apcatb.2022.121170 |
154 |
Wang Z. ; Qian G. ; Yu T. ; Chen J. ; Shen F. ; Luo L. ; Zou Y. ; Yin S. Chem. Eng. J. 2022, 434, 134669.
doi: 10.1016/j.cej.2022.134669 |
155 |
Yu T. ; Xu Q. ; Luo L. ; Liu C. ; Yin S. Chem. Eng. J. 2022, 430, 133117.
doi: 10.1016/j.cej.2021.133117 |
156 |
Wang Y. ; Qian G. ; Xu Q. ; Zhang H. ; Shen F. ; Luo L. ; Yin S. Appl. Catal. B: Environ. 2021, 286, 119881.
doi: 10.1016/j.apcatb.2021.119881 |
157 |
Jian J. ; Chen W. ; Zeng D. ; Chang L. ; Zhang R. ; Jiang M. ; Yu G. ; Huang X. ; Yuan H. ; Feng S. J. Mater. Chem. A 2021, 9 (12), 7586.
doi: 10.1039/D1TA00693B |
158 |
Yang F. ; Luo Y. ; Yu Q. ; Zhang Z. ; Zhang S. ; Liu Z. ; Ren W. ; Cheng H.-M. ; Li J. ; Liu B. Adv. Funct. Mater. 2021, 31 (21), 2010367.
doi: 10.1002/adfm.202010367 |
159 |
Shi H. ; Zhou Y.-T. ; Yao R.-Q. ; Wan W.-B. ; Ge X. ; Zhang W. ; Wen Z. ; Lang X.-Y. ; Zheng W.-T. ; Jiang Q. Nat. Commun. 2020, 11 (1), 2940.
doi: 10.1038/s41467-020-16769-6 |
160 |
Yu T. ; Xu Q. ; Qian G. ; Chen J. ; Zhang H. ; Luo L. ; Yin S. ACS Sustain. Chem. Eng. 2020, 8 (47), 17520.
doi: 10.1021/acssuschemeng.0c06782 |
161 |
Li Y. ; Wei B. ; Yu Z. ; Bondarchuk O. ; Araujo A. ; Amorim I. ; Zhang N. ; Xu J. ; Neves I. C. ; Liu L. ACS Sustain. Chem. Eng. 2020, 8 (27), 10193.
doi: 10.1021/acssuschemeng.0c02671 |
162 |
Zhang X.-Y. ; Zhu Y.-R. ; Chen Y. ; Dou S.-Y. ; Chen X.-Y. ; Dong B. ; Guo B.-Y. ; Liu D.-P. ; Liu C.-G. ; Chai Y.-M. Chem. Eng. J. 2020, 399, 125831.
doi: 10.1016/j.cej.2020.125831 |
163 |
Liu X. ; Yao Y. ; Zhang H. ; Pan L. ; Shi C. ; Zhang X. ; Huang Z.-F. ; Zou J.-J. ACS Sustain. Chem. Eng. 2020, 8 (48), 17828.
doi: 10.1021/acssuschemeng.0c06987 |
164 |
Xue S. ; Liu Z. ; Ma C. ; Cheng H.-M. ; Ren W. Sci. Bull. 2020, 65 (2), 123.
doi: 10.1016/j.scib.2019.10.024 |
165 |
Chen Y. ; Yu J. ; Jia J. ; Liu F. ; Zhang Y. ; Xiong G. ; Zhang R. ; Yang R. ; Sun D. ; Liu H. ; et al Appl. Catal. B: Environ. 2020, 272, 118956.
doi: 10.1016/j.apcatb.2020.118956 |
166 |
Yang H. ; Chen Z. ; Guo P. ; Fei B. ; Wu R. Appl. Catal. B: Environ. 2020, 261, 118240.
doi: 10.1016/j.apcatb.2019.118240 |
167 |
Zhu W. ; Chen W. ; Yu H. ; Zeng Y. ; Ming F. ; Liang H. ; Wang Z. Appl. Catal. B: Environ. 2020, 278, 119326.
doi: 10.1016/j.apcatb.2020.119326 |
168 |
Zhai P. ; Zhang Y. ; Wu Y. ; Gao J. ; Zhang B. ; Cao S. ; Zhang Y. ; Li Z. ; Sun L. ; Hou J. Nat. Commun. 2020, 11 (1), 5462.
doi: 10.1038/s41467-020-19214-w |
169 |
Zhang B. ; Zhang L. ; Tan Q. ; Wang J. ; Liu J. ; Wan H. ; Miao L. ; Jiang J. Energy Environ. Sci. 2020, 13 (9), 3007.
doi: 10.1039/D0EE02020F |
170 |
Qian G. ; Yu G. ; Lu J. ; Luo L. ; Wang T. ; Zhang C. ; Ku R. ; Yin S. ; Chen W. ; Mu S. J. Mater. Chem. A 2020, 8 (29), 14545.
doi: 10.1039/D0TA04388E |
171 |
Yu X. ; Yu Z.-Y. ; Zhang X.-L. ; Zheng Y.-R. ; Duan Y. ; Gao Q. ; Wu R. ; Sun B. ; Gao M.-R. ; Wang G. ; et al J. Am. Chem. Soc. 2019, 141 (18), 7537.
doi: 10.1021/jacs.9b02527 |
172 |
Luo Y. ; Tang L. ; Khan U. ; Yu Q. ; Cheng H.-M. ; Zou X. ; Liu B. Nat. Commun. 2019, 10 (1), 269.
doi: 10.1038/s41467-018-07792-9 |
173 |
Sun H. ; Min Y. ; Yang W. ; Lian Y. ; Lin L. ; Feng K. ; Deng Z. ; Chen M. ; Zhong J. ; Xu L. ; et al ACS Catal. 2019, 9 (10), 8882.
doi: 10.1021/acscatal.9b02264 |
174 |
Yu C. ; Xu F. ; Luo L. ; Abbo H. S. ; Titinchi S. J. J. ; Shen P. K. ; Tsiakaras P. ; Yin S. Electrochim. Acta 2019, 317, 191.
doi: 10.1016/j.electacta.2019.05.150 |
175 |
Liang C. ; Zou P. ; Nairan A. ; Zhang Y. ; Liu J. ; Liu K. ; Hu S. ; Kang F. ; Fan H. J. ; Yang C. Energy Environ. Sci. 2020, 13 (1), 86.
doi: 10.1039/C9EE02388G |
176 |
Hao W. ; Wu R. ; Huang H. ; Ou X. ; Wang L. ; Sun D. ; Ma X. ; Guo Y. Energy Environ. Sci. 2020, 13 (1), 102.
doi: 10.1039/C9EE00839J |
177 |
Cao L.-M. ; Hu Y.-W. ; Tang S.-F. ; Iljin A. ; Wang J.-W. ; Zhang Z.-M. ; Lu T.-B. Adv. Sci. 2018, 5 (10), 1800949.
doi: 10.1002/advs.201800949 |
178 |
Yu F. ; Zhou H. ; Huang Y. ; Sun J. ; Qin F. ; Bao J. ; Goddard W. A. ; Chen S. ; Ren Z. Nat. Commun. 2018, 9 (1), 2551.
doi: 10.1038/s41467-018-04746-z |
179 |
Sun H. ; Xu X. ; Yan Z. ; Chen X. ; Jiao L. ; Cheng F. ; Chen J. J. Mater. Chem. A 2018, 6 (44), 22062.
doi: 10.1039/C8TA02999G |
[1] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[2] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[3] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[4] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[5] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[6] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-. |
[7] | Yuan Liu, Weidong Li, Han Wu, Siyu Lu. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009082-. |
[8] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[9] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[10] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-. |
[11] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[12] | Yamei Yang, Huijie Lun, Lasheng Long, Xiangjian Kong, Lansun Zheng. Controlled Synthesis of Lanthanide-titanium Oxo Clusters EuTi6, EuTi7 and La2Ti14 [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912007-. |
[13] | Juanjuan Huang,Jianmei Du,Haiwei Du,Gengsheng Xu,Yupeng Yuan. Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905056-. |
[14] | Shangcong Sun,Xuya Zhang,Xianlong Liu,Lun Pan,Xiangwen Zhang,Jijun Zou. Design and Construction of Cocatalysts for Photocatalytic Water Splitting [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905007-. |
[15] | Jingxuan Ge, Jun Hu, Yingting Zhu, Zonish Zeb, Dejin Zang, Zhaoxian Qin, Yichao Huang, Jiangwei Zhang, Yongge Wei. Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906063-. |
|