• Accepted manuscript • Previous Articles Next Articles
Ruyao Chen1, Jiazeng Xia2, Yigang Chen2, Haifeng Shi1,3
Received:
2022-09-09
Revised:
2022-09-23
Accepted:
2022-09-30
Published:
2022-10-08
Contact:
史海峰;陈义钢Haifeng Shi;Yigang Chen
E-mail:hfshi@jiangnan.edu.cn;wuxichen2512@njmu.edu.cn
Supported by:
MSC2000:
Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures[J].Acta Phys. -Chim. Sin., 0, (): 2209012.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202209012
(1) Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Appl. Catal. B Environ. 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414 (2) Cai, S.; Zuo, X. X.; Zhao, H. Y.; Yang, S. J.; Chen, R. Z.; Chen, L. W.; Zhang, R. H.; Ding, D. H.; Cai, T. M. J. Mater. Chem. A 2022, 10, 9171. doi: 10.1039/D2TA00153E (3) Ye, J. W.; Cheng, B.; Yu, J. G.; Ho, W. K.; Wageh, S.; Al-Ghamdi, A. A. Appl. Catal. B Environ. 2022, 430, 132715. doi: 10.1016/j.cej.2021.132715 (4) Cherifi, Y.; Addad, A.; Vezin, H.; Barras, A.; Ouddane, B.; Chaouchi, A.; Szunerits, S.; Boukherroub, R. Ultrason. Sonochem. 2019, 52, 164. doi: 10.1016/j.ultsonch.2018.11.012 (5) Liu, S. Y.; Zada, A.; Yu, X. Y.; Liu, F. Z.; Jin, G. Chemosphere 2022, 307, 135717. doi: 10.1016/j.chemosphere.2022.135717 (6) Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Nat. Commun. 2021, 12, 320. doi: 10.1038/s41467-020-20521-5 (7) Han, G. W.; Xu, F. Y., Cheng, B., Li, Y. J., Yu, J. G., Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 38, 2112037. [韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 物理化学学报, 2022, 38, 2112037.] doi: 10.3866/PKU.WHXB202112037 (8) Yan, Q. Y.; Lian, C.; Huang, K.; Liang, L. H.; Yu, H. R.; Yin, P. C.; Zhang, J. L.; Xing, M. Y. Angew. Chem. Int. Ed. 2021, 60, 17155. doi: 10.1002/anie.202105736 (9) Zhao, W. L.; Wang, W. L.; Han, T. Y.; Wang, H. T.; Zhang, H. C.; Shi, H. F. Sep. Purif. Technol. 2021, 269, 118693. doi: 10.1016/j.seppur.2021.118693 (10) Sabri, M.; Habibi-Yangjeh, A.; Ghosh, S. J. Photochem. Photobiol. A 2020, 391, 112397. doi: 10.1016/j.jphotochem.2020.112397 (11) Li, J. B.; Yi, Y.; Shi, P. H.; Wang, Q.; Li, D. X.; Asif, H.; Yang, M. Acta Phys. -Chim. Sin. 2014, 30, 1720. [李洁冰, 伊玉, 时鹏辉, 王倩, 李登新, ASIF Hussain, 杨明. 物理化学学报, 2014, 30, 1720.] doi: 10.3866/PKU.WHXB201407021 (12) Ming, H. B.; Wei, D. L.; Yang, Y.; Chen, B. Q.; Yang, C.; Zhang, J. S.; Hou, Y. D. Chem. Eng. J. 2021, 424, 130296. doi: 10.1016/j.cej.2021.130296 (13) Gao, H. H.; Yang, H. C.; Xu, J. Z.; Zhang, S. W.; Li, J. X. Small 2018, 14, 1801353. doi: 10.1002/smll.201801353 (14) Sarkar, P.; De, S.; Neogi, S. Appl. Catal. B Environ. 2022, 307, 121165. doi: 10.1016/j.apcatb.2022.121165 (15) Xu, L.; Liu, L. F. Appl. Catal. B Environ. 2022, 304, 120953. doi: 10.1016/j.apcatb.2021.120953 (16) Wang, W. X.; Liu, Y.; Yue, Y. F.; Wang, H. H.; Cheng, G.; Gao, C. Y.; Chen, C. L.; Ai, Y. J.; Chen, Z.; Wang, X. K. ACS Catal. 2021, 11, 11256. doi: 10.1021/acscatal.1c03331 (17) Liu, W.; Zhou, J. B.; Zhou, Y.; Liu, D. Sep. Purif. Technol. 2021, 264, 118288. doi: 10.1016/j.seppur.2020.118288 (18) Wang, M.; Jin, C. Y.; Kang, J.; Liu, J. Y.; Tang, Y. W.; Li, Z. L.; Li, S. Y. Chem. Eng. J. 2021, 416, 128118. doi: 10.1016/j.cej.2020.128118 (19) Rosa, W. S.; Rabelo, L. G.; Tiveron Zampaulo, L. G.; Gonçalves, R. V. ACS Appl. Mater. Interfaces 2022, 14, 22858. doi: 10.1021/acsami.1c21001 (20) Huang, R. Y.; Gu, X.; Sun, W. Z.; Chen, L.; Du, Q. Y.; Guo, X.; Lia, J.; Zhang, M. W.; Li, C. F. Sep. Purif. Technol. 2020, 250, 117174. doi: 10.1016/j.seppur.2020.117174 (21) Chen, R. Y.; Dou, X. C.; Xia, J. Z.; Chen, Y. G.; Shi, H. F. Sep. Purif. Technol. 2022, 296, 121345. doi: 10.1016/j.seppur.2022.121345 (22) Zhang, H.; Yilmaz, P.; Ansari, J. O.; Khan, F. F.; Binions, R.; Krause, S.; Dunn, S. J. Mater. Chem. A 2015, 3, 9638. doi: 10.1039/C4TA07213H (23) Shadabipour, P.; Raithel, A. L.; Hamann, T. W. ACS Appl. Mater. Interfaces 2020, 12, 50592. doi: 10.1021/acsami.0c14705 (24) Dashtian, K.; Ghaedi, M.; Shirinzadeh, H.; Hajati, S.; Shahbazi, S. Chem. Eng. J. 2018, 339, 189. doi: 10.1016/j.cej.2018.01.107 (25) Wen, M.; Wang, S.; Jiang, R. Q.; Wang, Y.; Wang, Z. J.; Yu, W. J.; Geng, P.; Xia, J. D.; Li, M. Q.; Chen, Z. G. Biomater. Sci. 2019, 7, 4651. doi: 10.1039/C9BM00995G (26) Ma, Z.; Linnenberg, O.; Rokicinska, A.; Kustrowski, P.; Slabon, A. J. Phys. Chem. C 2018, 122, 19281. doi: 10.1021/acs.jpcc.8b02828 (27) Guo, W. L.; Duan, Z. Y.; Mabayoje, O.; Chemelewski, W. D.; Xiao, P.; Henkelman, G.; Zhang, Y. H.; Mullins, C. B. J. Electrochem. Soc. 2016, 163, H970. doi: 10.1149/2.0701610jes (28) Bao, X. L.; Wang, X. K.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. Mater. Res. Bull. 2021, 136, 111171. doi: 10.1016/j.materresbull.2020.111171 (29) Guo, W. L; Wang, Y.; Lian, X.; Nie, Y.; Tian, S. J.; Wang, S. S.; Zhou, Y.; Henkelman, G. Catal. Sci. Technol. 2020, 10, 7344. doi: 10.1039/D0CY01430C (30) Chu, D. W.; Zhao, C. Catal. Today 2020, 351, 125. doi: 10.1016/j.cattod.2018.10.006 (31) Yu, R. X.; Zhao, J. H.; Zhao, Z. W.; Cui, F. Y. J. Hazard. Mater. 2020, 390, 121998. doi: 10.1016/j.j hazmat.2019.121998 (32) Zhang, H. X.; Li, C. W.; Lyu, L.; Hu, C. Appl. Catal. B Environ. 2020, 270, 118874. doi: 10.1016/j.apcatb.2020.118874 (33) Ye, J.; Dai, J. D.; Yang, D. Y.; Li, C. X.; Yan, Y. S.; Wang, Y. J. Hazard. Mater. 2022, 421, 126715. doi: 10.1016/j.jhazmat.2021.126715 (34) Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6 (35) Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010 (36) Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2022, 37, 2010027. [费新刚, 谭海燕, 程蓓, 朱必成, 张留洋. 物理化学学报, 2022, 37, 2010027.] doi: 10.3866/PKU.WHXB202010027 (37) Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2022, 38, 2104030. [王文亮, 张灏纯, 陈义钢, 史海峰. 物理化学学报, 2022, 38, 2104030.] doi: 10.3866/PKU.WHXB202201008 (38) Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668 (39) Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Mater. Today Phys. 2022, 26, 100729. doi: 10.1016/j.mtphys.2022.100729 (40) Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012 (41) Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038 (42) Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. Chin. J. Catal. 2021, 42, 97. doi: 10.1016/S1872-2067(20)63602-6 (43) Zhao, Z. W.; Li, X. F.; Dai, K.; Zhang, J. F.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046 (44) Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. [黄悦, 梅飞飞, 张金锋, 代凯, Dawson, G. 物理化学学报, 2022, 38, 2108028.] doi: 10.3866/PKU.WHXB202108028 (45) Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/S1872-2067(19)63389-9 (46) Zhou, C. Y.; Lai, C.; Xu, P.; Zeng, G. M.; Huang, D. L.; Li, Z. H.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; et al. ACS Sustain. Chem. Eng. 2018, 6, 6941. doi: 10.1021/acssuschemeng.8b00782 (47) Zhai, Z. C.; Ren, K. X.; Zheng, X. Y.; Chen, Y. G.; Dong, Y. M.; Shi, H. F. Environ. Sci.: Nano 2022, 9, 1780. doi: 10.1039/D2EN00028H (48) Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Carbon 2020, 160, 342. doi: 10.1016/j.carbon.2020.01.038 (49) Liu, Z. F.; Song, Q. G.; Zhou, M.; Guo, Z. G.; Kang, J. H.; Yan, H. Y. Chem. Eng. J. 2019, 374, 554. doi: 10.1016/j.cej.2019.05.191 (50) Huo, Y.; Zhang, J. F.; Wang, Z. L.; Dai, K.; Pan, C. S.; Liang, C. H. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048 (51) Zhu, L. L.; Wu, Y. F.; Wu, S. J.; Dong, F.; Xia, J. X.; Jiang, B. ACS Appl. Mater. Interfaces 2021, 13, 9216. doi: 10.1021/acsami.0c21454 (52) Li, L.; Yang, L.; Xiong, Y. L.; Peng, L.; Dong, H. M.; Wei, X. J.; Xiao, P.; He, H. C. ACS Sustain. Chem. Eng. 2019, 7, 19640. doi: 10.1021/acssuschemeng.9b04787 (53) Liu, S. Y., Ru, J. L., Liu, F. Z. Chemosphere 2021, 267, 129220. doi: 10.1016/j.chemosphere.2020.129220 (54) Biesinger, M. C. Surf. Interface Anal. 2017, 49, 1325. doi: 10.1002/sia.6239 (55) Chen, H. X.; Xu, Y.; Zhu, K. M.; Zhang, H. Appl. Catal. B Environ. 2021, 284, 119732. doi: 10.1016/j.apcatb.2020.119732 (56) Hang, T. T. M.; Vy, N. H. T.; Hanh, N. T.; Pham, T. D. Sustain. Chem. Pharm. 2021, 21, 100407. doi: 10.1016/j.scp.2021.100407 (57) Wang, L.; Min, X. P.; Sui, X. Y.; Chen, J. H.; Wang, Y. J. Colloid Interface Sci. 2020, 560, 21. doi: 10.1016/j.jcis.2019.10.048 (58) Hill, J. C.; Choi, K. S. J. Mater. Chem. A 2013, 1, 5006. doi: 10.1039/C3TA10245A (59) Chang, F.; Wu, F. Y.; Zheng, J. J.; Cheng, W. B.; Yan, W. J.; Deng, B. Q.; Hu, X. F. Chemosphere 2018, 210, 257. doi: 10.1016/j.chemosphere.2018.07.010 (60) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751. doi: 10.1021/ja300823a (61) Lim, J. H.; Yang, Y.; Hoffmann, M. R. Environ. Sci. Technol. 2019, 53, 6972. doi: 10.1021/acs.est.9b01449 (62) Qin, Q. D.; Liu, T.; Zhang, J. X.; Wei, R.; You, S. J.; Xu, Y. J. Hazard. Mater. 2021, 419, 126447. doi: 10.1016/j.jhazmat.2021.126447 (63) Dou, X. C.; Chen, Y. G.; Shi, H. F. Chem. Eng. J. 2022, 431, 134054. doi: 10.1016/j.cej.2021.134054 (64) Ma, J.; Chen, L.; Liu, Y.; Xu, T. Y.; Ji, H. D.; Duan, J.; Sun, F. B.; Liu, W. J. Hazard. Mater. 2021, 418, 126180. doi: 10.1016/j.jhazmat.2021.126180 (65) Ren, J.; Jiang, L. S.; Li, Y.; Zhang, G. K. Sep. Purif. Technol. 2021, 275, 119100. doi: 10.1016/j.seppur.2021.119100 (66) Dai, H. W.; Zhou, W. J.; Wang, W. Chem. Eng. J. 2021, 417, 127921. doi: 10.1016/j.cej.2020.127921 (67) Wang, H.; Gao, Q.; Li, H. T.; Han, B.; Xia, K. S.; Zhou, C. G. Chem. Eng. J. 2019, 368, 377. doi: 10.1016/j.cej.2019.02.124 (68) Huang, X. X.; Zhu, N. W.; Mao, F. L.; Ding, Y.; Zhang, S. H.; Liu, H. R.; Li, F.; Wu, P.X.; Dang, Z.; Ke, Y. X. Chem. Eng. J. 2020, 392, 123636. doi: 10.1016/j.cej.2019.123636 (69) Huang, K. L.; Li, C. H.; Wang, L.; Wang, W. T.; Meng, X. C. Chem. Eng. J. 2021, 425, 131493. doi: 10.1016/j.cej.2021.131493 (70) Tan, B. H.; Fang, Y.; Chen, Q. L.; Ao, X. Q.; Cao, Y. J. Colloid Interface Sci. 2021, 601, 581. doi: 10.1016/j.jcis.2021.05.155 (71) Shi, H. F.; Li, X. K.; Wang, D. F.; Yuan, Y. P.; Zou, Z. G.; Ye, J. H. Catal. Lett. 2009, 132, 205. doi: 10.1007/s10562-009-0087-8 (72) Chen, T.; Zhu, Z. L.; Bao, Y. J.; Zhang, H.; Qiu, Y. L.; Yin, D. Q. Environ. Sci. Nano 2021, 8, 2618. doi: 10.1039/D1EN00426C (73) Zhang, H.; Nengzi, L. C.; Li, X.; Wang, Z.; Li, B.; Liu, L.; Cheng, X. Chem. Eng. J. 2020, 386, 124011. doi: 10.1016/j.cej.2020.124011 (74) Denk, M.; Kuhness, D.; Wagner, M.; Surnev, S.; Negreiros, F. R.; Sementa, L.; Barcaro, G.; Vobornik, I.; Fortunelli, A.; Netzer, F. P. ACS Nano 2014, 8, 3947. doi: 10.1021/nn500867y |
[1] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[4] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[5] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[6] | Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008030-. |
[7] | Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011022-. |
[8] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[9] | Yimeng Wang, Shenping Zhang, Yu Ge, Chenhui Wang, Jun Hu, Honglai Liu. Highly Efficient Photocatalytic Degradation of Tetracycline Using a Bimetallic Oxide/Carbon Photocatalyst [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1905083-. |
[10] | Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism [J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764. |
[11] | LI Jie-Bing, YI Yu, SHI Peng-Hui, WANG Qian, LI Deng-Xin, ASIF Hussain, YANG Ming. Facile Synthesis of Graphene-Cobalt Hydroxide Nanocomposite and Application in Degradation of Acid Orange 7 [J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1720-1726. |
[12] | XING Wei-Nan, NI Liang, YAN Xue-Sheng, LIU Xin-Lin, LUO Ying-Ying, LU Zi-Yang, YAN Yong-Sheng, HUO Peng-Wei. Preparation of C@CdS/Halloysite Nanotube Composite Photocatalyst Using One-Step Pyrolytic Method and Its Photodegradation Properties [J]. Acta Phys. -Chim. Sin., 2014, 30(1): 141-149. |
|