• Accepted manuscript • Previous Articles Next Articles
Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai
Received:
2022-09-26
Revised:
2022-10-20
Accepted:
2022-10-26
Published:
2022-11-01
Contact:
Jinfeng Zhang, Kai Dai
E-mail:jfzhang@chnu.edu.cn;daikai940@chnu.edu.cn
Supported by:
MSC2000:
Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions[J].Acta Phys. -Chim. Sin., 0, (): 2209037.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202209037
(1) Shen, H.; Peppel, T.; Stunk, J.; Sun, Z. Solar RRL 2020, 4, 1900546. doi: 10.1002/solr.201900546 (2) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8 (3) Li, J. B.; Wu, X.; Liu, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2009038. [李嘉碧, 吴熙, 刘升卫. 物理化学学报, 2021, 37, 2009038.] doi: 10.3866/PKU.WHXB202009038 (4) Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589 (5) Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Solar RRL 2021, 5, 2100788. doi: 10.1002/solr.202100788 (6) Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. Acta Phys. -Chim. Sin. 2021, 37, 2010027. [费新刚, 谭海燕, 程蓓, 朱必成, 张留洋. 物理化学学报, 2021, 37, 2010027.] doi: 10.3866/PKU.WHXB202010027 (7) Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/s1872-2067(20)63560-4 (8) Liu, D.; Chen, S.; Li, R.; Peng, T. Acta Phys. -Chim. Sin. 2021, 37, 2010017. [刘东, 陈圣韬, 李仁杰, 彭天右, 物理化学学报, 2021, 37, 2010017.] doi: 10.3866/PKU.WHXB202010017 (9) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046 (10) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0 (11) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B: Environ. 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788 (12) Wang, Z. J.; Hong, J. J.; Ng, S.-F.; Liu, W.; Huang, J. J.; Chen, P. F.; Ong, W.-J. Acta Phys. -Chim. Sin. 2021, 37, 2011033. [王则鉴, 洪佳佳, Ng, S.-F., 刘雯, 黄俊杰, 陈鹏飞, Ong, W.-J. 物理化学学报, 2021, 37, 2011033.] doi: 10.3866/PKU.WHXB202011033 (13) Zhang, J.; Fu, J.; Dai, K. J. Mater. Sci. Technol. 2022, 116, 192. doi: 10.1016/j.jmst.2021.10.045 (14) Mei, Z. H.; Wang, G. H.; Yan, S. D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009097. [梅子慧, 王国宏, 严素定, 王娟. 物理化学学报, 2021, 37, 2009097.] doi: 10.3866/PKU.WHXB202009097 (15) Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Nature 2020, 581, 411. doi: 10.1038/s41586-020-2278-9 (16) Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, 202212045. doi: 10.1002/anie.202212045 (17) Liu, S. C.; Wang, K.; Yang, M. X.; Jin, Z. L. Acta Phys. -Chim. Sin. 2022, 38, 2109023. [刘珊池, 王凯, 杨梦雪, 靳治良. 物理化学学报, 2022, 38, 2109023.] doi: 10.3866/PKU.WHXB202109023 (18) Wang, Z.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2017, 38, 2021. doi: 10.1016/S1872-2067(17)62942-5 (19) Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B: Environ. 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452 (20) Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. [黄悦, 梅飞飞, 张金锋, 代凯, Dawson, G. 物理化学学报, 2022, 38, 2108028.] doi: 10.3866/PKU.WHXB202108028 (21) Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6 (22) Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029 (23) Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A.A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/s1872-2067(21)64010-x (24) Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028 (25) Wang, Z.; Wang, L.; Cheng, B.; Yu, H.; Yu, J. Small Methods 2021, 5, 2100979. doi: 10.1002/smtd.202100979 (26) Yang, H.; Zhang, J. F.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/s1872-2067(20)63784-6 (27) Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Ed. 2020, 59, 6007. doi: 10.1002/anie.201914424 (28) Guan, X.; Fang, Q.; Yan, Y.; Qiu, S. Acc. Chem. Res. 2022, 55, 1912. doi: 10.1021/acs.accounts.2c00200 (29) Guan, Q.; Zhou, L. L.; Dong, Y. B. Chem. Soc. Rev. 2022, 51, 6307. doi: 10.1039/d1cs00983d (30) Chen, W.-T.; Chan, A.; Sun-Waterhouse, D.; Moriga, T.; Idriss, H.; Waterhouse, G. I. N. J. Catal. 2015, 326, 43. doi: 10.1016/j.jcat.2015.03.008 (31) Wen, Y.; Qu, D.; An, L.; Gao, X.; Jiang, W.; Wu, D.; Yang, D.; Sun, Z. ACS Sustain. Chem. Eng. 2018, 7, 2343. doi: 10.1021/acssuschemeng.8b05124 (32) Zhao, G.; Sun, Y.; Zhou, W.; Wang, X.; Chang, K.; Liu, G.; Liu, H.; Kako, T.; Ye, J. Adv. Mater. 2017, 29, 1703258. doi: 10.1002/adma.201703258 (33) Mohamed, R. M.; Aazam, E. S. Chin. J. Catal. 2012, 33, 247. doi: 10.1016/s1872-2067(10)60276-8 (34) Xia, B.; Zhang, Y.; Shi, B.; Ran, J.; Davey, K.; Qiao, S.-Z. Small Methods 2020, 4, 2000063. doi: 10.1002/smtd.202000063 (35) He, B.; Bie, C.; Fei, X.; Cheng, B.; Yu, J.; Ho, W.; Al-Ghamdi, A. A.; Wageh, S. Appl. Catal. B: Environ. 2021, 288, 119994. doi: 10.1016/j.apcatb.2021.119994 (36) Lei, Z. N.; Ma, X. Y.; Hu, X. Y.; Fan, J.; Liu, E. Z. Acta Phys. -Chim. Sin. 2022, 38, 2110049. [雷卓楠, 马心怡, 胡晓云, 樊君, 刘恩周. 物理化学学报, 2022, 38, 2110049.] doi: 10.3866/PKU.WHXB202110049 (37) Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286. doi: 10.1021/ja0518777 (38) Shu, G.; Li, Y.; Wang, Z.; Jiang, J.-X.; Wang, F. Appl. Catal. B: Environ. 2020, 261, 118230. doi: 10.1016/j.apcatb.2019.118230 (39) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317 (40) Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y. Nat. Commun. 2022, 13, 58. doi: 10.1038/s41467-021-27698-3 (41) Liu, Y.; Hao, X.; Hu, H.; Jin, Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030. [刘阳, 郝旭强, 胡海强, 靳治良. 物理化学学报, 2021, 37, 2008030.] doi: 10.3866/PKU.WHXB202008030 (42) Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Acta Phys. -Chim. Sin. 2021, 37, 2009080. [陈一文, 李铃铃, 徐全龙, Düren, T., 范佳杰, 马德琨. 物理化学学报, 2021, 37, 2009080.] doi: 10.3866/PKU.WHXB202009080 (43) Huo, Y.; Zhang, J.; Dai, K.; Liang, C. ACS Appl. Energy Mater. 2021, 4, 956. doi: 10.1021/acsaem.0c02896 (44) Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6 (45) Dong, G.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2022, 61, 202204271. doi: 10.1002/anie.202204271 (46) Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Chem. Eng. J. 2022, 428, 131158. doi: 10.1016/j.cej.2021.131158 (47) Feng, H.; Li, H.; Liu, X.; Huang, Y.; Pan, Q.; Peng, R.; Du, R.; Zheng, X.; Yin, Z.; Li, S. Chem. Eng. J. 2022, 428, 132045. doi: 10.1016/j.cej.2021.132045 (48) Yang, Y.; Li, H.; Jing, X.; Wu, Y.; Shi, Y.; Duan, C. Chem. Commun. 2022, 58, 807. doi: 10.1039/D1CC06166F (49) Wang, J.; Wang, M.; Li, X.; Gu, X.; Kong, P.; Wang, R.; Ke, X.; Yu, G.; Zheng, Z. Appl. Catal. B: Environ. 2022, 313, 121449. doi: 10.1016/j.apcatb.2022.121449 (50) Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37, 2010030. [李喜宝, 刘积有, 黄军同, 何朝政, 冯志军, 陈智, 万里鹰, 邓芳. 物理化学学报, 2021, 37, 2010030.] doi: 10.3866/PKU.WHXB202010030 (51) Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G. Coord. Chem. Rev. 2022, 450, 214240. doi: 10.1016/j.ccr.2021.214240 (52) Wen, Y.; Rentería-Gómez, A. N.; Day, G. S.; Smith, M. F.; Yan, T.-H.; Ozdemir, R. O. K.; Gutierrez, O.; Sharma, V. K.; Ma, X.; Zhou, H.-C. J. Am. Chem. Soc. 2022, 144, 11840. doi: 10.1021/jacs.2c04341 (53) Cheng, Y.-Z.; Ji, W.; Wu, X.; Ding, X.; Liu, X.-F.; Han, B.-H. Appl. Catal. B: Environ. 2022, 306, 121110. doi: 10.1016/j.apcatb.2022.121110 (54) Zhang, B.; Wong, P. W.; An, A. K. Chem. Eng. J. 2022, 430, 133054. doi: 10.1016/j.cej.2021.133054 (55) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. doi: 10.1002/adma.201102752 (56) Zhou, X. Acta Phys. -Chim. Sin. 2021, 37, 2008064. [周雪梅. 物理化学学报, 2021, 37, 2008064.] doi: 10.3866/PKU.WHXB202008064 (57) Sun, S.; Hisatomi, T.; Wang, Q.; Chen, S. S.; Ma, G. J.; Liu, J. Y.; Nandy, S.; Minegishi, T.; Katayama, M.; Domen, K. ACS Catal. 2018, 8, 1690. doi: 10.1021/acscatal.7b03884 (58) Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1002/smll.202104561 (59) Chen, S. S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050. doi: 10.1038/natrevmats.2017.50 (60) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668 (61) Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008. [朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华. 物理化学学报, 2022, 38, 2111008.] doi: 10.3866/PKU.WHXB202111008 (62) Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B: Environ. 2021, 285, 119789. doi: 10.1016/j.apcatb.2020.119789 (63) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225 (64) Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al. Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563 (65) Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Wang, Y.; Fu, X. Appl. Catal. B: Environ. 2020, 266, 118617. doi: 10.1016/j.apcatb.2020.118617 (66) Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Appl. Catal. B: Environ. 2014, 158–159, 382. doi: 10.1016/j.apcatb.2014.04.035 (67) Zhao, L. M.; Meng, Q. Y.; Fan, X. B.; Ye, C.; Li, X. B.; Chen, B.; Ramamurthy, V.; Tung, C. H.; Wu, L. Z. Angew. Chem. Int. Ed. 2017, 56, 3020. doi: 10.1002/anie.201700243 (68) Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008. [王文亮, 张灏纯, 陈义钢, 史海峰. 物理化学学报, 2022, 38, 2201008.] doi: 10.3866/PKU.WHXB202201008 (69) Huo, Y.; Zhang, J.; Dai, K.; Li, Q.; Lv, J.; Zhu, G.; Liang, C. Appl. Catal. B: Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073 (70) Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2017, 6, 696. doi: 10.1021/acssuschemeng.7b03032 (71) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108 (72) Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. [李瀚, 李芳, 余家国, 曹少文. 物理化学学报, 2021, 37, 2010073.] doi: 10.3866/PKU.WHXB202010073 (73) Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Energy Chem. 2021, 3, 100051. doi: 10.1016/j.enchem.2021.100051 (74) Sasmal, H.S.; Kumar Mahato, A.; Majumder, P.; Banerjee, R. J. Am. Chem. Soc. 2022, 144, 11482. doi: 10.1021/jacs.2c02301 (75) Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi: 10.1021/acssuschemeng.8b02064 (76) Huo, Y.; Zhang, J.; Wang, Z.; Dai, K.; Pan, C.; Liang, C. J. Colloid Interface Sci. 2021, 585, 684. doi: 10.1016/j.jcis.2020.10.048 (77) Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.; Wang, C.; Wang, G. Small 2022, 18, 2202252. doi: 10.1002/smll.202202252 (78) Wang, G.; Huo, T.; Deng, Q.; Yu, F.; Xia, Y.; Li, H.; Hou, W. Appl. Catal. B: Environ. 2022, 310, 121319. doi: 10.1016/j.apcatb.2022.121319 (79) Dong, X.; Cui, Z.; Shi, X.; Yan, P.; Wang, Z.; Co, A. C.; Dong, F. Angew. Chem. Int. Ed. 2022, 61, 202200937. doi: 10.1002/anie.202200937 (80) Dai, K.; Lu, L.H.; Liang, C.H.; Liu, Q.; Zhu, G.P. Appl. Catal. B: Environ. 2014, 156, 331. doi: 10.1016/j.apcatb.2014.03.039 (81) Zhang, Q.; Wang, J.; Ye, X.; Hui, Z.; Ye, L.; Wang, X.; Chen, S. ACS Appl. Mater. Interfaces 2019, 11, 46735. doi: 10.1021/acsami.9b14450 (82) Wang, L.; Yu, J. Chem Catal. 2022, 2, 428. doi: 10.1016/j.checat.2022.01.010 (83) Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013 (84) Mei, F.; Zhang, J.; Liang, C.; Dai, K. Mater. Lett. 2021, 282, 128722. doi: 10.1016/j.matlet.2020.128722 (85) Lotfi, S.; Ouardi, M.E.; Ahsaine, H.A.; Assani, A. Catal. Rev. 2022, 64, 1. doi: 10.1080/01614940.2022.2057044 (86) Chen, Y.; Li, Y.; Luo, N.; Shang, W.; Shi, S.; Li, H.; Liang, Y.; Zhou, A. Chem. Eng. J. 2022, 429, 132577. doi: 10.1016/j.cej.2021.132577 (87) Zhao, R.; Wei, D.; Li, X.; Gao, J.; Xiong, C.; Yu, M. Mater. Lett. 2022, 327, 133003. doi: 10.1016/j.matlet.2022.133003 (88) Fragoso, J.; Barreca, D.; Bigiani, L.; Gasparotto, A.; Sada, C.; Lebedev, O. I.; Modin, E.; Pavlovic, I.; Sánchez, L.; Maccato, C. Chem. Eng. J. 2022, 430, 132757. doi: 10.1016/j.cej.2021.132757 (89) Bie, C.; Zhu, B.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2019, 31, 1902868. doi: 10.1002/adma.201902868 (90) Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016 (91) Yang, Y.; Tan, H.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Small Methods 2021, 5, 2001042. doi: 10.1002/smtd.202001042 (92) Huang, Y.; Zhang, J.; Dai, K.; Liang, C.; Dawson, G. Ceram. Int. 2022, 48, 8423. doi: 10.1016/j.ceramint.2021.12.050 (93) Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi: 10.1016/j.jcis.2021.07.064 (94) Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Energy Environ. Sci. 2015, 8, 2377. doi: 10.1039/c5ee01398d (95) Tao, X. P.; Zhao, Y.; Mu, L. C.; Wang, S. Y.; Li, R. G.; Li, C. Adv. Energy Mater. 2018, 8, 1701392. doi: 10.1002/aenm.201701392 (96) Wang, D.; Hisatomi, T.; Takata, T.; Pan, C.; Katayama, M.; Kubota, J.; Domen, K. Angew. Chem. Int. Ed. 2013, 52, 11252. doi: 10.1002/anie.201303693 (97) Wang, Q.; Hisatomi, T.; Suzuki, Y.; Pan, Z.; Seo, J.; Katayama, M.; Minegishi, T.; Nishiyama, H.; Takata, T.; Seki, K.; et al. J. Am. Chem. Soc. 2017, 139, 1675. doi: 10.1021/jacs.6b12164 (98) Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater. 2021, 33, 2003521. doi: 10.1002/adma.202003521 (99) Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Mater. Today Phys. 2020, 15, 100279. doi: 10.1016/j.mtphys.2020.100279 (100) Gao, D.; Liu, W.; Xu, Y.; Wang, P.; Fan, J.; Yu, H. Appl. Catal. B: Environ. 2020, 260, 118190. doi: 10.1016/j.apcatb.2019.118190 (101) Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Chem. Eng. J. 2022, 439, 135758. doi: 10.1016/j.cej.2022.135758 (102) Liu, J.; Zheng, X.; Pan, L.; Fu, X.; Zhang, S.; Meng, S.; Chen, S. Appl. Catal. B: Environ. 2021, 298, 120619. doi: 10.1016/j.apcatb.2021.120619 (103) He, H.; Cao, J.; Guo, M.; Lin, H.; Zhang, J.; Chen, Y.; Chen, S. Appl. Catal. B: Environ. 2019, 249, 246. doi: 10.1016/j.apcatb.2019.02.055 (104) Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Solar RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587 (105) Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062 (106) Yang, Y.; Chen, X.; Pan, Y.; Song, H.; Zhu, B.; Wu, Y. Catal. Today 2021, 374, 4. doi: 10.1016/j.cattod.2020.10.032 (107) Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42, 56. doi: 10.1016/s1872-2067(20)63634-8 (108) Pan, J.; Dong, Z.; Wang, B.; Jiang, Z.; Zhao, C.; Wang, J.; Song, C.; Zheng, Y.; Li, C. Appl. Catal. B: Environ. 2019, 242, 92. doi: 10.1016/j.apcatb.2018.09.079 (109) Li, X.; Xiong, J.; Xu, Y.; Feng, Z.; Huang, J. Chin. J. Catal. 2019, 40, 424. doi: 10.1016/s1872-2067(18)63183-3 (110) Wang, Y.; Yang, W.; Chen, X.; Wang, J.; Zhu, Y. Appl. Catal. B: Environ. 2018, 220, 337. doi: 10.1016/j.apcatb.2017.08.004 (111) Nie, Y.-C.; Yu, F.; Wang, L.-C.; Xing, Q.-J.; Liu, X.; Pei, Y.; Zou, J.-P.; Dai, W.-L.; Li, Y.; Suib, S. L. Appl. Catal. B: Environ. 2018, 227, 312. doi: 10.1016/j.apcatb.2018.01.033 (112) Guo, N.; Zeng, Y.; Li, H.; Xu, X.; Yu, H.; Han, X. J. Hazard. Mater. 2018, 353, 80. doi: 10.1016/j.jhazmat.2018.03.044 (113) Yang, C.; Qin, J.; Xue, Z.; Ma, M.; Zhang, X.; Liu, R. Nano Energy 2017, 41, 1. doi: 10.1016/j.nanoen.2017.09.012 (114) Lu, D.; Fang, P.; Wu, W.; Ding, J.; Jiang, L.; Zhao, X.; Li, C.; Yang, M.; Li, Y.; Wang, D. Nanoscale 2017, 9, 3231. doi: 10.1039/c6nr09137g (115) Jiang, Z.; Zhu, C.; Wan, W.; Qian, K.; Xie, J. J. Mater. Chem. A 2016, 4, 1806. doi: 10.1039/c5ta09919f (116) Liu, J.; Cheng, B.; Yu, J. Phys. Chem. Chem. Phys. 2016, 18, 31175. doi: 10.1039/c6cp06147h (117) Wang, Y.; Tian, Y.; Yan, L.; Su, Z. J. Phys. Chem. C 2018, 122, 7712. doi: 10.1021/acs.jpcc.8b00098 (118) Wang, K.; Wang, T.; Islam, Q. A.; Wu, Y. Chin. J. Catal. 2021, 42, 1944. doi: 10.1016/s1872-2067(21)63861-5 (119) Wang, K.; Yang, S.; Wu, Y. J. Environ. Chem. Eng. 2022, 10, 108353. doi: 10.1016/j.jece.2022.108353 (120) Bai, Y.; Li, C.; Liu, L.; Yamaguchi, Y.; Bahri, M.; Yang, H.; Gardner, A.; Zwijnenburg, M. A.; Browning, N. D.; Cowan, A. J.; et al. Angew. Chem. Int. Ed. 2022, 61, 202201299. doi: 10.1002/anie.202201299 (121) Xu, M. L.; Lu, M.; Qin, G. Y.; Wu, X. M.; Yu, T.; Zhang, L. N.; Li, K.; Cheng, X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2022, 61, 202210700. doi: 10.1002/anie.202210700 (122) Qin, Y.; Fang, F.; Xie, Z.; Lin, H.; Zhang, K.; Yu, X.; Chang, K. ACS Catal. 2021, 11, 11429. doi: 10.1021/acscatal.1c02874 (123) Zhang, B.; Liu, K.; Xiang, Y.; Wang, J.; Lin, W.; Guo, M.; Ma, G. ACS Catal. 2022, 12, 2415. doi: 10.1021/acscatal.2c00306 (124) Chang, S.; Yu, J.; Wang, R.; Fu, Q.; Xu, X. ACS Nano 2021, 15, 18153. doi: 10.1021/acsnano.1c06871 (125) Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Nat. Chem. 2021, 13, 358. doi: 10.1038/s41557-020-00635-5 (126) Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Appl. Catal. B: Environ. 2019, 254, 677. doi: 10.1016/j.apcatb.2019.05.027 (127) Ning, X.; Zhen, W.; Zhang, X.; Lu, G. ChemSusChem 2019, 12, 1410. doi: 10.1002/cssc.201802926 (128) Zheng, X.; Feng, L.; Dou, Y.; Guo, H.; Liang, Y.; Li, G.; He, J.; Liu, P.; He, J. ACS Nano 2021, 15, 13209. doi: 10.1021/acsnano.1c02884 (129) Liu, Y.; Xu, X.; Zheng, S.; Lv, S.; Li, H.; Si, Z.; Wu, X.; Ran, R.; Weng, D.; Kang, F. Carbon 2021, 183, 763. doi: 10.1016/j.carbon.2021.07.064 (130) Fu, W.; Guan, X.; Huang, Z.; Liu, M.; Guo, L. Appl. Catal. B: Environ. 2019, 255, 117741. doi: 10.1016/j.apcatb.2019.05.043 (131) Dai, D.; Liang, X.; Zhang, B.; Wang, Y.; Wu, Q.; Bao, X.; Wang, Z.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Adv. Sci. 2022, 9, 2105299. doi: 10.1002/advs.202105299 (132) Lin, Y.; Su, W.; Wang, X.; Fu, X.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 20919. doi: 10.1002/anie.202008397 (133) Liu, Y.; Zhang, M.; Wang, Z.; He, J.; Zhang, J.; Ye, S.; Wang, X.; Li, D.; Yin, H.; Zhu, Q.; et al. Nat. Commun. 2022, 13, 4245. doi: 10.1038/s41467-022-32002-y (134) Ding, Y.; Wei, D.; He, R.; Yuan, R.; Xie, T.; Li, Z. Appl. Catal. B: Environ. 2019, 258, 117948. doi: 10.1016/j.apcatb.2019.117948 (135) Wei, S.; Chang, S.; Qian, J.; Xu, X. Small 2021, 17, 2100084. doi: 10.1002/smll.202100084 (136) Li, Y.; Liu, Y.; Xing, D.; Wang, J.; Zheng, L.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Appl. Catal. B: Environ. 2021, 285, 119855. doi: 10.1016/j.apcatb.2020.119855 (137) Wang, L.; Liu, J.; Wang, H.; Cheng, H.; Wu, X.; Zhang, Q.; Xu, H. Sci. Bull. 2021, 66, 265. doi: 10.1016/j.scib.2020.08.009 (138) Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; et al. Energy Environ. Sci. 2016, 9, 2463. doi: 10.1039/c6ee00526h (139) Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; et al. Adv. Mater. 2017, 29, 1702428. doi: 10.1002/adma.201702428 (140) Jiao, L.; Zhang, D.; Hao, Z.; Yu, F.; Lv, X.-J. ACS Catal. 2021, 11, 8727. doi: 10.1021/acscatal.1c01520 (141) Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. ACS Catal. 2022, 12, 12386. doi: 10.1021/acscatal.2c03550 (142) Niu, F.; Tu, W.; Lu, X.; Chi, H.; Zhu, H.; Zhu, X.; Wang, L.; Xiong, Y.; Yao, Y.; Zhou, Y.; et al. ACS Catal. 2022, 12, 4481. doi: 10.1021/acscatal.2c00433 (143) Wang, E.; Mahmood, A.; Chen, S.-G.; Sun, W.; Muhmood, T.; Yang, X.; Chen, Z. ACS Catal. 2022, 12, 11206. doi: 10.1021/acscatal.2c02624 (144) Liu, H.; Xu, C.; Li, D.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 5379. doi: 10.1002/anie.201800320 (145) Zou, J.; Zhou, W.; Huang, L.; Guo, B.; Yang, C.; Hou, Y.; Zhang, J.; Wu, L. J. Catal. 2021, 400, 347. doi: 10.1016/j.jcat.2021.07.003 (146) Li, X.; Hu, J.; Yang, T.; Yang, X.; Qu, J.; Li, C.M. Nano Energy 2022, 92, 106714. doi: 10.1016/j.nanoen.2021.106714 (147) Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. J. Catal. 2018, 367, 159. doi: 10.1016/j.jcat.2018.09.003 (148) Zhang, S.; Huang, W.; Fu, X.; Zheng, X.; Meng, S.; Ye, X.; Chen, S. Appl. Catal. B: Environ. 2018, 233, 1. doi: 10.1016/j.apcatb.2018.03.084 (149) Meng, S.; Ning, X.; Chang, S.; Fu, X.; Ye, X.; Chen, S. J. Catal. 2018, 357, 247. doi: 10.1016/j.jcat.2017.11.015 |
[1] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[4] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[5] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[6] | Meifang Cao, Bo Chen, Tao Ruan, Xinping Ouyang, Xueqing Qiu. Preparation of a Pt/NbPWO Bifunctional Catalyst for the Hydrogenolysis of Alkali Lignin to Aromatic Monomers [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2204037-. |
[7] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[8] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[9] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[10] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[11] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[12] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[13] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[14] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[15] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
|