Special Issue: Solid State Batteries
• Accepted manuscript • Previous Articles Next Articles
Shuai Chen1,2, Chuang Yu2, Qiyue Luo2, Chaochao Wei2, Liping Li3, Guangshe Li3, Shijie Cheng2, Jia Xie2
Received:
2022-10-25
Revised:
2022-11-16
Accepted:
2022-11-17
Published:
2022-11-24
Contact:
Chuang Yu, Guangshe Li, Jia Xie
E-mail:cyu2020@hust.edu.cn;xiejia@hust.edu.cn;guangshe@jlu.edu.cn
Supported by:
:
Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes[J].Acta Phys. -Chim. Sin., 0, (): 2210032.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB202210032
(1) Julien, C. M. J. Power Sources 2011, 196 (8), 3949. doi: 10.1016/j.jpowsour.2010.11.093 (2) (a) Goodenough, J. B.; Kim, Y. Chem. Mater. 2009, 22 (3), 587. doi: 10.1021/cm901452z (b) Janek, J.; Zeier, W. G. Nat. Energy 2016, 1 (9), 16141. doi: 10.1038/nenergy.2016.141 (3) (a) Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2 (4), 16103. doi: 10.1038/natrevmats.2016.103 (b) Wang, H.; An, H. W.; Shan, H. M.; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 37 (11), 2007070. [王晗, 安汉文, 单红梅, 赵雷, 王家钧. 物理化学学报, 2021, 37 (11), 2007070.] doi: 10.3866/PKU.WHXB202007070 (c) Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; et al. Acta Phys. -Chim. Sin. 2021, 37 (12), 2104003. [赵江辉, 谢茂玲, 张海洋, 易若玮, 胡晨吉, 康拓, 郑磊, 崔瑞广, 陈宏伟, 沈炎宾, 等. 物理化学学报, 2021, 37 (12), 2104003.] doi: 10.3866/PKU.WHXB202104003 (4) Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Adv. Energy Mater. 2016, 6 (8), 1501590. doi: 10.1002/aenm.201501590 (5) Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1 (4), 16030. doi: 10.1038/nenergy.2016.30 (6) Shin, B. R.; Nam, Y. J.; Oh, D. Y.; Kim, D. H.; Kim, J. W.; Jung, Y. S. Electrochim. Acta 2014, 146, 395. doi: 10.1016/j.electacta.2014.08.139 (7) Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Solid State Ion. 2011, 182 (1), 116. doi: 10.1016/j.ssi.2010.10.013 (8) Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Adv. Mater. 2018, 30 (44), e1803075. doi: 10.1002/adma.201803075 (9) Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; et al. Energy Environm. Sci. 2019, 12 (9), 2665. doi: 10.1039/C9EE02311A (10) Liu, Y.; Wang, S.; Nolan, A. M.; Ling, C.; Mo, Y. Adv. Energy Mater. 2020, 10 (40), 2002356. doi: 10.1002/aenm.202002356 (11) Park, K.-H.; Kaup, K.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F. ACS Energy Lett. 2020, 5 (2), 533. doi: 10.1021/acsenergylett.9b02599 (12) Shannon, R. Acta Crystallogr. Sect. A 1976, 32 (5), 751. doi: 10.1107/S0567739476001551 (13) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Nat. Mater. 2015, 14 (10), 1026. doi: 10.1038/nmat4369 (14) Lutz, H. D.; Kuske, P.; Wussow, K. Z. Anorg. Allg. Chem. 1987, 553 (10), 172. doi: 10.1002/zaac.19875531020 (15) Flores-González, N.; Minafra, N.; Dewald, G.; Reardon, H.; Smith, R. I.; Adams, S.; Zeier, W. G.; Gregory, D. H. ACS Mater. Lett. 2021, 3 (5), 652. doi: 10.1021/acsmaterialslett.1c00055 (16) Hönle, W.; Miller, G.; Simon, A. J. Solid State Chem. 1988, 75 (1), 147. doi: 10.1016/0022-4596(88)90312-X (17) Hönle, W.; Simon, A. Z. Anorg. Allg. Chem. 1986, 41 (11), 1391. doi: 10.1515/znb-1986-1113 (18) Liang, J.; Li, X.; Wang, S.; Adair, K. R.; Li, W.; Zhao, Y.; Wang, C.; Hu, Y.; Zhang, L.; Zhao, S.; et al. J. Am. Chem. Soc. 2020, 142 (15), 7012. doi: 10.1021/jacs.0c00134 (19) Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T.-K.; Zhang, L.; Zhao, S.; et al. Angew. Chem. Int. Ed. 2019, 58 (46), 16427. doi: 10.1002/anie.201909805 (20) Wang, K.; Ren, Q.; Gu, Z.; Duan, C.; Wang, J.; Zhu, F.; Fu, Y.; Hao, J.; Zhu, J.; He, L.; et al. Nat. Commun. 2021, 12 (1), 4410. doi: 10.1038/s41467-021-24697-2 (21) Chen, S.; Yu, C.; Chen, S.; Peng, L.; Liao, C.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, 33 (10), 4635. doi: 10.1016/j.cclet.2021.12.048 (22) Kwak, H.; Han, D.; Lyoo, J.; Park, J.; Jung, S. H.; Han, Y.; Kwon, G.; Kim, H.; Hong, S.-T.; Nam, K.-W.; et al. Adv. Energy Mater. 2021, 11 (12), 2003190. doi: 10.1002/aenm.202003190 (23) Liang, J.; Li, X.; Adair, K. R.; Sun, X. Acc. Chem. Res. 2021, 54 (4), 1023. doi: 10.1021/acs.accounts.0c00762 (24) Park, J.; Han, D.; Kwak, H.; Han, Y.; Choi, Y. J.; Nam, K.-W.; Jung, Y. S. Chem. Eng. J. 2021, 425, 130630. doi: 10.1016/j.cej.2021.130630 (25) Cros, C.; Hanebali, L.; Latiex, L.; Villeneuve, G. r.; Gang, W. Solid State Ion. 1983, 9–10, 139. doi: 10.1016/0167-2738(83)90223-0 (26) Sorokin, N. I.; Karimov, D. N.; Komar’kova, O. N. Crystallogr. Rep. 2010, 55 (3), 448. doi: 10.1134/S1063774510030132 (27) Liu, Z.; Ma, S.; Liu, J.; Xiong, S.; Ma, Y.; Chen, H. ACS Energy Lett. 2021, 6 (1), 298. doi: 10.1021/acsenergylett.0c01690 (28) Kuske, P.; Schäfer, W.; Lutz, H. D. Mater. Res. Bull. 1988, 23 (12), 1805. doi: 10.1016/0025-5408(88)90192-4 (29) Kanno, R.; Takeda, Y.; Takada, K.; Yamamoto, O. Solid State Ion. 1983, 9–10, 153. doi: 10.1016/0167-2738(83)90225-4 (30) Pfitzner, A.; Lutz, H. D.; Cockcroft, J. K. J. Solid State Chem. 1990, 87 (2), 463. doi: 10.1016/0022-4596(90)90050-8 (31) Zhou, L.; Kwok, C. Y.; Shyamsunder, A.; Zhang, Q.; Wu, X.; Nazar, L. F. Energy Environm. Sci. 2020, 13 (7), 2056. doi: 10.1039/D0EE01017K (32) Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F. Nat. Energy 2022, 7 (1), 83. doi: 10.1038/s41560-021-00952-0 (33) Schneider, M.; Kuske, P.; Lutz, H. D. Thermochim. Acta 1993, 215, 219. doi: 10.1016/0040-6031(93)80095-R (34) Kanno, R.; Takeda, Y.; Takahashi, A.; Yamamoto, O.; Suyama, R.; Koizumi, M. J. Solid State Chem. 1987, 71 (1), 189. doi: 10.1016/0022-4596(87)90158-7 (35) Villeneuve, G.; Latié, L.; Cros, C.; Hagenmuller, P. Mater. Res. Bull. 1984, 19 (11), 1515. doi: 10.1016/0025-5408(84)90266-6 (36) Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y. Angew. Chem. Int. Ed. 2019, 58 (24), 8039. doi: 10.1002/anie.201901938 (37) Rice, M. J.; Roth, W. L. J. Solid State Chem. 1972, 4 (2), 294. doi: 10.1016/0022-4596(72)90121-1 (38) Wakamura, K. Phys. Rev. B 1997, 56 (18), 11593. doi: 10.1103/PhysRevB.56.11593 (39) Oi, T. Mater. Res. Bull. 1984, 19 (10), 1343. doi: 10.1016/0025-5408(84)90198-3 (40) Kwak, H.; Han, D.; Son, J. P.; Kim, J. S.; Park, J.; Nam, K.-W.; Kim, H.; Jung, Y. S. Chem. Eng. J. 2022, 437, 135413. doi: 10.1016/j.cej.2022.135413 (41) Lutz, H. D.; Pfitzner, A.; Wickel, C. Solid State Ion. 1991, 48 (1), 131. doi: 10.1016/0167-2738(91)90209-T (42) Soubeyroux, J. L.; Cros, C.; Gang, W.; Kanno, R.; Pouchard, M. Solid State Ion. 1985, 15 (4), 293. doi: 10.1016/0167-2738(85)90132-8 (43) Kanno, R.; Takeda, Y.; Takahashi, A.; Yamamoto, O.; Suyama, R.; Kume, S. J. Solid State Chem. 1988, 72 (2), 363. doi: 10.1016/0022-4596(88)90040-0 (44) Zhang, S.; Zhao, F.; Wang, S.; Liang, J.; Wang, J.; Wang, C.; Zhang, H.; Adair, K.; Li, W.; Li, M.; et al. Adv. Energy Mater. 2021, 11 (32), 2100836. doi: 10.1002/aenm.202100836 (45) Yu, T.; Liang, J.; Luo, L.; Wang, L.; Zhao, F.; Xu, G.; Bai, X.; Yang, R.; Zhao, S.; Wang, J.; et al. Adv. Energy Mater. 2021, 11 (36), 2101915. doi: 10.1002/aenm.202101915 (46) Schlem, R.; Muy, S.; Prinz, N.; Banik, A.; Shao-Horn, Y.; Zobel, M.; Zeier, W. G. Adv. Energy Mater. 2020, 10 (6), 1903719. doi: 10.1002/aenm.201903719 (47) Li, X.; Liang, J.; Adair, K. R.; Li, J.; Li, W.; Zhao, F.; Hu, Y.; Sham, T.-K.; Zhang, L.; Zhao, S.; et al. Nano Lett. 2020, 20 (6), 4384. doi: 10.1021/acs.nanolett.0c01156 (48) Wignacourt, J. P.; Mairesse, G.; Barbier, P.; Lorriaux-Rubbens, A.; Wallart, F. Can. J. Chem. 1982, 60 (13), 1747. doi: 10.1139/v82-238 (49) Wang, C.; Liang, J.; Luo, J.; Liu, J.; Li, X.; Zhao, F.; Li, R.; Huang, H.; Zhao, S.; Zhang, L.; et al. Sci. Adv. 2021, 7 (37), eabh1896. doi: 10.1126/sciadv.abh1896 (50) Wang, C.; Liang, J.; Jiang, M.; Li, X.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F.; Zhang, S.; et al. Nano Energy 2020, 76, 105015. doi: 10.1016/j.nanoen.2020.105015 (51) Kelly, A. W.; Nicholas, A.; Ahern, J. C.; Chan, B.; Patterson, H. H.; Pike, R. D. J. Alloy. Compd. 2016, 670, 337. doi: 10.1016/j.jallcom.2016.02.055 (52) Esaka, T.; Okuyama, R.; Iwahara, H. Solid State Ion. 1989, 34 (3), 201. doi: 10.1016/0167-2738(89)90040-4 (53) Bai, L.-X.; Liu, X.; Wang, W.-Z.; Liao, D.-Z.; Wang, Q.-L. Z. Anorg. Allg. Chem. 2004, 630 (7), 1143. doi: 10.1002/zaac.200400063 (54) Xie, J.; Sendek, A. D.; Cubuk, E. D.; Zhang, X.; Lu, Z.; Gong, Y.; Wu, T.; Shi, F.; Liu, W.; Reed, E. J.; et al. ACS Nano 2017, 11 (7), 7019. doi: 10.1021/acsnano.7b02561 (55) Mäntymäki, M.; Mizohata, K.; Heikkilä, M. J.; Räisänen, J.; Ritala, M.; Leskelä, M. Thin Solid Films 2017, 636, 26. doi: 10.1016/j.tsf.2017.05.026 (56) Ginnings, D. C.; Phipps, T. E. J. Am. Chem. Soc. 1930, 52 (4), 1340. doi: 10.1021/ja01367a006 (57) Jackson, B. J. H.; Young, D. A. J. Phys. Chem. Solids 1969, 30 (8), 1973. doi: 10.1016/0022-3697(69)90174-7 (58) Steiner, H. J.; Lutz, H. D. J. Solid State Chem. 1992, 99 (1), 1. doi: 10.1016/0022-4596(92)90282-Z (59) Steiner, H.-J.; Lutz, H. D. Z. Anorg. Allg. Chem. 1992, 613 (7), 26. doi: 10.1002/zaac.19926130104 (60) Weppner, W.; Huggins, R. A. Phys. Lett. A 1976, 58 (4), 245. doi: 10.1016/0375-9601(76)90087-6 (61) Kanno, R.; Takeda, Y.; Yamamoto, O. Solid State Ion. 1988, 28–30, 1276. doi: 10.1016/0167-2738(88)90370-0 (62) Kanno, R.; Takeda, Y.; Takada, K.; Yamamoto, O. J. Electrochem. Soc. 1984, 131 (3), 469. doi: 10.1149/1.2115611 (63) Ryoji, K.; Yasuo, T.; Masashi, M.; Osamu, Y. Chem. Lett. 1987, 16 (7), 1465. doi: 10.1246/cl.1987.1465 (64) Lutz, H. D.; Zhang, Z.; Pfitzner, A. Solid State Ion. 1993, 62 (1), 1. doi: 10.1016/0167-2738(93)90245-X (65) Yamada, K.; Kumano, K.; Okuda, T. Solid State Ion. 2006, 177 (19–25), 1691. doi: 10.1016/j.ssi.2006.06.026 (66) Tomita, Y.; Matsushita, H.; Kobayashi, K.; Maeda, Y.; Yamada, K. Solid State Ion. 2008, 179 (21–26), 867. doi: 10.1016/j.ssi.2008.02.012 (67) Bohnsack, A.; Balzer, G.; Güdel, H.-U.; Wickleder, M. S.; Meyer, G. Z. Anorg. Allg. Chem. 1997, 623 (9), 1352. doi: 10.1002/zaac.19976230905 (68) Tomita, Y.; Fuji-i, A.; Ohki, H.; Yamada, K.; Okuda, T. Chem. Lett. 1998, 27 (3), 223. doi: 10.1246/cl.1998.223 (69) Wang, S.; Xu, X.; Cui, C.; Zeng, C.; Liang, J.; Fu, J.; Zhang, R.; Zhai, T.; Li, H. Adv. Funct. Mater. 2022, 32 (7), 2108805. doi: 10.1002/adfm.202108805 (70) Plichta, E. J.; Behl, W. K.; Vujic, D.; Chang, W. H. S.; Schleich, D. M. J. Electrochem. Soc. 1992, 139 (6), 1509. doi: 10.1149/1.2069446 (71) Zhu, Y.; He, X.; Mo, Y. J. Mater. Chem. A 2016, 4 (9), 3253. doi: 10.1039/C5TA08574H (72) Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Adv. Energy Mater. 2021, 11 (21), 2100126. doi: 10.1002/aenm.202100126 (73) Deng, S.; Jiang, M.; Chen, N.; Li, W.; Zheng, M.; Chen, W.; Li, R.; Huang, H.; Wang, J.; Singh, C. V.; et al. Adv. Funct. Mater. 2022, 32 (45), 2205594. doi: 10.1002/adfm.202205594 (74) Kim, K.; Park, D.; Jung, H.-G.; Chung, K. Y.; Shim, J. H.; Wood, B. C.; Yu, S. Chem. Mater. 2021, 33 (10), 3669. doi: 10.1021/acs.chemmater.1c00555 (75) Shao, Q.; Yan, C.; Gao, M.; Du, W.; Chen, J.; Yang, Y.; Gan, J.; Wu, Z.; Sun, W.; Jiang, Y.; et al. ACS Appl. Mater. Interfaces 2022, 14 (6), 8095. doi: 10.1021/acsami.1c25087 (76) Shi, X.; Zeng, Z.; Zhang, H.; Huang, B.; Sun, M.; Wong, H. H.; Lu, Q.; Luo, W.; Huang, Y.; Du, Y.; et al. Small Methods 2021, 5 (11), 2101002. doi: 10.1002/smtd.202101002 (77) Li, X.; Liang, J.; Kim, J. T.; Fu, J.; Duan, H.; Chen, N.; Li, R.; Zhao, S.; Wang, J.; Huang, H.; et al. Adv. Mater. 2022, 34 (20), 2200856. doi: 10.1002/adma.202200856 (78) Kang, J.; Deng, N.; Liu, Y.; Yan, Z.; Gao, L.; Xiang, H.; Zhang, L.; Wang, G.; Cheng, B.; Kang, W. Energy Storage Mater. 2022, 52, 130. doi: 10.1016/j.ensm.2022.07.037 (79) Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J. Angew. Chem. Int. Ed. 2021, 60 (12), 6718. doi: 10.1002/anie.202015238 (80) Koç, T.; Hallot, M.; Quemin, E.; Hennequart, B.; Dugas, R.; Abakumov, A. M.; Lethien, C.; Tarascon, J.M. ACS Energy Lett. 2022, 7 (9), 2979. doi: 10.1021/acsenergylett.2c01668 |
[1] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[2] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[3] | Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206035-0. |
[4] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[5] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[6] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[7] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[8] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[9] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[10] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[11] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[12] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[13] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[14] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[15] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
|