Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (12): 1319-1340.doi: 10.3866/PKU.WHXB201903010
• Review • Previous Articles Next Articles
Genwang WANG1,2,Chaojian HOU1,2,*(),Haotian LONG1,2,Lijun YANG1,2,*(
),Yang WANG1,2,*(
)
Received:
2019-03-05
Accepted:
2019-04-12
Published:
2019-04-17
Contact:
Chaojian HOU,Lijun YANG,Yang WANG
E-mail:houchaojian@163.com;yljtj@hit.edu.cn;wyyh@hit.edu.cn
Supported by:
MSC2000:
Genwang WANG,Chaojian HOU,Haotian LONG,Lijun YANG,Yang WANG. Electronic and Optoelectronic Nanodevices Based on Two-Dimensional Semiconductor Materials[J].Acta Physico-Chimica Sinica, 2019, 35(12): 1319-1340.
Fig 1
Graphene and the FET based on it 19, 22. (a) Schematic view and scanning electron microscope image of the device based on graphene, Adapted from American Association for the Advancement of Science publisher; (b) Resistivity (ρ), conductivity (σ) and carrier concentration (n0) of few-layer graphene, Adapted from American Association for the Advancement of Science publisher; (c) Lattice structures and band structures at the corners of the first Brillouin zone for monolayer graphene, Adapted from Nature Publishing Group publisher. "
Fig 2
Schematic illustration of TMDs atom structure and the energy band structure of MoS2 22, 58. (a) Schematic of a typical MX2 structure and the structural polytypes: 2H, 3R, 1T, Adapted from Nature Publishing Group publisher; (b) The band structure of monolayer molybdenum disulfide, Adapted from Nature Publishing Group publisher. "
Fig 3
Schematic illustration of BP atom structure, band diagram and anisotropic property 22, 67, 76. (a) Atomic structure of black phosphorus, Adapted from Nature Publishing Group publisher; (b) The band structure of BP, Adapted from Nature Publishing Group publisher; (c) Orthogonality between the dominant heat and electron transport directions in single-layer BP, Adapted from American Chemical Society publisher. "
Fig 4
The fabrication of vdWHs structure and its electrical properties 87, 89. (a) The fabrication of vdWHs by mechanically assembled stacks, Adapted from American Association for the Advancement of Science publisher; (b) The atom and energy band structures of MoS2/BP, Adapted from American Chemical Society publisher. "
Fig 7
Schematic illustration of fabrication of pn junction based on TMDs with different methods 104-106. (a) Electrostatic doping, Adapted from Nature Publishing Group publisher; (b) Chemical doping lateral pn junction, Adapted from American Chemical Society publisher; (c) Chemical doping vertical pn junction, Adapted from American Chemical Society publisher. "
Fig 8
BP-based FETs 24, 67, 107, 108, 111 (a) Single layer BP FETs, Adapted from Nature Publishing Group publisher; (b) The channel length effect and electrode material on performance of BP FETs, Adapted from American Chemical Society publisher; (c)Short-channel BP transistor with 20nm channel length, Adapted from American Chemical Society publisher; (d) Monolayer atomic crystal molecular super lattices, Adapted from Nature Publishing Group publisher; (e) The anisotropic property of BP FETs, Adapted from American Chemical Society publisher. "
Fig 12
Special functional electronic devices based on two-dimensional semiconductor materials 131, 132, 136. (a) Bilayer MoS2 integrated circuit, Adapted from American Chemical Society publisher; (b) WSe2-based COMS, Adapted from American Chemical Society publisher; (c) MoS2-based memristors, Adapted from Nature Publishing Group publisher. "
Fig 13
MoS2-based photodetector 139, 141, 143. (a) Monolayer MoS2 photodetector, Adapted from American Chemical Society publisher; (b) Thickness dependent photodetector, Adapted from American Chemical Society publisher; (c) Ultra-sensitive MoS2 photodetector, Adapted from Nature Publishing Group publisher. "
Fig 14
The different enhancement methods of MoS2-based photodetector 145, 147, 156. (a) Laser micromachining, Adapted from American Chemical Society publisher; (b) Encapsulated by HfO2, Adapted from American Chemical Society publisher; (c) Au plasmon electrode-enhanced photodetector, Adapted from American Chemical Society publisher. "
Fig 15
BP-based photodetector 157, 158, 163. (a) Monolayer BP photodetector, Adapted from American Chemical Society publisher; (b) Wavelength dependent photocurrent, Adapted from American Chemical Society publisher; (c) Three-dimensional Integration of black phosphorus photodetector with silicon photonics and nano-plasmonics, Adapted from American Chemical Society publisher. "
Fig 16
Graphene/2D semiconductor/Graphene photodetector165-167. (a) Graphene/WS2/Graphene, Adapted from American Association for the Advancement of Science publisher; (b) Graphene/MoS2/Graphene, Adapted from Nature Publishing Group publisher; (c) Graphene/MoS2/Graphene, Adapted from Nature Publishing Group publisher. "
1 | https://newsroom.ibm.com/2015-07-09-IBM-Research-Alliance-Produces-Industrys-First-7nm-Node-Test-Chips (accessed Sept. 7, 2015) |
2 |
Waldrop M. M. Nature 2016, 530, 144.
doi: 10.1038/530144a |
3 |
Saha P. ; Banerjee P. ; Dash D. K. ; Sarkar S. K. J. Mater. Eng. Perform. 2018, 27 (6), 2708.
doi: 10.1007/s11665-018-3281-2 |
4 |
Pop E. Nano Res. 2010, 3 (3), 147.
doi: 10.1007/s12274-010-1019-z |
5 |
Theis T. N. ; Wong H. S. P. Comput. Sci. Eng. 2017, 19 (2), 41.
doi: 10.1109/MCSE.2017.29 |
6 |
Dai J. ; Miao X. Electron. Packag. 2015, 15 (10), 30.
doi: 10.16257/j.cnki.1681-1070.2015.0110 |
戴锦文; 缪小勇. 电子与封装, 2015, 15 (10), 30.
doi: 10.16257/j.cnki.1681-1070.2015.0110 |
|
7 |
Krätschmer W. ; Lamb L. D. ; Fostiropoulos K. ; Huffman D. R. Nature 1990, 347, 354.
doi: 10.1038/347354a0 |
8 |
Iijima S. ; Ichihashi T. Nature 1993, 363, 603.
doi: 10.1038/363603a0 |
9 |
Yang G. ; Zhu C. ; Du D. ; Zhu J. ; Lin Y. Nanoscale 2015, 7 (34), 14217.
doi: 10.1039/C5NR03398E |
10 | Sannino, D.; Rizzo, L.; Vaiano, V. Progress in Nanomaterials Applications for Water Purification. In Nanotechnologies for Environmental Remediation; Lofrano, G., Libralato, G., Brown, J. Eds.; Springer, Cham, Switzerland, 2017; pp. 1–24. |
11 |
Perreault F. ; Faria A. F. D. ; Elimelech M. Chem. Soc. Rev. 2015, 44 (16), 5861.
doi: 10.1039/C5CS00021A |
12 |
Hu C. ; Mu Ye. ; Li M. ; Qiu J. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
胡超; 穆野; 李明宇; 邱介山. 物理化学学报, 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
|
13 | Chen, Z.; Yang, Z.; Chen, T.; Sun, L.; Fukuda, T. Electron Beam Introduced Metallic Nanowires Growth. In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), 16th International Conference on Nanotechnology, Sendai, Japan, August 22–25, 2016; IEEE: New York, 2016, pp. 26–29. |
14 |
Cui J. ; Cheng Y. ; Zhang J. ; Mei H. ; Wang X. Appl. Sci.-Basel 2019, 9 (3), 476.
doi: 10.3390/app9030476 |
15 |
Cui J. ; Yang L. ; Zhou L. ; Wang Y. ACS Appl. Mater. Interfaces 2014, 6 (3), 2044.
doi: 10.1021/am405114n |
16 | Wang, Y.; Yang, Z.; Chen, T.; Yang, L.; Sun, L.; Fukuda, T. CNT Handling with Van der Waals Force Inside a SEM for FET Application. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 11th IEEE Annual International Conference on Nano/micro Engineered and Molecular Systems, Sendai, Japan, April 17–20, 2016; IEEE: New York, 2016, 111–116. |
17 |
Ning Y. ; Qing S. ; Masahiro N. ; Huaping W. ; Zhan Y. ; Sun L. ; Huang Q. ; Fukuda T. J. Micromech. Microeng. 2017, 27 (10), 105007.
doi: 10.1088/1361-6439/aa7961 |
18 |
He P. ; Yuan F. ; Wang Z. ; Tan Z. ; Fan L. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
贺平; 袁方龙; 王子飞; 谭占鳌; 范楼珍. 物理化学学报, 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
|
19 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
20 |
Zhang Y. ; Zhang L. ; Zhou C. Acc. Chem. Res. 2013, 46 (10), 2329.
doi: 10.1021/ar300203n |
21 | Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, L. N.; Lavrik, N. V.; List, F.; Gupta, N.; et al. Nat. Mater. 2018, 17 (4), 318. doi: 10.1038/s41563-018-0019-3 |
22 |
Xia F. ; Wang H. ; Xiao D. ; Dubey M. Nat. Photonics 2014, 8 (12), 899.
doi: 10.1038/nphoton.2014.271 |
23 |
Li M. Y. ; Chen C. H. ; Shi Y. ; Li L. J. Mater. Today 2016, 19 (6), 322.
doi: 10.1016/j.mattod.2015.11.003 |
24 | Wang, C.; He, Q.; Halim, U.; Liu, Y.; Zhu, E.; Lin, Z.; Xiao, H.; Duan, X.; Feng, Z.; Cheng, R.; et al. Nature 2018, 555. 231. doi: 10.1038/nature25774 |
25 |
Fiori G. ; Bonaccorso F. ; Iannaccone G. ; Palacios T. ; Neumaier D. ; Seabaugh A. ; Banerjee S. K. ; Colombo L. Nat. Nanotechnol. 2014, 9 (10), 768.
doi: 10.1038/nnano.2014.207 |
26 |
Acerce M. ; Voiry D. ; Chhowalla M. Nat. Nanotechnol. 2015, 10 (4), 313.
doi: 10.1038/nnano.2015.40 |
27 |
Wang H. ; Yu L. ; Lee Y. H. ; Shi Y. ; Hsu A. ; Chin M. L. ; Li L. J. ; Dubey M. ; Kong J. ; Palacios T. Nano Lett. 2012, 12 (9), 4674.
doi: 10.1021/nl302015v |
28 |
Akinwande D. ; Petrone N. ; Hone J. Nat. Commun. 2014, 5 (1), 5678.
doi: 10.1038/ncomms6678 |
29 | Xie, C.; Mak, C.; Tao, X.; Yan, F. Adv. Funct. Mater. 2017, 27 (19), 1603886. doi: 10.1002/adfm.201603886 |
30 | Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501 |
31 |
Salehzadeh O. ; Djavid M. ; Tran N. H. ; Shih I. ; Mi Z. Nano Lett. 2015, 15 (8), 5302.
doi: 10.1021/acs.nanolett.5b01665 |
32 |
Namgung S. ; Shaver J. ; Oh S. H. ; Koester S. J. ASC Nano 2016, 10 (11), 10500.
doi: 10.1021/acsnano.6b06468 |
33 |
Taniguchi K. ; Matsumoto A. ; Shimotani H. ; Takagi H. Appl. Phys. Lett. 2012, 101 (4), 042603.
doi: 10.1063/1.4740268 |
34 |
Zhu H. ; Wang Y. ; Xiao J. ; Liu M. ; Xiong S. ; Wong J. W. ; Ye Z. ; Ye Y. ; Yin X. ; Zhang X. Nat. Nanotechnol. 2015, 10 (2), 151.
doi: 10.1038/nnano.2014.309 |
35 |
Mak K. F. ; McGill K. L. ; Park J. ; McEuen P. L. Science 2014, 344, 1489.
doi: 10.1126/science.1250140 |
36 | Wu, J.; Schmidt, H.; Amara, K. K., Xu, X.; Eda, G.; Ö zyilmaz, B. Nano Lett. 2014, 14 (5), 2730. doi: 10.1021/nl500666m |
37 |
Zhong Y. ; Zhu H. Physics 2018, 47 (11), 704.
doi: 10.7693/wl20181103 |
钟雨嘉; 朱宏伟. 物理, 2018, 47 (11), 704.
doi: 10.7693/wl20181103 |
|
38 |
Lee C. ; Wei X.D. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
39 | Deng, T.; Zhang, Z. H.; Liu, Y. X.; Wang, Y. X.; Su, F.; Li, S. S.; Zhang, Y.; Li, H.; Chen, H. J.; Zhao, Z. R.; et al. Nano Lett. 2019, 19 (3), 1494. doi: 10.1021/acs.nanolett.8b04099 |
40 | Xu, W.; Qin, Z.; Chen, C. T.; Kwag, H. R.; Ma, Q.; Sarkar, A.; Buehler, J. B; Gracias, D. H. Sci. Adv. 2017, 3 (10), e1701084. doi: 10.1126/sciadv.1701084 |
41 |
Wang J. ; Yang M ; Zheng Z. ; Yu R. ; Wang D. Chin. Sci. Bull. 2019, 64 (5–6), 514.
doi: 10.1360/N972018-01105 |
王晶; 杨梅; 郑子剑; 于然波; 王丹. 科学通报, 2019, 64 (5–6), 514.
doi: 10.1360/N972018-01105 |
|
42 |
Huo R. ; Wu Y. ; Yang Y. ; Piao S. ; Zhang Z. ; Xiao J. ; Shi L. Chin. J. Appl. Chem. 2019, 36 (3), 245.
doi: 10.11944/j.issn.1000-0518.2019.03.180305 |
霍冉; 吴雨萱; 杨煜; 朴树清; 张治城;肖佶海;史翎. Chin. J. Appl. Chem., 2019, 36 (3), 245.
doi: 10.11944/j.issn.1000-0518.2019.03.180305 |
|
43 |
Deng C. ; Lu Z. Int. J. Lab. Med. 2019, 40 (3), 364.
doi: 10.3969/j.issn.1673-8640.2015.06.025 |
郑超; 卢忠心. 国际检验医学杂志, 2019, 40 (3), 364.
doi: 10.3969/j.issn.1673-8640.2015.06.025 |
|
44 | Long, M.; Wang, P.; Fang, H.; Hu W. Adv. Funct. Mater. 2018, 28 (36), 1803807, doi: org/10.1002/adfm.201803807 |
45 |
Ajayan P. ; Kim P. ; Banerjee K. Phys. Today 2016, 69 (9), 38.
doi: 10.1063/PT.3.3297 |
46 |
Hou S. ; Gweon G. H. ; Fedorov A. V. ; First P. N. ; de Heer W. A. ; Lee D. H. ; Guinea F. ; Neto A. H. C. ; Lanzara A. Nat. Mater. 2007, 6 (10), 770.
doi: 10.1038/nmat2003 |
47 |
Wei D. ; Liu Y. ; Wang Y. ; Zhang H. ; Huang L. ; Yu G. Nano Lett. 2009, 9 (5), 1752.
doi: 10.1021/nl803279t |
48 |
Bai J. ; Zhong X. ; Jiang S. ; Huang Y. ; Duan X. Nat. Nanotechnol. 2010, 5 (3), 190.
doi: 10.1038/nnano.2010.8 |
49 |
Han M. Y. ; zyilmaz B. ; Zhang Y. ; Kim P. Phys. Rev. Lett. 2007, 98 (20), 206805.
doi: 10.1103/PhysRevLett.98.206805 |
50 | Grande, M.; Vincenti, M. A.; Stomeo, T.; Bianco, G. V.; de Ceglia, D.; Aközbek, N.; Petruzzelli, V.; Bruno, G.; Vittorio, M. D.; Scalora, M.; et al. Opt. Express 2015, 23 (16), 201032. doi: 10.1364/OE.23.021032 |
51 |
Chhowalla M. ; Liu Z. ; Zhang H. Chem. Soc. Rev. 2015, 44 (19), 2584.
doi: 10.1039/C5CS90037A |
52 | Houssa, M.; Dimoulas, A.; Molle, A. 2D Materials for Nanoelectronics, 1st ed.; CRC Press: Boca Raton, the United States, 2016; pp. 142–144. |
53 |
Chang T. W. ; Liu Z. ; Liang L. U. ; Sun Z. H. Univ. Chem. 2016, 32 (4), 79.
doi: 10.3866/PKU.DXHX201603009 |
常泰维; 刘正; 鲁亮; 孙泽昊. 大学化学, 2016, 32 (4), 79.
doi: 10.3866/PKU.DXHX201603009 |
|
54 |
Myron H. W. ; Freeman A. J. Phys. Rev. B 1974, 9 (2), 481.
doi: 10.1103/PhysRevB.9.481 |
55 |
Ataca C. ; Sahin H. ; Ciraci S. J. Phys. Chem. C 2012, 116 (16), 8983.
doi: 10.1021/jp212558p |
56 |
Wang Y. ; Cong C. ; Yang W. ; Shang J. ; Peimyoo N. ; Chen Y. ; Kang J. ; Wang J. ; Huang W. ; Yu T. Nano Res. 2015, 8 (8), 2562.
doi: 10.1007/s12274-015-0762-6 |
57 |
Yun W. S. ; Han S. W. ; Hong S. C. ; Kim I. G. ; Lee J. D. Phys. Rev. B 2012, 85 (3), 033305.
doi: 10.1103/PhysRevB.85.033305 |
58 |
Wang Q. H. ; Kalantar-Zadeh K. ; Kis A. ; Coleman J. N. ; Strano M. S. Nat. Nanotechnol. 2012, 7 (11), 699.
doi: 10.1038/nnano.2012.193 |
59 | Kang, Y.; Najmaei, S.; Liu, Z.; Bao, Y.; Wang, Y.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J.; et al. Adv. Mater. 2014, 26 (37), 6467. doi: 10.1002/adma.201401802 |
60 |
Mak K. F. ; Lee C. ; Hone J. ; Shan J. ; Heinz T. F. Phys. Rev. Lett. 2010, 105 (13), 136805.
doi: 10.1103/PhysRevLett.105.136805 |
61 |
Splendiani A. ; Sun L. ; Zhang Y. ; Li T. ; Kim J. ; Chim C. Y. ; Galli G. ; Wang F. Nano Lett. 2010, 10 (4), 1271.
doi: 10.1021/nl903868w |
62 |
Bernardi M. ; Palummo M. ; Grossman J. C. Nano Lett. 2013, 13 (8), 3664.
doi: 10.1021/nl401544y |
63 |
Castellanos-Gomez A. ; Poot M. ; Steele G. A. ; van der Zant H. S. J. ; Agraït N. ; Rubio-Bollinger G. Adv. Mater. 2012, 24 (6), 772.
doi: 10.1002/adma.201103965 |
64 |
Castellanos-Gomez A. ; Roldán R. ; Cappelluti E. ; Buscema M. ; Guinea F. ; van der Zant H. S. J. ; Steele G. A. Nano Lett. 2013, 13 (11), 5361.
doi: 10.1021/nl402875m |
65 |
Yu L. ; Ruzsinszky A. ; Perdew J. P. Nano Lett. 2016, 16 (4), 2444.
doi: 10.1021/acs.nanolett.5b05303 |
66 |
Lembke D. ; Kis A. ACS Nano 2012, 6 (11), 10070.
doi: 10.1021/nn303772b |
67 |
Li L. ; Yu Y. ; Ye G. J. ; Ge Q. ; Ou X. ; Wu H. ; Feng D. ; Chen X. H. ; Zhang Y. Nat. Nanotechnol. 2014, 9 (5), 372.
doi: 10.1038/nnano.2014.35 |
68 |
Zhu J. X. ; Liu X. D. ; Xue M. Z. ; Chen C. X. Acta Phys. -Chim. Sin. 2017, 33 (11), 2153.
doi: 10.3866/PKU.WHXB201705313 |
朱晋潇; 刘晓东; 薛敏钊; 陈长鑫. 物理化学学报, 2017, 33 (11), 2153.
doi: 10.3866/PKU.WHXB201705313 |
|
69 |
Tran V. ; Soklaski R. ; Liang Y. ; Yang L. Phys. Rev. B 2014, 89 (23), 235319.
doi: 10.1103/PhysRevB.89.235319 |
70 |
Churchill H. O. H. ; Jarillo-Herrero P. Nat. Nanotechnol. 2014, 9 (5), 330.
doi: 10.1038/nnano.2014.85 |
71 |
Zhu W. ; Yogeesh M. N. ; Yang S. ; Aldave S. H. ; Kim J. S. ; Sonde S. S. ; Tao L. ; Lu N. ; Akinwande D. Nano Lett. 2015, 15 (3), 1883.
doi: 10.1021/nl5047329 |
72 |
Das S. ; Demarteau M. ; Roelofs A. K. ACS Nano 2014, 8 (11), 11730.
doi: 10.1021/nn505868h |
73 |
Peng X. ; Copple A. ; Wei Q. Phys. Rev. B 2014, 90 (8), 085402.
doi: 10.1103/physrevb.90.085402 |
74 |
Ç akırD.; SahinH.; PeetersF. M.. Phys. Rev. B, 2014, 90 (20), 205421.
doi: 10.1103/PhysRevB.90.205421 |
75 |
Xia F. ; Wang H. ; Jia Y. Nat. Commun. 2014, 5 (1), 4458.
doi: 10.1038/ncomms5458 |
76 |
Fei R. ; Faghaninia A. ; Soklaski R. ; Yan J. A. ; Lo C. ; Yang L. Nano Lett. 2014, 14 (11), 6393.
doi: 10.1021/nl502865s |
77 |
Qiao J. ; Kong X. ; Hu Z. X. ; Yang F. ; Ji W. Nat. Commun. 2014, 5 (1), 4475.
doi: 10.1038/ncomms5475 |
78 | Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; et al. 2D Mater. 2014, 1 (2), 025001. doi: 10.1088/2053-1583/1/2/025001 |
79 |
Kou L. ; Chen C. ; Smith S. C. J. Phys. Chem. Lett. 2015, 6 (14), 2794.
doi: 10.1021/acs.jpclett.5b01094 |
80 | Çiftçi, N.O. Chemical Vapor Deposition of Boron Nitride Nanotubes. Master Dissertation, Bilkent University, Turkey, 2013. |
81 | Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Nat. Nanotechnol. 2010, 5 (10), 722. doi: 10.1038/nnano.2010.172 |
82 |
Dean C. ; Young A. F. ; Wang L. ; Meric I. ; Lee G. H. ; Watanabe K. ; Taniguchi T. ; Shepard K. ; Kim P. ; Hone J. Solid State Commun. 2012, 152 (15), 1275.
doi: 10.1016/j.ssc.2012.04.021 |
83 |
Choi M. S. ; Lee G. H. ; Yu Y. J. ; Lee D. Y. ; Lee S. H. ; Kim P. ; Hone J. ; Yoo W. J. Nat. Commun. 2013, 4 (1), 1624.
doi: 10.1038/ncomms2652 |
84 | Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K.; et al. ACS Nano 2013, 7 (9), 7931. doi: 10.1021/nn402954e |
85 |
Geim A. K. ; Grigorieva I. V. Nature 2013, 499, 419.
doi: 10.1038/nature12385 |
86 |
Liu Y. ; Weiss N. O. ; Duan X. ; Cheng H. C. ; Huang Y. ; Duan X. Nat. Rev. Mater. 2016, 1 (9), 16042.
doi: 10.1038/natrevmats.2016.42 |
87 | Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. Science 2016, 353, aac9439. doi: 10.1126/science.aac9439 |
88 | Doganov, R. A.; O'Farrell, E.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T.; et al. Nat. Commun. 2014, 6 (1), 6647. doi: 10.1038/ncomms7647 |
89 |
Guo H. ; Lu N. ; Dai J. ; Wu X. ; Cheng Z. J. Phys. Chem. C 2014, 118 (25), 14051.
doi: 10.1021/jp505257g |
90 |
Hong X. ; Kim J. ; Shi S. F. ; Zhang Y. ; Jin C. ; Sun Y. ; Tongay S. ; Wu J. ; Zhang Y. F. ; Wang F. Nat. Nanotechnol. 2014, 9 (9), 682.
doi: 10.1038/nnano.2014.167 |
91 |
Sarwat S.G. ; Tweedie M. ; Porter B.F. ; Zhou Y. ; Sheng Y. ; Mol J. ; Warner J. ; Bhaskaran H. Nano Lett. 2017, 18 (4), 2467.
doi: 10.1021/acs.nanolett.8b00036 |
92 |
Tan M. ; Zhang L. ; Liang W. Acta Phys. -Chim. Sin. 2019, 35 (4), 385.
doi: 10.3866/PKU.WHXB201805291 |
谭淼; 张磊; 梁万珍. 物理化学学报, 2019, 35 (4), 385.
doi: 10.3866/PKU.WHXB201805291 |
|
93 |
Das S. ; Robinson J. A. ; Dubey M. ; Terrones H. ; Terrones M. Ann. Rev. Mater. Res. 2015, 45 (1), 1.
doi: 10.1146/annurev-matsci-070214-021034 |
94 |
Chhowalla M. ; Jena D. ; Zhang H. Nat. Rev. Mater. 2016, 1 (11), 16052.
doi: 10.1038/natrevmats.2016.52 |
95 |
Podzorov V. ; Gershenson M. E. ; Kloc C. ; Zeis R. ; Bucher E. Appl. Phys. Lett. 2004, 84 (17), 3301.
doi: 10.1063/1.1723695 |
96 |
Ayari A. ; Cobas E. ; Ogundadegbe O. ; Fuhrer M. S. J. Appl. Phys. 2007, 101 (1), 014507.
doi: 10.1063/1.2407388 |
97 |
Radisavljevic B. ; Radenovic A. ; Brivio J. ; Giacometti V. ; Kis A. Nat. Nanotechnol. 2011, 6 (3), 147.
doi: 10.1038/nnano.2010.279 |
98 |
Liu T. ; Liu S. ; Tu K.H. ; Schmidt H. ; Chu L.Q. ; Xiang D. ; Martin J. ; Eda G. ; Ross C.A. ; Garaj S. Nat. Nanotechnol. 2019, 14 (3), 223.
doi: 10.1038/s41565-019-0361-x |
99 |
Lin M. ; Kravchenko I. ; Fowlkes J. ; Li X. ; Puretzky A. ; Rouleau C. ; Geohegan D. ; Xiao K. Nanotechnology 2016, 27 (16), 165203.
doi: 10.1088/0957-4484/27/16/165203 |
100 |
Bhattacharjee S. ; Ganapathi K. ; Mohan S. ; Bhat N. Appl. Phys. Lett. 2017, 111 (16), 163501.
doi: 10.1063/1.4996953 |
101 |
Das S. ; Chen H. Y. ; Penumatcha A. V. ; Appenzeller J. Nano Lett. 2013, 13 (1), 100.
doi: 10.1021/nl303583v |
102 |
Kang J. ; Liu W. ; Banerjee K. Appl. Phys. Lett. 2014, 104 (9), 093106.
doi: 10.1063/1.4866340 |
103 |
Fang H. ; Chuang S. ; Chang T. C. ; Takei K. ; Takahashi T. ; Javey A. Nano Lett. 2012, 12 (7), 3788.
doi: 10.1021/nl301702r |
104 | Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Nat. Nanotechnol. 2014, 9 (4), 268. doi: 10.1038/nnano.2014.26 |
105 |
Choi M. S. ; Qu D. ; Lee D. ; Liu X. ; Watanabe K. ; Taniguchi T. ; Yoo W. J. ACS Nano 2014, 8 (9), 9332.
doi: 10.1021/nn503284n |
106 |
Li H. M. ; Lee D. ; Qu D. ; Liu X. ; Ryu J. ; Seabaugh A. ; Yoo W. J. Nat. Commun. 2015, 6 (1), 6564.
doi: 10.1038/ncomms7564 |
107 |
Du Y. ; Liu H. ; Deng Y. ; Ye P. D. ACS Nano 2014, 8 (10), 10035.
doi: 10.1021/nn502553m |
108 |
Miao J. ; Zhang S. ; Cai L. ; Scherr M. ; Wang C. ACS Nano 2015, 9 (9), 9236.
doi: 10.1021/acsnano.5b04036 |
109 | Prakash, A.; Cai, Y.; Zhang, G.; Zhang, Y.; Ang, K. Small 2017, 13 (5), 1602909. doi: 10.1002/smll.201602909. |
110 | Han, C.; Hu, Z.; Gomes, L.; Bao, Y.; Carvalho, A.; Tan, S.; Lei, B.; Xiang, D.; Wu, J.; Qi, D.; et al. Nano Lett. 2017, 17 (7), 4122. doi: 10.1021/acs.nanolett.7b00903 |
111 |
Liu H. ; Neal A. T. ; Zhu Z. ; Luo Z. ; Xu X. ; Tománek D. ; Ye P. D. ACS Nano 2014, 8 (4), 4033.
doi: 10.1021/nn501226z |
112 |
Cao X. ; Guo J. IEEE Trans. Electron Devices 2014, 62 (2), 659.
doi: 10.1109/TED.2014.2377632 |
113 |
Buscema M. ; Groenendijk D. J. ; Steele G. A. ; van der Zant H. S. J. ; Castellanos-Gomez A. Nat. Commun. 2014, 5 (1), 4651.
doi: 10.1038/ncomms5651 |
114 | Liu, Y.; Cai, Y.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Adv. Funct. Mater. 2017, 27 (7), 1604638. doi: 10.1002/adfm.201604638 |
115 |
Island J. O. ; Steele G. A. ; van der Zant H. S. J. ; Castellanos-Gomez A. 2D Mater. 2015, 2 (1), 011002.
doi: 10.1088/2053-1583/2/1/011002 |
116 |
Wood J. D. ; Wells S. A. ; Jariwala D. ; Chen K. S. ; Cho E. ; Sangwan V. K. ; Liu X. ; Lauhon L. J. ; Marks T. J. ; Hersam M. C. Nano Lett. 2014, 14 (12), 6964.
doi: 10.1021/nl5032293 |
117 |
He D. ; Wang Y. ; Huang Y. ; Shi Y. ; Wang X. ; Duan X. Nano Lett. 2019, 19 (1), 331.
doi: 10.1021/acs.nanolett.8b03940 |
118 |
Hirose K. ; Osada T. ; Uchida K. ; Taen T. ; Watanabe K. ; Taniguchi T. ; Akahama Y. Appl. Phys. Lett. 2018, 113 (19), 163501.
doi: 10.1063/1.5048233 |
119 |
Roy T. ; Tosun M. ; Kang J. S. ; Sachid A. B. ; Desai S. B. ; Hettick M. ; Hu C. C. ; Javey A. ACS Nano 2014, 8 (6), 6259.
doi: 10.1021/nn501723y |
120 |
Avsar A. ; Vera-Marun I. J. ; Tan J. Y. ; Watanabe K. ; Taniguchi T. ; Neto A. H. C. ; zyilmaz B. ACS Nano 2015, 9 (4), 4138.
doi: 10.1021/acsnano.5b00289 |
121 | Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; et al. Nat. Nanotechnol. 2014, 9 (9), 676. doi: 10.1038/nnano.2014.150 |
122 | Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H.; et al. Science 2015, 349, 524. doi: 10.1126/science.aab4097 |
123 |
Deng Y. ; Luo Z. ; Conrad N. J. ; Liu H. ; Gong Y. ; Najmaei S. ; Ajayan P. M. ; Lou J. ; Xu X. ; Ye P. D. ACS Nano 2014, 8 (8), 8292.
doi: 10.1021/nn5027388 |
124 |
Xu J. ; Jia J. ; Lai S. ; Ju J. ; Lee S. Appl. Phys. Lett. 2017, 110 (3), 033103.
doi: 10.1063/1.4974303 |
125 | Liu, X.; Qu, D.; Li, H.; Moon, I.; Ahmed, F.; Kim, C.; Lee, M.; Choi, Y.; Cho, J.; Hone, J.; et al. ACS Nano 2017, 11 (9), 9143. doi: 10.1021/acsnano.7b03994 |
126 | Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; et al. Nat. Nanotechnol. 2013, 8 (2), 100. doi: 10.1038/nnano.2012.224 |
127 |
Yu W. J. ; Li Z. ; Zhou H. ; Chen Y. ; Wang Y. ; Huang Y. ; Duan X. Nat. Mater. 2013, 12 (3), 246.
doi: 10.1038/nmat3518 |
128 |
Kang J. ; Jariwala D. ; Ryder C. R. ; Wells S. A. ; Choi Y. ; Hwang E. ; Cho J. H. ; Marks T. J. ; Hersam M. C. Nano Lett. 2016, 16 (4), 2580.
doi: 10.1021/acs.nanolett.6b00144 |
129 |
Sarkar D. ; Xie X. ; Liu W. ; Cao W. ; Kang J. ; Gong Y. ; Kraemer S. ; Ajayan P. M. ; Banerjee K. Nature 2015, 526, 91.
doi: 10.1038/nature15387 |
130 |
Miao J. ; Xu Z. ; Li Q. ; Bowman A. ; Zhang S. ; Hu W. ; Zhou Z. ; Wang C. ACS Nano 2017, 11 (10), 10472.
doi: 10.1021/acsnano.7b05755 |
131 |
Wang H. ; Yu L. ; Lee Y. H. ; Shi Y. ; Hsu A. ; Chin M. L. ; Li L. J. ; Dubey M. ; Kong J. ; Palacios T. Nano Lett. 2012, 12 (9), 4674.
doi: 10.1021/nl302015v |
132 |
Yu L. ; Zubair A. ; Santos E. J. G. ; Zhang X. ; Lin Y. ; Zhang Y. ; Palacios T. Nano Lett. 2015, 15 (8), 4928.
doi: 10.1021/acs.nanolett.5b00668 |
133 |
Abbas A. N. ; Liu B. ; Chen L. ; Ma Y. ; Cong S. ; Aroonyadet N. ; Köpf M. ; Nilges T. ; Zhou C. ACS Nano 2015, 9 (5), 5618.
doi: 10.1021/acsnano.5b01961 |
134 |
Guo J. ; Wen R. ; Zhai J. ; Wang Z. Sci. Bull. 2019, 16 (2), 128.
doi: 10.1016/j.scib.2018.12.009 |
135 |
Ryu B. ; Yang E. ; Park Y. ; Kurabayashi K. ; Liang X. J. Vac. Sci. Technol. B 2017, 36 (6), 06G805.
doi: 10.1116/1.4991749 |
136 |
Wang M. ; Cai S. ; Pan C. ; Wang C. ; Lian X. ; Zhuo Ye. ; Xu K. ; Cao T. ; Pan X. ; Wang B. ; et al Nat. Electronics 2018, 1 (2), 130.
doi: 10.1038/s41928-018-0021-4 |
137 |
Sangwan V. K. ; Lee H. S. ; Bergeron H. ; Balla I. ; Beck M. E. ; Chen K. S. ; Hersam M. C. Nature 2018, 554, 500.
doi: 10.1038/nature25747 |
138 |
Mak K. F. ; Shan J. Nat. Photonics 2016, 10 (4), 216.
doi: 10.1038/nphoton.2015.282 |
139 |
Yin Z. ; Li H. ; Li H. ; Jiang L. ; Shi Y. ; Sun Y. ; Lu G. ; Zhang Q. ; Chen X. ; Zhang H. ACS Nano 2012, 6 (1), 74.
doi: 10.1021/nn2024557 |
140 |
Mueller T. ; Xia F. ; Avouris P. Nat. Photonics 2010, 4 (5), 297.
doi: 10.1038/nphoton.2010.40 |
141 |
Lee H. S. ; Min S. W. ; Chang Y. G. ; Park M. K. ; Nam T. ; Kim H. ; Kim J. H. ; Ryu S. ; Im S. Nano Lett. 2012, 12 (7), 3695.
doi: 10.1021/nl301485q |
142 | Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. Adv. Mater. 2012, 24 (43), 5832. doi: 10.1002/adma.201201909 |
143 |
Lopez-Sanchez O. ; Lembke D. ; Kayci M. ; Radenovic A. ; Kis A. Nat. Nanotechnol. 2013, 8 (7), 497.
doi: 10.1038/nnano.2013.100 |
144 |
Zhang W. ; Huang J. K. ; Chen C. H. ; Chang Y. H. ; Cheng Y. J. ; Li L. J. Adv. Mater. 2013, 25 (25), 3456.
doi: 10.1002/adma.201301244 |
145 |
Lu J. ; Lu J. H. ; Liu H. ; Liu B. ; Chan K. X. ; Lin J. ; Chen W. ; Loh K. P. ; Sow C. H. ACS Nano 2014, 8 (6), 6334.
doi: 10.1021/nn501821z |
146 |
Kwon J. ; Hong Y. K. ; Han G. ; Omkaram I. ; Choi W. ; Kim S. ; Yoon Y. Adv. Mater. 2015, 27 (13), 2224.
doi: 10.1002/adma.201404367 |
147 |
Kufer D. ; Konstantatos G. Nano Lett. 2015, 15 (11), 7307.
doi: 10.1021/acs.nanolett.5b02559 |
148 | Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; et al. Chu, J. Adv. Mater. 2015, 27 (42), 6575. doi: 10.1002/adma.201503340 |
149 |
Kang D. H. ; Kim M. S. ; Shim J. ; Jeon J. ; Park H. Y. ; Jung W. S. ; Yu H. Y. ; Pang C. H. ; Lee S. ; Park J. H. Adv. Mater. 2015, 25 (27), 4219.
doi: 10.1002/adfm.201501170 |
150 |
Jin Y. ; Keum D. H. ; A n ; Kim S. J. ; Lee J. ; H. S. ; Lee Y. H. Adv. Mater. 2015, 27 (37), 5534.
doi: 10.1002/adma.201502278 |
151 |
Sun M. ; Xie D. ; Sun Y. ; Li W. ; Ren T. Nanotechnology 2018, 29 (1), 165203.
doi: 10.1088/1361-6528/aa96e9 |
152 |
Knight M. W. ; Sobhani H. ; Nordlander P. ; Halas N. J. Science 2011, 332, 702.
doi: 10.1126/science.1203056 |
153 |
Sobhani A. ; Lauchner A. ; Najmaei S. ; Ayala-Orozco C. ; Wen F. ; Lou J. ; Halas N. J. Appl. Phys. Lett. 2014, 104 (3), 031112.
doi: 10.1063/1.4862745 |
154 |
Miao J. ; Hu W. ; Jing Y. ; Luo W. ; Liao L. ; Pan A. ; Wu S. ; Cheng J. ; Chen X. ; Lu W. Small 2015, 11 (20), 2392.
doi: 10.1002/smll.201403422 |
155 |
Wang W. ; Klots A. ; Prasai D. ; Yang Y. ; Bolotin K. I. ; Valentine J. Nano Lett. 2015, 15 (11), 7440.
doi: 10.1021/acs.nanolett.5b02866 |
156 |
Hou C. ; Wang Y. ; Yang L. ; Li B. ; Cao Z. ; Zhang Q. ; Wang Y. ; Yang Z. ; Dong L. Nano Energy 2018, 53, 734.
doi: 10.1016/j.nanoen.2018.09.047 |
157 |
Buscema M. ; Groenendijk D. J. ; Blanter S. I. ; Steele G. A. ; van der Zant H. S. J. ; Castellanos-Gomez A. Nano Lett. 2014, 14 (6), 3347.
doi: 10.1021/nl5008085 |
158 |
Wu J. ; Koon G. K. W. ; Xiang D. ; Han C. ; Toh C. T. ; Kulkarni E. S. ; Verzhbitskiy I. ; Carvalho A. ; Rodin A. S. ; Koenig S. P. ; et al ACS Nano 2015, 9 (8), 8070.
doi: 10.1021/acsnano.5b01922 |
159 |
Huang M. ; Wang M. ; Chen C. ; Ma Z. ; Li X. ; Han J. ; Wu Y. Adv. Mater. 2016, 28 (18), 3481.
doi: 10.1002/adma.201506352 |
160 | Guo, Q.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B.; Li, C.; Han, S. J.; Wang, H.; et al. Nano Lett. 2016, 16 (7), 4648. doi: 10.1021/acs.nanolett.6b01977 |
161 |
Hou C. ; Yang L ; Li B. ; Zhang Q. ; Li Y. ; Yue Q. ; Wang Y. ; Yang Z. ; Dong L. Sensors 2018, 18 (6), 1668.
doi: 10.3390/s18061668 |
162 |
Youngblood N. ; Chen C. ; Koester S. J. ; Li M. Nat. Photonics 2012, 9 (4), 247.
doi: 10.1038/nphoton.2015.23 |
163 |
Chen C. ; Youngblood N. ; Peng R. ; Yoo D. ; Mohr D. A. ; Johnson T. W. ; Oh S. H. ; Li M. Nano Lett. 2017, 17 (2), 985.
doi: 10.1021/acs.nanolett.6b04332 |
164 |
Venuthurumilli P. ; Ye P. ; Xu X. ACS Nano 2018, 12 (5), 4861.
doi: 10.1021/acsnano.8b01660 |
165 | Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547 |
166 |
Roy K. ; Padmanabhan M. ; Goswami S. ; Sai T. P. ; Ramalingam G. ; Raghavan S. ; Ghosh A. Nat. Nanotechnol. 2013, 8 (11), 826.
doi: 10.1038/nnano.2013.206 |
167 |
Yu W. J. ; Liu Y. ; Zhou H. ; Yin A. ; Li Z. ; Huang Y. ; Duan X. Nat. Nanotechnol. 2013, 8 (12), 952.
doi: 10.1038/nnano.2013.219 |
168 | Zhang, W.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H.; et al. Sci. Rep. 2014, 4 (1), 3826. doi: 10.1038/srep03826 |
169 |
Massicotte M. ; Schmidt P. ; Vialla F. ; Schädler K. G. ; Reserbat-Plantey A. ; Watanabe K. ; Taniguchi T. ; Tielrooij K. J. ; Koppens H. H. L. Nat. Nanotechnol. 2016, 11 (1), 42.
doi: 10.1038/nnano.2015.227 |
170 | Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Sophia, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. ACS Nano 2016, 10 (1), 573. doi: 10.1021/acsnano.5b05596 |
171 |
Huo N. ; Yang J. ; Huang L. ; Wei Z. ; Li S. S. ; Wei S. H. ; Li J. Small 2015, 11 (40), 5430.
doi: 10.1002/smll.201501206 |
172 |
Flöry N. ; Jain A. ; Bharadwaj P. ; Parzefall M. ; Taniguchi T. ; Watanabe K. ; Novotny L. Appl. Phys. Lett. 2015, 107 (12), 123106.
doi: 10.1063/1.4931621 |
173 |
Pezeshki A. ; Shokouh S. H. H. ; Nazari T. ; Oh K. ; Im S. Adv. Mater. 2016, 28 (16), 3216.
doi: 10.1002/adma.201504090 |
174 | Liu, H.; Li, D.; Ma, C.; Zhang, X.; Sun, X.; Zhu, C.; Zheng, B.; Zou, Z.; Luo, Z.; Zhu, X.; et al. Nano Energy 2019, 59, 66. doi: 10.1016/j.nanoen.2019.02.032 |
175 |
Ye L. ; Li H. ; Chen Z. ; Xu J. ACS Photonics 2016, 3 (4), 692.
doi: 10.1021/acsphotonics.6b00079 |
176 | Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. Adv. Mater. Interfaces 2018, 5 (18), 1800671. doi: 10.1002/admi.201800671 |
177 | Zheng, S.; Wu, E.; Feng, Z.; Zhang, R.; Xie, Y.; Yu, Y.; Zhang, R.; Li, Q.; Liu, J.; Pang, W.; et al. Nanoscale 2018, 10 (21), 10148. doi: 10.1039/c8nr02022a |
178 | Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Wang, B.; Zeng, J.; Fu, Y.; Xu, K.; et al. Nano Lett. 2016, 16 (4), 2254. doi: 10.1021/acs.nanolett.5b04538 |
179 |
Li H. ; Ye L. ; Xu J. ACS Photonics 2017, 4 (4), 823.
doi: 10.1021/acsphotonics.6b00778 |
180 | Gong, Y.; Lei, S.; Ye, G.; Li, B.; He, Y.; Keyshar, K.; Zhang, X.; Wang, Q.; Lou, J.; Liu, Z.; et al. Nano Lett. 2015, 15 (9), 6135. doi: 10.1021/acs.nanolett.5b02423 |
181 |
Huang C. ; Wu S. ; Sanchez A. M. ; Peters J. J. P. ; Beanland R. ; Ross J. S. ; Rivera P. ; Yao W. ; Cobden D. H. ; Xu X. Nat. Mater. 2014, 13 (12), 1096.
doi: 10.1038/nmat4064 |
182 | Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Nat. Nanotechnol. 2014, 9 (12), 1024. doi: 10.1038/nnano.2014.222 |
183 | Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13 (12), 1135. doi: 10.1038/nmat4091 |
[1] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[2] | Miao TAN,Lei ZHANG,Wanzhen LIANG. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 385-393. |
|