Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1903055.doi: 10.3866/PKU.WHXB201903055
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Nannan Guo,Su Zhang*(),Luxiang Wang*(
),Dianzeng Jia
Received:
2019-03-25
Accepted:
2019-05-24
Published:
2019-06-03
Contact:
Su Zhang,Luxiang Wang
E-mail:suzhangs@163.com;wangluxiangxju@163.com
Supported by:
MSC2000:
Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors[J].Acta Physico-Chimica Sinica, 2020, 36(2): 1903055.
Table 1
The texture characteristics of the plants-based porous carbons prepared by different activation methods."
Precursor | Activator | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Micropore surface area/(m2∙g−1) | Mesopore surface area/(m2∙g−1) | Micropore volume/(cm3∙g−1) | Mesopore Volume/(cm3∙g−1) | Reference | |
Physical activation | Bean pod | Steam | 258 | 0.21 | – | – | – | -- | |
Jatropha hull | CO2 | 1350 | 1.07 | – | – | 0.44 | 0.56 | ||
Corncob | Steam | 675 | 0.36 | – | – | – | – | ||
CO2 | 836 | 0.43 | – | – | – | – | |||
Date stone | Steam | 635 | 0.72 | – | – | – | – | ||
Coconut shell | CO2 | 1162 | 0.72 | – | – | 0.57 | 0.15 | ||
Steam | 1101 | 0.59 | – | – | 0.51 | 0.08 | |||
Coffee endocarp | CO2 | 1287 | 0.64 | – | – | – | – | ||
Steam | 630 | 0.35 | – | – | – | – | |||
Chemical activation | Apricot shell | KCl | 2244 | 1.44 | – | – | 0.5 | 0.94 | |
Sugar cane bagasse | ZnCl2 | 1788 | 1.74 | – | – | 0.48 | 0.33 | ||
Moringa oleifera stem | ZnCl2 | 2250 | 2.3 | 736 | 1514 | – | – | ||
Shaddock skin | ZnCl2 | 2327 | 1.56 | – | – | 0.27 | 1.29 | ||
Apricot shell | NaOH | 2335 | 0.99 | – | – | 0.80 | 0.19 | ||
Pomelo skin | NaOH | 1355 | 0.77 | 524 | 844 | 0.48 | 0.94 | ||
Cotton stalk | H3PO4 | 653 | 0.48 | 127 | 526 | 0.06 | 0.42 | ||
Lotus stalk | H3PO4 | 1434 | 1.34 | 454 | 526 | 0.31 | 1.03 | ||
Grapevine rhytidome | H3PO4 | 1607 | 1.42 | 617 | 990 | 0.48 | 0.94 | ||
Soybean oil cake | K2CO3 | 1352 | 0.68 | – | – | 0.4 | 0.28 | ||
Orange peel | K2CO3 | 1104 | 0.62 | 420 | 684 | 0.25 | 0.37 | ||
Eucalyptus sawdust | KHCO3 | 2950 | 1.6 | – | – | 1.18 | 0.28 | ||
Glucose | KHCO3 | 3050 | 2.4 | – | – | 0.96 | 1.14 | ||
Hemp stem | KOH | 3062 | 1.44 | 1600 | 456 | 0.83 | 0.27 | ||
Spruce bark | KOH | 2385 | 1.68 | 2018 | 367 | 1.28 | 0.4 | ||
Pomelo peel | KOH | 2725 | 1.28 | 2610 | 115 | 1.16 | 0.11 |
Table 2
Comparison of electrochemical performance of plants-based porous carbon materials with different porous structure."
Precursor | Specific surface area/ (m2∙g−1) | Pore Volume/ (cm3∙g−1) | Specific capacitance/ (F∙g−1) | Scan rate | Specific capacitance / (F∙g−1) | Scan rate | Unit surface area capacitance /(F∙m−2) | Rate performance | Electrolyte | Testing system | Reference | |
Tremella | 3760 | 2.15 | 284 | 1 A∙g−1 | 214 | 30 A∙g−1 | 0.076 | 0.75 | 6 mol∙L−1 KOH | Two electrode | ||
Celtuce leave | 3404 | 1.88 | 421 | 0.5 A∙g−1 | 293 | 10 A∙g-1 | 0.124 | 0.70 | 2 mol∙L-1 KOH | Three electrode | ||
271 | 0.5 A∙g−1 | 156 | 10 A∙g-1 | 0.08 | 0.58 | 2 mol∙L-1 KOH | Two electrode | |||||
Corn gluten meal | 3353 | 2.07 | 488 | 0.5 A∙g−1 | 220 | 20 A∙g−1 | 0.146 | 0.45 | 6 mol∙L−1 KOH | Three electrode | ||
298 | 0.5 A∙g−1 | 165 | 20 A∙g−1 | 0.089 | 0.55 | 6 mol∙L−1 KOH | Two electrode | |||||
Liquefied wood | 3223 | 1.686 | 247 | 0.5 A∙g−1 | 227 | 10 A∙g−1 | 0.077 | 0.92 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Cabbage leaves | 3102 | 1.41 | 336 | 1 A∙g−1 | 271 | 10 A∙g−1 | 0.108 | 0.80 | 2 mol∙L−1 KOH | Three electrode | ||
Hemp stem | 3062 | 1.44 | 318 | 0.1 A∙g−1 | 193 | 50 A∙g−1 | 0.104 | 0.61 | 6 mol∙L−1 KOH | Three electrode | ||
230 | 1 A∙g−1 | 170 | 50 A∙g−1 | 0.075 | 0.74 | 6 mol∙L−1 KOH | Two electrode | |||||
Bamboo | 3061 | 1.46 | 258 | 0.1 A∙g−1 | 93 | 5 A∙g−1 | 0.084 | 0.36 | 6 mol∙L−1 KOH | Three electrode | ||
Glucose | 2760 | 1.3 | ~240 | 1 A∙g−1 | 138 | 90 A∙g−1 | 0.087 | 0.58 | 1 mol∙L−1 H2SO4 | Two electrode | ||
3050 | 2.4 | 138 | 0.2 A∙g−1 | 113 | 30 A∙g−1 | 0.041 | 0.82 | EMIM BF4 | ||||
Various pollen | 3037 | 2.27 | 185 | 1 A∙g−1 | – | – | 0.061 | – | TEABF4 | Two electrode | ||
207 | 1 A∙g−1 | – | – | 0.068 | – | EMIMBF4 | Two electrode | |||||
Eucalyptus sawdust | 2950 | 1.46 | 268 | 0.2 A∙g−1 | 132 | 100 A∙g−1 | 0.091 | 0.49 | 1 mol∙L−1 H2SO4 | Two electrode | ||
168 | 1 A∙g−1 | 128 | 60 A∙g−1 | 0.057 | 0.76 | EMIM TFSI | ||||||
Garlic skin | 2818 | 1.33 | 427 | 0.5 A∙g−1 | 315 | 50 A∙g−1 | 0.152 | 0.74 | 6 mol∙L−1 KOH | Two electrode | ||
Pomelo peel | 2725 | 1.28 | ~245 | 1 A∙g−1 | 163.2 | 20 A∙g−1 | 0.09 | 0.67 | 6 mol∙L−1 KOH | Two electrode | ||
Corn straw | 2790 | 2.04 | ~282 | 1 A∙g−1 | 205 | 100 A∙g−1 | 0.101 | 0.73 | 6 mol∙L−1 KOH | Two electrode | ||
~210 | 1 A∙g−1 | 68 | 60 A∙g−1 | 0.075 | 0.32 | 1 mol∙L−1 Na2SO4 | Two electrode | |||||
Spruce bark | 2385 | 1.68 | ~280 | 1 A∙g−1 | 249 | 10 A∙g−1 | 0.117 | 0.89 | 6 mol∙L−1 KOH | Two electrode | ||
Sugarcane bagasse | 2341 | 1.07 | 320 | 1 A∙g−1 | 264 | 100 A∙g−1 | 0.137 | 0.83 | 6 mol∙L−1 KOH | Two electrode | ||
Shaddock skin | 2327 | 1.56 | 152 | 1 A∙g−1 | 132 | 100 A∙g−1 | 0.065 | 0.87 | EMIMTFSI | Two electrode | ||
shaddock skin | 2300 | 1 | 180 | 1 A∙g−1 | – | – | 0.078 | – | 0.5 mol∙L−1 H2SO4 | Three electrode | ||
Moringa oleifera stem | 2250 | 2.5 | ~220 | 0.2 A∙g−1 | 195 | 5 A∙g−1 | 0.097 | 0.87 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Clover | 2244 | 1.44 | 436 | 1 A∙g−1 | 298 | 50 A∙g−1 | 0.194 | 0.68 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Soybean root | 2143 | 0.94 | 260 | 1 A∙g−1 | 225 | 20 A∙g−1 | 0.121 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Soybean residue | 2130 | 0.92 | 258 | 0.2 A∙g−1 | 159 | 80 A∙g−1 | 0.121 | 0.62 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Tobacco rod | 2115 | 1.22 | ~224 | 1 A∙g−1 | ~148 | 15 A∙g−1 | 0.117 | 0.66 | 6 mol∙L−1 KOH | Two electrode | ||
Elm samara | 1947 | 1.33 | 310 | 1 A∙g−1 | 198 | 20 A∙g−1 | 0.159 | 0.64 | 6 mol∙L−1 KOH | Two electrode | ||
Apricot shell | 1790 | 0.96 | 268 | 0.5 A∙g−1 | 212 | 20 A∙g−1 | 0.15 | 0.79 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Lignin | 1690 | 0.78 | 240 | 1 A∙g−1 | 209 | 30 A∙g−1 | 0.142 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Cherry calyce | 1612 | 1.2 | 303 | 1 A∙g−1 | 259 | 20 A∙g−1 | 0.188 | 0.85 | 6 mol∙L−1 KOH | Two electrode | ||
Auricularia | 1607 | 1.57 | 347 | 1 A∙g−1 | 278 | 50 A∙g−1 | 0.216 | 0.8 | 6 mol∙L−1 KOH | Three electrode | ||
Cellulose | 1535 | 0.87 | 198 | 1 A∙g−1 | 133 | 10 A∙g−1 | 0.129 | 0.67 | 6 mol∙L−1 KOH | Three electrode | ||
Algae | 1338 | 0.59 | 143 | 1 A∙g−1 | 79 | 20 A∙g−1 | 0.107 | 0.55 | 6 mol∙L−1 KOH | Two electrode | ||
Cellulose | 1326 | – | 296 | 2 mV∙s−1 | 221 | 500mV∙s−1 | 0.223 | 0.75 | 6 mol∙L−1 KOH | Three electrode | ||
Banana fiber | 1097 | – | 86 | 5 mV∙s−1 | 83 | 100 mV∙s−1 | 0.078 | 0.97 | 1 mol∙L−1 Na2SO4 | Two electrode | ||
Lotus | 1015 | 0.824 | 340 | 0.5 A∙g−1 | 240 | 20 A∙g−1 | 0.335 | 0.71 | 2 mol∙L−1 KOH | Three electrode | ||
Coffee bean | 1019 | 0.48 | 368 | 0.05 A∙g−1 | – | – | 0.361 | – | 1 mol∙L−1 H2SO4 | Three electrode | ||
Lignin | 903 | 0.53 | 247 | 1 A∙g−1 | 110 | 20 A∙g−1 | 0.274 | 0.45 | 7 mol∙L−1 KOH | Two electrode | ||
Cork | 689 | 0.75 | 242 | 0.1 A∙g−1 | 199 | 50 A∙g−1 | 0.351 | 0.82 | 6 mol∙L−1 KOH | Two electrode | ||
Comparison of electrochemical performance of other porous carbon materials with different porous structure | ||||||||||||
Activated graphene | 3290 | – | 174 | 2.1 A∙g−1 | – | – | 0.053 | – | EMIM TFSI/ EMIM BF4 | Two electrode | ||
Hierarchical carbon | 2582 | – | 410 | 5 A∙g−1 | 349 | 100 A∙g−1 | 0.159 | 0.85 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Carbon nanocage | 2561 | -- | 205 | 1 A∙g−1 | 179 | 200 A∙g−1 | 0.008 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Porous carbon | 2000 | 0.58 | 202 | 0.2 A∙g−1 | – | – | 0.101 | – | 1 mol∙L−1 H2SO4 | Two electrode | ||
Graphene | 1435 | 4.11 | 236.8 | 1 A∙g−1 | 171 | 30 A∙g−1 | 0.217 | 0.72 | 6 mol∙L−1 KOH | Two electrode | ||
Carbon xerogel microspheres | 1133 | 0.46 | 251 | 0.125 A∙g−1 | 141 | 4 A∙g−1 | 0.222 | 0.56 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Graphene | 890 | -- | 200 | 0.5 A∙g−1 | 166 | 10 A∙g−1 | 0.224 | 0.83 | 2 mol∙L−1 KOH | Two electrode | ||
Graphene/Carbon nanotube | 652 | -- | 199 | 0.5 A∙g−1 | 99 | 20 A∙g−1 | 0.305 | 0.50 | EMIM BF4 | Two electrode | ||
Graphene | 630 | 0.42 | 255 | 0.5 A∙g−1 | 100 | 30 A∙g−1 | 0.403 | 0.39 | 6 mol∙L−1 KOH | Three electrode | ||
Activated carbon | 511 | 0.25 | 164 | 0.1 mA∙cm−2 | 134 | 20 mA∙cm-2 | 0.320 | 0.82 | 30% (w) KOH | Two electrode |
Fig 3
(a) Specific surface area of porous carbons prepared by different mKOH/mcarbon ratios; Electrochemical performance comparison of plant-based porous carbons with different specific surface area: (b) specific capacitance; (c) rate performance of ultra-high specific surface area porous carbon; (d) unit surface area specific capacitance."
Table 3
Surface nitrogen and oxygen content of plant-based nitrogen-doped porous carbons."
Precursor | Activator | Reagent | O (mole fraction) | N (mole fraction) | Reference |
Hemp stem | KOH | NH3 | 17.9% | 4.4% | |
Clover | KCl | – | 6.9% | 2.6% | |
Soybean residue | KOH | – | 13.9% (w) | 1.6 %(w) | |
Tobacco rod | KOH | – | 9.8% | 1.3% | |
Wheat gluten | KOH | – | 8.5% | 1.3% | |
Algae | KOH | – | 11.8% | 0.9% | |
Soybean dreg | KOH | 12.5% | 1.9% | ||
Mushroom | KOH | – | 8.4% | 1.7% | |
Flour | KOH | – | 11.2% | 1.1% | |
Loofa sponge | KOH | – | 4.8% | 0.7% | |
Pine needle | KOH | – | – | 1.5% | |
Potato residue | ZnCl2 | – | – | 0.4% (w) | |
Honeysuckles | Pyrolysis | – | 14.4% | 2% | |
Perilla frutescens | Pyrolysis | – | 18.8% | 1.7% | |
Sugar bagasse | CaCl2 | Urea | 7.0% | 5.6% | |
Cotton fabric | Air | Melamine | 7.1% | 6.9% |
Table 4
Comparison of electrochemical performance of plant-based porous carbon materials with different pore structures."
Precursor | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Gravimetric capacitance/(F∙g−1) | Density/ (g∙cm−3) | Volumetric capacitance/(F∙cm−3) | Scan rate | Electrolyte | Testing system | Reference |
Elm samara | 1947 | 1.33 | 470 | 0.57 | 267 | 1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Hemp stem | 3062 | 1.72 | 318 | 0.23 | 73 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Pomelo peel | 2725 | 1.28 | 342 | 0.5 | 171 | 0.2 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Celtuce leave | 3290 | 1.71 | 421 | 0.45 | 190 | 0.5 A∙g−1 | 2 mol∙L−1 KOH | Three electrode | |
Garlic skin | 2818 | 1.32 | 427 | 0.38 | 162 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Sodium lignosulfonate | 905 | 0.53 | 247 | 0.97 | 240 | 0.05 A∙g−1 | 7 mol∙L−1 KOH | Three electrode | |
Soybean | 580 | 0.41 | 425 | 1.1 | 468 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Perilla frutescens | 655 | 0.44 | 270 | 1.06 | 287 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Pomelo peel | 832 | 0.57 | 374 | 0.93 | 349 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Willow catkin | 997 | 0.51 | 306 | 0.99 | 303 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Auricularia | 1103 | 0.54 | 374 | 0.96 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Kelp | 1002 | 0.62 | 440 | 0.82 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Waxberry | 658.5 | 0.38 | -- | -- | 1320.4 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Jujube | 829 | 0.45 | 449 | 1.06 | 476 | 1 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Bacterial cellulose | 1037 | 1.04 | 261 | 0.65 | 170 | 2 mV∙s−1 | 6 mol∙L−1 KOH | Three electrode | |
Corn straw | 1413 | 0.68 | 378.9 | 0.85 | 321.1 | 0.05 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Comparison of electrochemical performance of other porous carbon materials with different pore structures | |||||||||
Activated graphene | 3290 | – | 174 | 0.59 | 100 | 1 A∙g−1 | EMIMTFSI | Two electrode | |
Hierarchical carbon | 2582 | – | 207 | 0.72 | 149 | 0.5 A∙g−1 | BMIMPF6/AN | Two electrode | |
Carbon nanocage | 2561 | – | 205 | 0.46 | 94 | 1 A∙g−1 | KOH | Two electrode | |
Graphene/Carbon nanotube | 652 | – | 199 | 1.06 | 211 | 0.5 A∙g−1 | EMIM BF4 | Two electrode | |
Graphene | 630 | 0.42 | 255 | 0.77 | 196 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Activated carbon | 511 | 0.25 | 164 | 1.04 | 170 | 1 mA∙cm−2 | 30% KOH (w) | Two electrode | |
Carbon nanotube | – | – | 159 | 0.83 | 132 | 50 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Carbon nanotube | – | – | 260 | 0.5 | 130 | 0.1 A∙g−1 | EMIM BF4 | Two electrode | |
Porous graphene | – | – | 298 | 0.70 | 212 | 1 A∙g−1 | EMIM BF4 | Two electrode |
1 |
Wang J. ; Nie P. ; Ding B. ; Dong S. ; Hao X. ; Dou H. ; Zhang X. J. Mater. Chem. A 2017, 5 (6), 2411.
doi: 10.1039/C6TA08742F |
2 |
Xie K. ; Wei B. Adv. Mater. 2014, 26 (22), 3592.
doi: 10.1002/adma.201305919 |
3 |
Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Energy Mater. 2014, 4 (4), 1300816.
doi: 10.1002/aenm.201300816 |
4 |
El-Kady M. F. ; Strong V. ; Dubin S. ; Kaner R. B. Science 2012, 335 (6074), 1326.
doi: 10.1126/science.1216744 |
5 |
Islam M. S. ; Fisher C. A. J. Chem. Soc. Rev. 2014, 43 (1), 185.
doi: 10.1039/C3CS60199D |
6 |
Wu Z. S. ; Parvez K. ; Feng X. ; Müllen K. Nat. Commun. 2013, 4, 2487.
doi: 10.1038/ncomms3487 |
7 |
Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Cai W. ; Ferreira P. J. ; Pirkle A. ; Wallace R. M. ; Cychosz K. A. ; Thommes M. ; et al Science 2011, 332 (6037), 1537.
doi: 10.1126/science.1200770 |
8 |
Weingarth D. ; Zeiger M. ; Jäckel N. ; Aslan M. ; Feng G. ; Presser V. Adv. Energy Mater. 2014, 4 (13), 1400316.
doi: 10.1002/aenm.201400316 |
9 |
Chen C. ; Yu D. ; Zhao G. ; Du B. ; Tang W. ; Sun L. ; Sun Y. ; Besenbacher F. ; Yu M. Nano Energy 2016, 27, 377.
doi: 10.1016/j.nanoen.2016.07.020 |
10 |
Li D. Y. ; Zhang J. C. ; Wang Z. Y. ; Jin X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
李道琰; 张基琛; 王志勇; 金先波. 物理化学学报, 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
|
11 |
Long W. ; Fang B. ; Ignaszak A. ; Wu Z. ; Wang Y. J. ; Wilkinson D. Chem. Soc. Rev. 2017, 46 (23), 7176.
doi: 10.1039/C6CS00639F |
12 |
Deng J. ; Li M. ; Wang Y. Green Chem. 2016, 18 (18), 4824.
doi: 10.1039/C6GC01172A |
13 |
Field C. B. ; Behrenfeld M. J. ; Randerson J. T. ; Falkowski P. Science 1998, 281 (5374), 237.
doi: 10.1126/science.281.5374.237 |
14 |
Long C. ; Jiang L. ; Wu X. ; Jiang Y. ; Yang D. ; Wang C. ; Wei T. ; Fan Z. Carbon 2015, 93, 412.
doi: 10.1016/j.carbon.2015.05.040 |
15 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. ACS Appl. Mater. Interfaces 2016, 8 (49), 33626.
doi: 10.1021/acsami.6b11162 |
16 |
Qiu Z. ; Wang Y. ; Bi X. ; Zhou T. ; Zhou J. ; Zhao J. ; Miao Z. ; Yi W. ; Fu P. ; Zhuo S. J. Power Sources 2018, 376, 82.
doi: 10.1016/j.jpowsour.2017.11.077 |
17 |
Qiu D. ; Guo N. ; Gao A. ; Zheng L. ; Xu W. ; Li M. ; Wang F. ; Yang R. Electrochim. Acta 2019, 294, 398.
doi: 10.1016/j.electacta.2018.10.049 |
18 |
Sun L. ; Tian C. ; Li M. ; Meng X. ; Wang L. ; Wang R. ; Yin J. ; Fu H. J. Mater. Chem. A 2013, 1 (21), 6462.
doi: 10.1039/C3TA10897J |
19 |
Li Z. ; Lv W. ; Zhang C. ; Li B. ; Kang F. ; Yang Q. H. Carbon 2015, 92, 11.
doi: 10.1016/j.carbon.2015.02.054 |
20 |
Wang Y. ; Ben T. ; Qiu S. L. Chem. J. Chin. Univ. 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
王昀; 贲腾; 裘式纶. 高等学校化学学报, 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
|
21 | Ma Y. W. ; Xiong C. Y. ; Huang W. ; Zhao J. ; Li X. A. ; Fan Q. L. ; Huang W. Chin. J. Inorg. Chem. 2012, 28 (3), 546. |
马延文; 熊传银; 黄雯; 赵进; 李兴螯; 范曲立; 黄维. 无机化学学报, 2012, 28 (3), 546. | |
22 |
Wu. Z. Y ; Fan L. ; Tao Y. R. ; Wang W. ; Wu X. C. ; Zhao J. W. Chin. J. Inorg. Chem. 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
武中钰; 范蕾; 陶友荣; 王伟; 吴兴才; 赵健伟. 无机化学学报, 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
|
23 |
Guo P. ; Ji Q. ; Zhang L. ; Zhao S. ; Zhao X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
郭培志; 季倩倩; 张丽莉; 赵善玉; 赵修松. 物理化学学报, 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
|
24 |
Jiang L. ; Sheng L. ; Fan Z. Sci. China Mater. 2018, 61 (2), 133.
doi: 10.1007/s40843-017-9169-4 |
25 |
Lu H. ; Zhao X. S. Sustain. Energy Fuels 2017, 1 (6), 1265.
doi: 10.1039/C7SE00099E |
26 |
Xia W. ; Li Z. ; Xu Yin. ; Zhuang X. ; Jia S. ; Zhang J. Prog. Chem. 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
夏文; 李政; 徐银莉; 庄旭品; 贾士儒; 张健飞. 化学进展, 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
|
27 |
Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
吴中; 张新波. 物理化学学报, 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
|
28 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
29 |
Isikgor F. H. ; Becer C. R. Polym. Chem. 2015, 6 (25), 4497.
doi: 10.1039/C5PY00263J |
30 |
Balat M. Energy Source Part A 2008, 30 (7), 620.
doi: 10.1080/15567030600817258 |
31 |
Mészáros E. ; Jakab E. ; Várhegyi G. ; Bourke J. ; Manley-Harris M. ; Nunoura T. ; Antal M. J. Ind. Eng. Chem. Res. 2007, 46 (18), 5943.
doi: 10.1021/ie0615842 |
32 |
Mi J. ; Wang X. R. ; Fan R. J. ; Qu W. H. ; Li W. C. Energy Fuels 2012, 26 (8), 5321.
doi: 10.1021/ef3009234 |
33 |
Wei J. ; Iglesia E. J. Catal. 2004, 224 (2), 370.
doi: 10.1016/j.jcat.2004.02.032 |
34 |
Sevilla M. ; Fuertes A. B. ; Mokaya R. Energy Environ. Sci. 2011, 4 (4), 1400.
doi: 10.1039/C0EE00347F |
35 |
Wang J. ; Kaskel S. J. Mater. Chem. 2012, 22 (45), 23710.
doi: 10.1039/C2JM34066F |
36 |
Cabal B. ; Budinova T. ; Ania C. O. ; Tsyntsarski B. ; Parra J. B. ; Petrova B. J. Hazard. Mater. 2009, 161 (2), 1150.
doi: 10.1016/j.jhazmat.2008.04.108 |
37 |
Duan X. H. ; Srinivasakannan C. ; Peng J. H. ; Zhang L. B. ; Zhang Z. Y. Fuel Process. Technol. 2011, 92 (3), 394.
doi: 10.1016/j.fuproc.2010.09.033 |
38 |
Aworn A. ; Thiravetyan P. ; Nakbanpote W. J. Anal. Appl. Pyrolysis 2008, 82 (2), 279.
doi: 10.1016/j.jaap.2008.04.007 |
39 |
Bouchelta C. ; Medjram M. S. ; Bertrand O. ; Bellat J. P. J. Anal. Appl. Pyrolysis 2008, 82 (1), 70.
doi: 10.1016/j.jaap.2007.12.009 |
40 |
Yang K. ; Peng J. ; Srinivasakannan C. ; Zhang L. ; Xia H. ; Duan X. Bioresour. Technol. 2010, 101 (15), 6163.
doi: 10.1016/j.biortech.2010.03.001 |
41 |
Nabais J. M. V. ; Nunes P. ; Carrott P. J. M. ; Ribeiro Carrott M. M. L. ; GarcíaA. M. ; Díaz-Díez M. A. Fuel Process. Technol. 2008, 89 (3), 262.
doi: 10.1016/j.fuproc.2007.11.030 |
42 |
Shu Y. ; Maruyama J. ; Iwasaki S. ; Maruyama S. ; Shen Y. ; Uyama H. J. Power Sources 2017, 364, 374.
doi: 10.1016/j.jpowsour.2017.08.059 |
43 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Khosla K. ; Zhu Z. ; Lu G. Q. J. Power Sources 2010, 195 (3), 912.
doi: 10.1016/j.jpowsour.2009.08.048 |
44 |
Cai Y. ; Luo Y. ; Dong H. ; Zhao X. ; Xiao Y. ; Liang Y. ; Hu H. ; Liu Y. ; Zheng M. J. Power Sources 2017, 353, 260.
doi: 10.1016/j.jpowsour.2017.04.021 |
45 |
Tian W. ; Gao Q. ; Tan Y. ; Li Z. Carbon 2017, 119, 287.
doi: 10.1016/j.carbon.2017.04.050 |
46 |
Xu B. ; Chen Y. ; Wei G. ; Cao G. ; Zhang H. ; Yang Y. Mater. Chem. Phys. 2010, 124 (1), 504.
doi: 10.1016/j.matchemphys.2010.07.002 |
47 |
Foo K. Y. ; Hameed B. H. Chem. Eng. J. 2011, 173 (2), 385.
doi: 10.1016/j.cej.2011.07.073 |
48 |
Deng H. ; Zhang G. ; Xu X. ; Tao G. ; Dai J. J. Hazard. Mater. 2010, 182 (1), 217.
doi: 10.1016/j.jhazmat.2010.06.018 |
49 |
Huang L. ; Sun Y. ; Wang W. ; Yue Q. ; Yang T. Chem. Eng. J. 2011, 171 (3), 1446.
doi: 10.1016/j.cej.2011.05.041 |
50 |
Hejazifar M. ; Azizian S. ; Sarikhani H. ; Li Q. ; Zhao D. J. Anal. Appl. Pyrolysis 2011, 92 (1), 258.
doi: 10.1016/j.jaap.2011.06.007 |
51 |
Tay T. ; Ucar S. ; Karagöz S. J. Hazard. Mater. 2009, 165 (1), 481.
doi: 10.1016/j.jhazmat.2008.10.011 |
52 |
Foo K. Y. ; Hameed B. H. Bioresour. Technol. 2012, 104, 679.
doi: 10.1016/j.biortech.2011.10.005 |
53 |
Sevilla M. ; Ferrero G. A. ; Fuertes A. B. Carbon 2017, 114, 50.
doi: 10.1016/j.carbon.2016.12.010 |
54 |
Sevilla M. ; Fuertes A. B. ChemSusChem 2016, 9 (14), 1880.
doi: 10.1002/cssc.201600426 |
55 |
Wang Y. ; Yang R. ; Li M. ; Zhao Z. Ind. Crop. Prod. 2015, 65, 216.
doi: 10.1016/j.indcrop.2014.12.008 |
56 |
Sun Z. ; Zheng M. ; Hu H. ; Dong H. ; Liang Y. ; Xiao Y. ; Lei B. ; Liu Y. Chem. Eng. J. 2018, 336, 550.
doi: 10.1016/j.cej.2017.12.019 |
57 |
Liang Q. ; Ye L. ; Huang Z. H. ; Xu Q. ; Bai Y. ; Kang F. ; Yang Q. H. Nanoscale 2014, 6 (22), 13831.
doi: 10.1039/C4NR04541F |
58 |
Yu Z. L. ; Li G. C. ; Fechler N. ; Yang N. ; Ma Z. Y. ; Wang X. ; Antonietti M. ; Yu S. H. Angew. Chem. Int. Ed. 2016, 55 (47), 14623.
doi: 10.1002/anie.201605510 |
59 |
Hou J. ; Cao C. ; Idrees F. ; Ma X. ACS Nano 2015, 9 (3), 2556.
doi: 10.1021/nn506394r |
60 |
Yahya M. A. ; Al-Qodah Z. ; Ngah C. W. Z. Renewable Sustain. Energy Rev. 2015, 46, 218.
doi: 10.1016/j.rser.2015.02.051 |
61 |
Donald J. ; Ohtsuka Y. ; Xu C. Mater. Lett. 2011, 65 (4), 744.
doi: 10.1016/j.matlet.2010.11.049 |
62 |
Funke A. ; Ziegler F. Bioful Bioprod. Biorefin. 2010, 4 (2), 160.
doi: 10.1002/bbb.198 |
63 |
Titirici M. M. ; White R. J. ; Brun N. ; Budarin V. L. ; Su D. S. ; del Monte F. ; Clark J. H. ; MacLachlan M. J. Chem. Soc. Rev. 2015, 44 (1), 250.
doi: 10.1039/C4CS00232F |
64 |
Baccile N. ; Falco C. ; Titirici M. M. Green Chem. 2014, 16 (12), 4839.
doi: 10.1039/C3GC42570C |
65 |
Libra J. A. ; Ro K. S. ; Kammann C. ; Funke A. ; Berge N. D. ; Neubauer Y. ; Titirici M. M. ; Fühner C. ; Bens O. ; Kern J. R. Biofuels 2011, 2 (1), 71.
doi: 10.4155/bfs.10.81 |
66 |
Titirici M. M. ; Antonietti M. ; Baccile N. Green Chem. 2008, 10 (11), 1204.
doi: 10.1039/B807009A |
67 |
Zhao L. ; Fan L. Z. ; Zhou M. Q. ; Guan H. ; Qiao S. ; Antonietti M. ; Titirici M. M. Adv. Mater. 2010, 22 (45), 5202.
doi: 10.1002/adma.201002647 |
68 |
Kubo S. ; Tan I. ; White R. J. ; Antonietti M. ; Titirici M. M. Chem. Mater. 2010, 22 (24), 6590.
doi: 10.1021/cm102556h |
69 |
Ren Y. ; Xu Q. ; Zhang J. ; Yang H. ; Wang B. ; Yang D. ; Hu J. ; Liu Z. ACS Appl. Mater. Interfaces 2014, 6 (12), 9689.
doi: 10.1021/am502035g |
70 |
Yu Z. ; Wang X. ; Song X. ; Liu Y. ; Qiu J. Carbon 2015, 95, 852.
doi: 10.1016/j.carbon.2015.08.105 |
71 |
Wang J. ; Ding B. ; Hao X. ; Xu Y. ; Wang Y. ; Shen L. ; Dou H. ; Zhang X. Carbon 2016, 102, 255.
doi: 10.1016/j.carbon.2016.02.047 |
72 |
Chang Y. ; Antonietti M. ; Fellinger T.-P. Angew. Chem. Int. Ed. 2015, 54 (18), 5507.
doi: 10.1002/anie.201411685 |
73 |
Yin H. ; Lu B. ; Xu Y. ; Tang D. ; Mao X. ; Xiao W. ; Wang D. ; Alshawabkeh A. N. Environ. Sci. Technol. 2014, 48 (14), 8101.
doi: 10.1021/es501739v |
74 |
Elumeeva K. ; Fechler N. ; Fellinger T. P. ; Antonietti M. Mater. Horiz. 2014, 1 (6), 588.
doi: 10.1039/C4MH00123K |
75 |
Liu X. ; Giordano C. ; Antonietti M. Small 2014, 10 (1), 193.
doi: 10.1002/smll.201300812 |
76 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
77 |
Wang D. W. ; Li F. ; Liu M. ; Lu G. Q. ; Cheng H. M. Angew. Chem. Int. Ed. 2008, 47 (2), 373.
doi: 10.1002/anie.200702721 |
78 |
Wang Q. ; Yan J. ; Wang Y. ; Wei T. ; Zhang M. ; Jing X. ; Fan Z. Carbon 2014, 67, 119.
doi: 10.1016/j.carbon.2013.09.070 |
79 |
Huang W. ; Zhang H. ; Huang Y. ; Wang W. ; Wei S. Carbon 2011, 49 (3), 838.
doi: 10.1016/j.carbon.2010.10.025 |
80 |
Chen C. ; Zhang Y. ; Li Y. ; Dai J. ; Song J. ; Yao Y. ; Gong Y. ; Kierzewski I. ; Xie J. ; Hu L. Energy Environ. Sci. 2017, 10 (2), 538.
doi: 10.1039/C6EE03716J |
81 |
Cheng P. ; Li T. ; Yu H. ; Zhi L. ; Liu Z. ; Lei Z. J. Phys. Chem. C 2016, 120 (4), 2079.
doi: 10.1021/acs.jpcc.5b11280 |
82 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. RSC Adv. 2016, 6 (103), 101372.
doi: 10.1039/C6RA22426A |
83 |
Li H. ; Qi. C. ; Tao Y. ; Liu H. ; Wang D. ; Li F. ; Yang Q. H. ; Cheng H. M. Adv. Energy Mater. 2019, 1900079.
doi: 10.1002/aenm.201900079 |
84 |
Wang Q. ; Yan J. ; Dong Z. L. ; Qu L. T. ; Fan Z. J. Energy. Storage. Mater. 2015, 1 (42), 504.
doi: 10.1016/j.ensm.2015.09.001 |
85 |
Xu B. ; Wu F. ; Chen R. ; Cao G. P. ; Chen S. ; Zhou Z. ; Yang Y. S. Electrochem. Commun. 2008, 10 (5), 795.
doi: 10.1016/j.elecom.2008.02.033 |
86 | Xu B. ; Zhang H. ; Cao G. P. ; Zhang W. F. ; Yang Y. S. Prog. Chem. 2011, 23 (Z1), 605. |
徐斌; 张浩; 曹高萍; 张文峰; 杨裕生. 化学进展, 2011, 23 (Z1), 605. | |
87 |
Wang Q. ; Yan J. ; Fan Z. Energy Environ. Sci. 2016, 9 (3), 729.
doi: 10.1039/C5EE03109E |
88 |
Liu H. ; Song H. ; Chen X. ; Zhang S. ; Zhou J. ; Ma Z. J. Power Sources 2015, 285, 303.
doi: 10.1016/j.jpowsour.2015.03.115 |
89 |
Xu B. ; Zheng D. ; Jia M. ; Cao G. P. ; Yang Y. S. Electrochim. Acta 2013, 98, 176.
doi: 10.1016/j.electacta.2013.03.053 |
90 |
Zhu Z. H. ; Hatori H. ; Wang S. B. ; Lu G. Q. J. Phys. Chem. B 2005, 109 (35), 16744.
doi: 10.1021/jp051787o |
91 |
Zhi M. ; Xiang C. ; Li J. ; Li M. ; Wu N. Nanoscale 2013, 5 (1), 72.
doi: 10.1039/C2NR32040A |
92 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41 (2), 797.
doi: 10.1039/C1CS15060J |
93 |
Wang P. ; Ye H. ; Yin Y. X. ; Chen H. ; Bian Y. B. ; Wang Z. R. ; Cao F. F. ; Guo Y. G. Adv. Mater. 2019, 31 (4), 1805134.
doi: 10.1002/adma.201805134 |
94 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Mater. Chem. Phys. 2017, 201, 399.
doi: 10.1016/j.matchemphys.2017.08.054 |
95 |
Wang R. ; Wang P. ; Yan X. ; Lang J. ; Peng C. ; Xue Q. ACS Appl. Mater. Interfaces 2012, 4 (11), 5800.
doi: 10.1021/am302077c |
96 |
Cheng B. H. ; Tian K. ; Zeng R. J. ; Jiang H. Sustain. Energy Fuels 2017, 1 (4), 891.
doi: 10.1039/C7SE00029D |
97 |
Jin Z. ; Yan X. ; Yu Y. ; Zhao G. J. Mater. Chem. A 2014, 2 (30), 11706.
doi: 10.1039/C4TA01413H |
98 |
Wang P. ; Wang Q. ; Zhang G. ; Jiao H. ; Deng X. ; Liu L. J. Solid State Electrochem. 2016, 20 (2), 319.
doi: 10.1007/s10008-015-3042-1 |
99 |
Yang C. S. ; Jang Y. S. ; Jeong H. K. Current Applied Phys. 2014, 14 (12), 1616.
doi: 10.1016/j.cap.2014.09.021 |
100 |
Zhang L. ; Zhang F. ; Yang X. ; Leng K. ; Huang Y. ; Chen Y. Small 2013, 9 (8), 1342.
doi: 10.1002/smll.201202943 |
101 |
Zhang Q. ; Han K. ; Li S. ; Li M. ; Li J. ; Ren K. Nanoscale 2018, 10 (5), 2427.
doi: 10.1039/C7NR07158B |
102 |
Niu Q. ; Gao K. ; Tang Q. ; Wang L. ; Han L. ; Fang H. ; Zhang Y. ; Wang S. ; Wang L. Carbon 2017, 123, 290.
doi: 10.1016/j.carbon.2017.07.078 |
103 |
Falco C. ; Sieben J. M. ; Brun N. ; Sevilla M. ; vander Mauelen T. ; Morallón E. ; Cazorla-Amorós D. ; Titirici M. M. ChemSusChem 2013, 6 (2), 374.
doi: 10.1002/cssc.201200817 |
104 |
Wang C. ; Wu D. ; Wang H. ; Gao Z. ; Xu F. ; Jiang K. J. Power Sources 2017, 363, 375.
doi: 10.1016/j.jpowsour.2017.07.097 |
105 |
Ferrero G. A. ; Fuertes A. B. ; Sevilla M. Sci. Rep. 2015, 5, 16618.
doi: 10.1038/srep16618 |
106 |
Zhao Y. Q. ; Lu M. ; Tao P. Y. ; Zhang Y. J. ; Gong X. T. ; Yang Z. ; Zhang G. Q. ; Li H. L. J. Power Sources 2016, 307, 391.
doi: 10.1016/j.jpowsour.2016.01.020 |
107 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Green Chem. 2017, 19 (11), 2595.
doi: 10.1039/C7GC00506G |
108 |
Yu D. ; Chen C. ; Zhao G. ; Sun L. ; Du B. ; Zhang H. ; Li Z. ; Sun Y. ; Besenbacher F. ; Yu M. ChemSusChem 2018, 11 (10), 1678.
doi: 10.1002/cssc.201800202 |
109 |
Jiang L. ; Sheng L. ; Chen X. ; Wei T. ; Fan Z. J. Mater. Chem. A 2016, 4 (29), 11388.
doi: 10.1039/C6TA02570F |
110 |
Yi J. ; Qing Y. ; Wu C. ; Zeng Y. ; Wu Y. ; Lu X. ; Tong Y. J. Power Sources 2017, 351, 130.
doi: 10.1016/j.jpowsour.2017.03.036 |
111 |
Zhu B. ; Liu B. ; Qu C. ; Zhang H. ; Guo W. ; Liang Z. ; Chen F. ; Zou R. J. Mater. Chem. A 2018, 6 (4), 1523.
doi: 10.1039/C7TA09608A |
112 |
Long C. ; Qi D. ; Wei T. ; Yan J. ; Jiang L. ; Fan Z. Adv. Funct. Mater. 2014, 24 (25), 3953.
doi: 10.1002/adfm.201304269 |
113 |
Subramanian V. ; Luo C. ; Stephan A. M. ; Nahm K. S. ; Thomas S. ; Wei B. J. Phys. Chem. C 2007, 111 (20), 7527.
doi: 10.1021/jp067009t |
114 |
Lu S. Y. ; Jin M. ; Zhang Y. ; Niu Y. B. ; Gao J. C. ; Li C. M. Adv. Energy Mater. 2018, 8 (11), 1702545.
doi: 10.1002/aenm.201702545 |
115 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Zhu Z. ; Lu G. Q. Electrochem. Commun. 2008, 10 (10), 1594.
doi: 10.1016/j.elecom.2008.08.022 |
116 |
Pang J. ; Zhang W. ; Zhang J. ; Cao G. ; Han M. ; Yang Y. Green Chem. 2017, 19 (16), 3916.
doi: 10.1039/C7GC01434A |
117 |
Kim T. ; Jung G. ; Yoo S. ; Suh K. S. ; Ruoff R. S. ACS Nano 2013, 7 (8), 6899- 6905.
doi: 10.1021/nn402077v |
118 |
Xu J. ; Tan Z. ; Zeng W. ; Chen G. ; Wu S. ; Zhao Y. ; Ni K. ; Tao Z. ; Ikram M. ; Ji H. ; et al Adv. Mater. 2016, 28 (26), 5222.
doi: 10.1002/adma.201600586 |
119 |
Bu Y. ; Sun T. ; Cai Y. ; Du L. ; Zhuo O. ; Yang L. ; Wu Q. ; Wang X. ; Hu Z. Adv. Mater. 2017, 29 (24), 1700470.
doi: 10.1002/adma.201700470 |
120 |
Vix-Guterl C. ; Frackowiak E. ; Jurewicz K. ; Friebe M. ; Parmentier J. ; Béguin F. Carbon 2005, 43 (6), 1293.
doi: 10.1016/j.carbon.2004.12.028 |
121 |
Yoon Y. ; Lee K. ; Baik C. ; Yoo H. ; Min M. ; Park Y. ; Lee S. ; Lee H. Adv. Mater. 2013, 25 (32), 4437.
doi: 10.1002/adma.201301230 |
122 |
Zapata-Benabithe Z. ; Carrasco-Marín F. ; de Vicente J. ; Moreno-Castilla C. Langmuir 2013, 29 (20), 6166.
doi: 10.1021/la4007422 |
123 |
Chang L. ; Stacchiola D. ; Hu Y. ACS Appl. Mater. Interfaces 2017, 9 (29), 24655- 24661.
doi: 10.1021/acsami.7b07381 |
124 |
Pham D. ; Lee T. ; Luong D. ; Yao F. ; Ghosh A. ; Le V. ; Kim T. ; Li B. ; Chang J. ; Lee Y. ACS Nano 2015, 9 (2), 2018.
doi: 10.1021/nn507079x |
125 |
Lei Z. ; Lu L. ; Zhao X. S. Energy Environ. Sci. 2012, 5 (4), 6391.
doi: 10.1039/C1EE02478G |
126 |
Hulicova-jurcakova D. ; Seredych M. ; Lu G. Q. ; Bandosz T. J. Adv. Funct. Mater. 2009, 19 (3), 438.
doi: 10.1002/adfm.200801236 |
127 |
He X. ; Ling P. ; Yu M. ; Wang X. ; Zhang X. ; Zheng M. Electrochim. Acta 2013, 105, 635.
doi: 10.1016/j.electacta.2013.05.050 |
128 |
Candelaria S. L. ; Garcia B. B. ; Liu D. W. ; Cao G. Z. J. Mater. Chem. 2012, 22, 9884.
doi: 10.1039/c2jm30923h |
129 |
Paraknowitsch J. P ; Thomas A. ; Antonietti M. J. Mater Chem. 2010, 20, 6746.
doi: 10.1039/C0JM00869A |
130 |
Xu S. W. ; Zhao Y. Q. ; Xu Y. X. ; Chen Q. H. ; Zhang G. Q. ; Xu Q. Q. ; Zhao D. D. ; Zhang X. ; Xu C. L. J. Power Sources 2018, 401, 375.
doi: 10.1016/j.jpowsour.2018.09.012 |
131 |
Li L. ; Zhou Y. ; Zhou H. ; Qu H. ; Zhang C. ; Guo M. ; Liu X. ; Zhang Q. ; Gao B. ACS Sustain. Chem. Eng. 2019, 7 (1), 1337.
doi: 10.1021/acssuschemeng.8b05022 |
132 |
Yu W. ; Wang H. ; Liu S. ; Mao N. ; Liu X. ; Shi J. ; Liu W. ; Chen S. ; Wang X. J. Mater. Chem. A 2016, 4 (16), 5973.
doi: 10.1039/C6TA01821A |
133 |
Li Z. ; Mi H. ; Bai Z. ; Ji C. ; Sun L. ; Gao S. ; Qiu J. J. Power Sources 2019, 418, 112.
doi: 10.1016/j.jpowsour.2019.02.034 |
134 |
Cheng P. ; Gao S. ; Zang P. ; Yang X. ; Bai Y. ; Xu H. ; Liu Z. ; Lei Z. Carbon 2015, 93, 315.
doi: 10.1016/j.carbon.2015.05.056 |
135 |
Wu X. ; Jiang L. ; Long C. ; Fan Z. Nano Energy 2015, 13, 527.
doi: 10.1016/j.nanoen.2015.03.013 |
136 |
Yang X. ; Li M. ; Guo N. ; Yan M. ; Yang R. ; Wang F. RSC Adv. 2016, 6 (6), 4365.
doi: 10.1039/C5RA24055G |
137 |
Zhu G. ; Ma L. ; Lv H. ; Hu Y. ; Chen T. ; Chen R. ; Liang J. ; Wang X. ; Wang Y. ; Yan C. ; et al Nanoscale 2017, 9 (3), 1237.
doi: 10.1039/C6NR08139H |
138 |
Ma G. ; Yang Q. ; Sun K. ; Peng H. ; Ran F. ; Zhao X. ; Lei Z. Bioresour. Technol. 2015, 197, 137.
doi: 10.1016/j.biortech.2015.07.100 |
139 |
Gao S. ; Liu H. ; Geng K. ; Wei X. .Nano Energy 2015, 12, 785.
doi: 10.1016/j.nanoen.2015.02.004 |
140 |
Liu B. ; Liu Y. ; Chen H. ; Yang M. ; Li H. J. Power Sources 2017, 341, 309.
doi: 10.1016/j.jpowsour.2016.12.022 |
141 |
Liu J. ; Deng Y. ; Li X. ; Wang L. ACS Sustain. Chem. Eng. 2016, 4 (1), 177.
doi: 10.1021/acssuschemeng.5b00926 |
142 |
Chen L. ; Ji T. ; Mu L. ; Zhu J. Carbon 2017, 111, 839.
doi: 10.1016/j.carbon.2016.10.054 |
143 |
Shen W. ; Fan W. J. Mater. Chem. A 2013, 1 (4), 999.
doi: 10.1039/C2TA00028H |
144 |
Li Y. ; Zhang S. ; Song H. ; Chen X. ; Zhou J. ; Hong S Electrochim. Acta 2015, 180, 879.
doi: 10.1016/j.electacta.2015.09.039 |
145 |
Liu J. ; Li H. ; Zhang H. ; Liu Q. ; Li R. ; Li B. ; Wang J. J. Solid State Chem. 2018, 257, 64.
doi: 10.1016/j.jssc.2017.07.033 |
146 |
Wang K. ; Yan R. ; Zhao N. ; Tian X. ; Li X. ; Lei S. ; Song Y. ; Guo Q. ; Liu L. Mater. Lett. 2016, 174, 249.
doi: 10.1016/j.matlet.2016.03.063 |
147 |
Long C. ; Chen X. ; Jiang L. ; Zhi L. ; Fan Z. Nano Energy 2015, 12, 141.
doi: 10.1016/j.nanoen.2014.12.014 |
148 |
Li J. ; Liu K. ; Gao X. ; Yao B. ; Huo K. ; Cheng Y. ; Cheng X. ; Chen D. ; Wang B. ; Sun W. ; et al ACS Appl. Mater. Interfaces 2015, 7 (44), 24622.
doi: 10.1021/acsami.5b06698 |
149 |
Dong X. ; Jin H. ; Wang R. ; Zhang J. ; Feng X. ; Yan C. ; Chen S. ; Wang S. ; Wang J. ; Lu J. Adv. Energy Mater. 2018, 8 (11), 1702695.
doi: 10.1002/aenm.201702695 |
150 |
Liu X. ; Ma C. ; Li J. ; Zielinska B. ; Kalenczuk R. J. ; Chen X. ; Chu P. K. ; Tang T. ; Mijowska E. J. Power Sources 2019, 412, 1.
doi: 10.1016/j.jpowsour.2018.11.032 |
151 |
Jiang Y. ; Yan J. ; Wu X. ; Shan D. ; Zhou Q. ; Jiang L. ; Yang D. ; Fan Z. J. Power Sources 2016, 307, 190.
doi: 10.1016/j.jpowsour.2015.12.081 |
152 |
Xie Q. ; Bao R. ; Zheng A. ; Zhang Y. ; Wu S. ; Xie C. ; Zhao P. ACS Sustain. Chem. Eng. 2016, 4 (3), 1422.
doi: 10.1021/acssuschemeng.5b01417 |
153 |
Lee S. W. ; Kim B. S. ; Chen S. ; Shao-Horn Y. ; Hammond P. T. J. Am. Chem. Soc. 2008, 131 (2), 671.
doi: 10.1021/ja807059k |
154 |
Zhou Y. ; Ghaffari M. ; Lin M. ; Parsons E. M. ; Liu Y. ; Wardle B. L. ; Zhang Q. M. Electrochim. Acta 2013, 111, 608.
doi: 10.1016/j.electacta.2013.08.032 |
155 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X. Nat. Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
[1] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-0. |
[2] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-0. |
[3] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-0. |
[4] | Xinxin Cao,Jiang Zhou,Anqiang Pan,Shuquan Liang. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905018-0. |
[5] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-0. |
[6] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-0. |
[7] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-0. |
[8] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-0. |
[9] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-0. |
[10] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-0. |
[11] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-0. |
[12] | Fan Xie, Ye Xi, Qingda Xu, Jingquan Liu. Utah Neural Electrode Technology for Brain-Computer Interface [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2003014-0. |
[13] | Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912030-0. |
[14] | Kang YANG,Xiaorui SHUAI,Huachao YANG,Jianhua YAN,Kefa CEN. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 755-765. |
[15] | Shah Rahim,Alam Naveed,A. Razzaq Amir,Cheng YANG,Yujie CHEN,Jiapeng HU,Xiaohui ZHAO,Yang PENG,Zhao DENG. Effect of Binder Conformity on the Electrochemical Behavior of Graphite Anodes with Different Particle Shapes [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1382-1390. |
|