Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1904007.doi: 10.3866/PKU.WHXB201904007
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang*()
Received:
2019-04-02
Accepted:
2019-05-07
Published:
2019-05-13
Contact:
Yuxin Zhang
E-mail:zhangyuxin@cqu.edu.cn
Supported by:
MSC2000:
Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors[J].Acta Physico-Chimica Sinica, 2020, 36(2): 1904007.
Fig 5
(A) Schematic diagram and (B) photographs of the fabrication process of flexible solid-state supercapacitors based on graphene hydrogel films. (C) Low-and (D) high-magnification SEM images of the interior microstructure of the graphene hydrogel before pressing. (E) Low- and (F) high-magnification SEM images of the interior microstructure of the graphene hydrogel film after pressing 57."
Fig 6
Design and fabrication of alternating stacked graphene-conducting polymer hybrid film for in-plane MSCs 58. (a-c) Illustration of the fabrication procedure for in-plane MSCs with interdigital fingers, including (a) transfer of LBL stacked 2D nanohybrid film onto silicon wafer, (b) masking micropattern and deposition of gold current collector, (c) oxidative etching in oxygen plasma and drop-casting electrolyte. (d, e) Cross-section SEM images of 2D nanohybrid film. "
Fig 9
(a) Digital photographs of flexible Re-PARG film. The top image exhibits the folding characteristics of the film. The bottom images illustrate the high flexibility (bending and twisting) of the film; (b) CV curves of Re-PARG film electrodes with two different bending angles of 0° and 180° at a scan rate of 5 mV∙s−1 59."
Fig 11
Electrochemical properties of RGO/β-Co(OH)2 NS composite-based electrode. (a) CV curves at different scan rates, (b) charge-discharge curves, (c) specific capacitance at different current densities, and (d) specific capacitance vs cycle number of the composite at a current density of 10 A·g−1 (inset of panel disgalvano static charge-discharge curves with time) 60."
Fig 19
(a) Galvanostatic charge-discharge curves of the ultralong α-MnO2 nanowires, the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanowires and δ-MnO2 nanosheets. (b) Galvanostatic charge-discharge curves and (c) specific capacitance of the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure at different current densities. (d) Long-term cycle performance of the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure at 20 A∙g−1 84."
Fig 22
Electrochemical characterizations in 5 mol∙L−1 aqueous KOH at room temperature 91. (A) CV curves of different electrodes at a scan rate of 10 mV∙s−1. (B) CV curves at different scan rates and (C) charge-discharge curves at different current densities for the MnO2@NiO/NiMoO4 electrode. (D) The specific capacitance of different electrodes at different current densities. (E) Cycling stability and CE of the MnO2@NiO/NiMoO4 electrode at a current density of 3 A∙g−1; inset: the galvanostatic charge-discharge curve for the first ten cycles. "
Fig 27
(a) CV curves of AC and NiAl-LDH/MnO2-6 at 10 mV∙s−1, and the inset shows the schematic of the NiAl-LDH/MnO2-6//AC ASC. (b) CV curves of NiAl-LDH/MnO2-6//AC ASC at different scan rates. (c) GCD curves of NiAl-LDH/MnO2-6//AC ASC at different current densities within a voltage of 1.58 V 100."
Fig 31
XRD patterns, cyclic voltammograms and Galvanostatic charge/discharge properties of MnO2/MoS2 composites 106. (a) XRD patterns of MoS2, pure MnO2 and MnO2/MoS2 composites; (b) Cyclic voltammetry curves of MnO2/MoS2 composites in 1 mol∙L−1 Na2SO4 aqueous electrolyte at various current densities in the potential window of −0.2 to −0.9 V; (c) Galvanostatic charge/discharge curves of MnO2/MoS2 composites in 1 mol∙L−1 Na2SO4 aqueous electrolyte at various current densities in the potential window of −0.2 to −1 V; (d) capacitance retention of MnO2/MoS2 composites at different current density. "
1 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41, 797.
doi: 10.1039/C1CS15060J |
2 |
Razaa W. ; Alib F. ; Razac N. Nano Energy 2018, 52, 441.
doi: 10.1016/j.nanoen.2018.08.013 |
3 |
Choudhary N. ; Li C. ; Moore J. ; Nagaiah N. ; Zhai L. ; Jung Y. ; Thomas J. Adv. Mater. 2017, 29, 1605336.
doi: 10.1002/adma.201605336 |
4 |
Lukatskaya M. R. ; Dunn B. ; Gogotsi Y. Nat. Commun. 2016, 7, 12647.
doi: 10.1038/ncomms12647 |
5 |
Huang M. ; Li F. ; Dong F. ; Zhang Y. X. ; Zhang L. L. J. Mater. Chem. A 2015, 3, 21380.
doi: 10.1039/c5ta05523g |
6 |
Zhang X. ; Yu P. ; Zhang H. ; Zhang D. ; Sun X. ; Ma Y. Electrochim. Acta. 2013, 89, 523.
doi: 10.1016/j.electacta |
7 |
Shi X. ; Zheng S. ; Wu Z. S. ; Bao X. J. Energy Chem. 2018, 27 (1), 25.
doi: 10.1016/j.jechem.2017.09.034 |
8 |
Wei L. ; Li Z. ; Deng Y. ; Yang Q. H. ; Kang F. Energy Storage Materials 2016, 2, 107.
doi: 10.1016/j.ensm.2015.10.002 |
9 |
Dong Y. ; Wu Z. S. ; Ren W. ; Cheng H. M. ; Bao X. Sci. Bull. 2017, 62, 724.
doi: 10.1016/j.scib.2017.04.010 |
10 |
Tan C. ; Cao X. ; Wu X. J. Chem. Rev. 2017, 117, 6225.
doi: 10.1021/acs.chemrev.6b00558 |
11 |
Tang J. ; Hua Q. ; Yuan J. ; Zhang J. ; Zhao Y. Mater. Rep. 2017, 31, 26.
doi: 10.11896/j.issn.1005-023X.2017.09.003 |
唐捷; 华青松; 元金石; 张健敏; 赵玉玲. 材料导报, 2017, 31, 26.
doi: 10.11896/j.issn.1005-023X.2017.09.003 |
|
12 |
Zhai T. ; Lu X. ; Wang F. ; Xia H. ; Tong Y. Nanoscale Horiz. 2016, 1, 109.
doi: 10.1039/c5nh00048c |
13 |
Lv Z. ; Luo Y. ; Tang Y. Adv. Mater. 2017, 30 (2), 1704531.
doi: 10.1002/adma.201704531 |
14 |
Shao Y. ; El-Kady M. F. ; Wang L. J. Chem. Soc. Rev. 2015, 44, 3639.
doi: 10.1039/c4cs00316k |
15 |
Wang X. ; Lu X. ; Liu B. ; Chen D. ; Tong Y. ; Shen G. Adv. Mater. 2014, 26, 4763.
doi: 10.1002/adma.201400910 |
16 |
Chen T. ; Dai L. J. Mater. Chem. A 2014, 2, 10756.
doi: 10.1039/c4ta00567h |
17 |
Huang W. ; Li J. ; Xu Y. Mater. Rep. 2018, 32, 2555.
doi: 10.11896/j.issn.1005-023X.2018.15.004 |
黄文欣; 李军; 徐云鹤. 材料导报, 2018, 32, 2555.
doi: 10.11896/j.issn.1005-023X.2018.15.004 |
|
18 |
Singu B. S. ; Yoon K. R. Electrochim. Acta 2017, 231, 749.
doi: 10.1016/j.electacta.2017.01.182 |
19 |
Zhang J. ; Yang X. ; He Y. J. Mater. Chem. A 2016, 4, 9088.
doi: 10.1039/C6TA02989B |
20 |
Guo X. ; Wang T. ; Zheng T. X. ; Xu C. ; Zhang J. ; Zhang Y. X. J. Mater. Chem. A 2018, 6, 24717.
doi: 10.1039/C8TA07869F |
21 |
Tang Y. ; Zhu J. F. ; Yang C. H. ; Wang F. J. Alloys Compd. 2016, 685, 194.
doi: 10.1016/j.jallcom.2016.05.221 |
22 | Lee, H. Y.; Goodenough, J. B. 1999, 144, 220. doi: 10.1006/jssc.1998.8128 |
23 |
Li H. ; Zhang X. ; Ding R. ; Qi L. ; Wang H. Electrochim. Acta 2013, 108, 497.
doi: 10.1016/j.electacta.2013.07.066 |
24 |
Wang J. G. ; Kang F. ; Wei B. Prog. Mater Sci. 2015, 74, 51.
doi: 10.1016/j.pmatsci.2015.04.003 |
25 |
Wei W. ; Cui X. ; Chen W. ; Ivey D. G. Chem. Soc. Rev. 2011, 40 (3), 1697.
doi: 10.1039/c0cs00127a |
26 |
Tanggarnjanavalukul C. ; Phattharasupakun N. ; Kongpatpanich K. ; Sawangphruk M. Nanoscale 2017, 9 (36), 13630.
doi: 10.1039/C7NR02554H |
27 |
Zhao H. ; Dong Y. ; Jiang P. ; Wang G. ; Zhang J. ; Li K. ; Feng C. New J. Chem. 2014, 38, 1743.
doi: 10.1039/C3NJ01523H |
28 |
Li Y. ; Cao D. ; Wang Y. ; Yang S. ; Zhang D. ; Ye K. ; Cheng K. ; Yin J. ; Wang G. ; Xu Y. J. Power Sources 2015, 279, 138.
doi: 10.1016/j.jpowsour.2014.12.153 |
29 |
Wei C. ; Pang H. ; Zhang B. ; Lu Q. ; Liang S. ; Gao F. Sci. Rep. 2013, 3, 2193.
doi: 10.1038/srep02193 |
30 |
Chen C. C. ; Tsay C.Y. ; Lin H. S. ; Jheng W. D. ; Lin C. K. Mater. Chem. Phys. 2012, 137, 503.
doi: 10.1016/j.matchemphys.2012.09.047 |
31 |
Yu L. L. ; Zhu J. J. ; Zhao J. T. Eur. J. Inorg. Chem. 2013, 2013, 3719.
doi: 10.1002/ejic.201300265 |
32 |
Sun Z. ; Firdoz S. ; Yap E. Y. X. ; Li L. ; Lu X. Nanoscale 2013, 5, 4379.
doi: 10.1039/C3NR00209H |
33 |
Yang J. ; Lian L. ; Ruan H. ; Xie F. ; Wei M. Electrochim. Acta 2014, 136, 189.
doi: 10.1016/j.electacta.2014.05.074 |
34 |
Tang X. ; Liu Z.H. ; Zhang C. ; Yang Z. ; Wang Z. J. Power Sources 2009, 193, 939.
doi: 10.1016/j.jpowsour.2009.04.037 |
35 |
Zhu J. ; Shi W. ; Xiao N. ; Rui X. ; Tan H. ; Lu X. ; Hng H. H. ; Ma J. ; Yan Q. ACS Appl. Mater. Interfaces 2012, 4, 2769.
doi: 10.1021/am300388u |
36 |
Liu Z. ; Xu K. ; Sun H. ; Yin S. Small 2015, 11, 2182.
doi: 10.1002/smll.201402222 |
37 |
Zhao S. ; Liu T. ; Hou D. ; Zeng W. ; Miao B. ; Hussain S. ; Peng X. ; Javedc M. S. Appl. Surf. Sci. 2015, 356, 259.
doi: 10.1016/j.apsusc.2015.08.037 |
38 |
Yin B. ; Zhang S. ; Jiao Y. ; Liu Y. ; Qu F. ; Wu X. CrystEngComm 2014, 16 (43), 9999.
doi: 10.1039/c4ce01302f |
39 |
Bing Y. ; Zhang L. ; Mu S. ; Zhang J. Appl. Sci. 2017, 7 (5), 511.
doi: 10.3390/app7050511 |
40 |
Liu P. ; Zhu Y ; Gao X. ; Huang Y. ; Wang Y. ; Qin S. ; Zhang Y. Chem. Eng. J. 2018, 350, 79.
doi: 10.1016/j.cej.2018.05.169 |
41 |
Kalubarme R. S. ; Jadhav H. S. ; Park C. J. Electrochim. Acta 2013, 87, 457.
doi: 10.1016/j.electacta.2012.09.081 |
42 |
Shi S. ; Xu C. ; Yang C. ; Chen Y. ; Liu J. ; Kang F. Sci. Rep. 2013, 3, 2598.
doi: 10.1038/srep02598 |
43 |
Gao P. ; Metz P. ; Hey T. ; Gong Y. ; Liu D. ; Edwards D. D. Nat. Commun. 2017, 8, 14559.
doi: 10.1038/ncomms14559 |
44 |
Chen H. ; Zhang B. ; Li F. ; Kuang M. ; Huang ; Yang Y. ; Zhang Y. X. Electrochim. Acta 2016, 187, 488.
doi: 10.1016/j.electacta.2015.11.067 |
45 |
Huang M. ; Zhang Y. ; Li F. ; Zhang L. ; Ruoff R. S. ; Wen Z. ; Liu Q. Sci. Rep. 2014, 4, 3878.
doi: 10.1038/srep03878 |
46 |
Zhao B. ; Lu M. ; Wang Z. ; Jiao Z. ; Cheng L. J. Alloys Compd. 2015, 663, 180.
doi: 10.1016/j.jallcom.2015.12.018 |
47 |
Liu Q. ; Yang J. ; Wang R. ; Wang H. ; Ji S. RSC Adv. 2017, 7, 33635.
doi: 10.1039/C7RA06076A |
48 |
Guo W. H. ; Liu T. J. ; Jiang P. ; Zhang Z. J. J. Colloid Interface Sci. 2015, 437, 304.
doi: 10.1016/j.jcis.2014.08.060 |
49 |
Dreyer D. R. ; Ruoff R. S. ; Bielawski C. W. Angew. Chem. Int. Ed. 2010, 49 (49), 9336.
doi: 10.1002/anie.201003024 |
50 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; DubonosS. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
51 |
Xia J. ; Chen F. ; Li J. ; Tao N. Nature Nanotech. 2009, 4 (8), 505.
doi: 10.1038/nnano.2009.177 |
52 |
Butler S. Z. ; Hollen S. M. ; Cao L. ; Cui Y. ; Goldberger J. E. ACS Nano 2013, 7 (4), 2898.
doi: 10.1021/nn400280c |
53 |
Xu M. ; Liang T. ; Shi M. ; Chen H. Chem. Rev. 2013, 113 (5), 3766.
doi: 10.1021/cr300263a |
54 |
Chhowalla M. ; Shin H. S. ; Eda G. Nat. Chem. 2013, 263
doi: 10.1038/NCHEM.1589 |
55 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
56 |
Yoo J. J. ; Balakrishnan K. ; Huang J. ; Meunier V. ; Sumpter B. G. ; Srivastava A. Nano Lett. 2011, 11 (4), 1423.
doi: 10.1021/nl200225j |
57 |
Xu Y. ; Lin Z. ; Huang X. ; Liu Y. ; Huang Y. ; Duan X. ACS Nano 2013, 7 (5), 4042.
doi: 10.1021/nn4000836 |
58 |
Wu Z. S. ; Parvez K. ; Li S. ; Yang S. ; Liu Z. ; Liu S. Adv. Mater. 2015, 27 (27), 4054.
doi: 10.1002/adma.201501643 |
59 |
Kim M. ; Lee C. ; Jang J. Adv. Funct. Mater. 2014, 24 (17), 2489.
doi: 10.1002/adfm.201303282 |
60 |
Xia X. H. ; Tu J. P. ; Zhang Y. Q. J. Phys. Chem. C 2011, 115 (45), 22662.
doi: 10.1021/jp208113j |
61 |
Wang L. ; Lin C. ; Zhang F. ; Jin J. ACS Nano 2014, 8, 3724.
doi: 10.1021/nn500386u |
62 |
Li X. ; Xu X. ; Xia F. ; Bu L. ; Qiu H. ; Chen M. Electrochim. Acta. 2014, 130, 305.
doi: 10.1016/j.electacta.2014.03.040 |
63 |
Dai X. ; Shi W. ; Cai H. ; Li R. ; Yang G. Solid State Sci. 2014, 27, 17.
doi: 10.1016/j.solidstatesciences.2013.11.003 |
64 |
Le Q. J. ; Huang M. ; Wang T. ; Liu X. Y. ; Sun L. ; Guo X. L. ; Jiang D. B. ; Wang J. ; Dong F. ; Zhang Y. X. J. Colloid Interface Sci. 2019, 544, 155.
doi: 10.1016/j.jcis.2019.02.089 |
65 |
Chan P. Y. ; Majid R. S. R. Solid State Ion. 2014, 262, 226.
doi: 10.1016/j.ssi.2013.10.005 |
66 |
Liu T. ; Shao G. J. ; Ji M. ; Wang G. J. Solid State Chem. 2014, 215, 160.
doi: 10.1016/j.jssc.2014.03.043 |
67 |
Amir F. Z. ; Pham V. H. ; Schultheis E. M. ; Dickerson J. H. Electrochim. Acta 2018, 260, 944.
doi: 10.1016/j.electacta.2017.12.071 |
68 |
Xiong C. ; Li T. ; Dang A. ; Zhao T. ; Li H. ; Lv H. J. Power Sources 2016, 306, 602.
doi: 10.1016/j.jpowsour.2015.12.056 |
69 |
Xiong C. ; Li T. ; Zhao T. ; Dang A. ; Ji X. ; Li H. Nano 2018, 13 (01), 1.
doi: 10.1142/S1793292018500133 |
70 |
Zhao X. ; Zhang L. ; Murali S. ; Stoller M. D. ; Zhang Q. ; Zhu Y. ACS Nano 2012, 6 (6), 5404.
doi: 10.1021/nn3012916 |
71 |
Qian Y. ; Lu S. B. ; Gao F. L. J. Mater. Sci. 2011, 46, 3517.
doi: 10.1007/s10853-011-5260-y |
72 |
Cheng H. ; Long L. ; Wu J. ; Shu D. ; Kang Z. ; Zou X. Int. J. Hydrog. Energy 2014, 39 (28), 16151.
doi: 10.1016/j.ijhydene.2014.04.050 |
73 |
Feng X. ; Chen N. ; Zhang Y. ; Yan Z. ; Liu X. ; Ma Y. J. Mater. Chem. A 2014, 2 (24), 9178.
doi: 10.1039/C3TA15402E |
74 |
Naderi H. R. ; Norouzi P. ; Ganjali M. R. Appl. Surf. Sci. 2016, 366, 552.
doi: 10.1016/j.apsusc.2016.01.058 |
75 |
Yan J. ; Fan Z. ; Wei T. ; Qian W. ; Zhang M. ; Wei F. Carbon 2010, 48 (13), 3825.
doi: 10.1016/j.carbon.2010.06.047 |
76 |
Ghasemi S. ; Hosseinzadeh R. ; Jafari M. Int. J. Hydrog. Energy 2014, 48 (13), 3825.
doi: 10.1016/j.ijhydene.2014.11.072 |
77 |
Pan C. ; Gu H. ; Dong L. J. Power Sources 2016, 303, 175.
doi: 10.1016/j.jpowsour.2015.11.002 |
78 |
Huang M. ; Wang L. ; Chen S. ; Kang L. ; Lei Z. ; Shi F. RSC Adv. 2017, 7 (17), 10092.
doi: 10.1039/c6ra28117f |
79 |
Wang T. ; Sun Y. ; Zhang L. ; Li K. ; Yi Y. ; Song S. ; Li M. ; Qiao Z. A. ; Dai S. Adv. Mater. 2019, 31, 1807876.
doi: 10.1002/adma.201807876 |
80 |
Jia X. ; Wu X. ; Liu B. Dalton Trans. 2018, 47, 15506.
doi: 10.1039/C8DT03298J |
81 |
Wang H. ; Ren Q. ; Brett D. J. L. ; He G. ; Wang R. ; Key J. ; Ji S. J. Power Sources 2017, 343, 76.
doi: 10.1016/j.jpowsour.2017.01.042 |
82 |
Cao Y. ; Cui Z. ; Ji T. ; Li W. ; Xu K. ; Zou R. ; Yang J. ; Qin Z. ; Hu J. J. Alloys Compd. 2017, 725, 373.
doi: 10.1016/j.jallcom.2017.07.182 |
83 |
Liu Q. ; Yang J. ; Wang R. ; Wang H. ; Ji S. RSC Adv. 2017, 7 (53), 33635.
doi: 10.1039/C7RA06076A |
84 |
Ma Z. ; Shao G. ; Fan Y. ; Wang G. ; Song J. ; Shen D. ACS Appl. Mater. Interfaces 2016, 8 (14), 9050.
doi: 10.1021/acsami.5b11300 |
85 |
Wang S. ; Li Q. ; Pu W. ; Wu Y. ; Yang M. J. Alloys Compd 2016, 663, 148.
doi: 10.1016/j.jallcom.2015.12.040 |
86 |
Yang W. ; Gao Z. ; Ma J. ; Zhang X. ; Wang J. J. Alloys Compd. 2014, 611, 171.
doi: 10.1016/j.jallcom.2014.04.085 |
87 |
Shafi P. M. ; Dhanabal R. ; Chithambararaj A. ; Velmathi S. ; Bose A. C. ACS Sustainable Chem. Eng. 2017, 5 (6), 4757.
doi: 10.1021/acssuschemeng.7b00143 |
88 |
Xu K. ; Li W. ; Liu Q. ; Li B. ; Liu X. ; An L. ; Chen Z. ; Zou R. ; Hu J. J. Mater. Chem. A 2014, 2, 4795.
doi: 10.1039/C3TA14647B |
89 |
Kuang M. ; Liu X. Y. ; Dong F. ; Zhang Y. X. J. Mater. Chem. A 2015, 3, 21528.
doi: 10.1039/C5TA05957G |
90 |
Gao H. ; Xiang J. ; Cao Y. Nanotechnology. 2017, 28 (23), 235401.
doi: 10.1088/1361-6528/aa6f89 |
91 |
Chu Y. ; Xiong S. ; Li B. ; Qian Y. ; Xi B. ChemElectroChem 2016, 3, 1.
doi: 10.1002/celc.201600146 |
92 |
Min S. ; Zhao C. ; Zhang Z. ; Wang K. ; Chen G. ; Qian X. ; Guo Z. RSC Adv. 2015, 5 (77), 62571.
doi: 10.1039/C5RA10842J |
93 |
Wang Z. ; Wang F. ; Tu J. ; Cao D. ; An X. ; Ye Y. Mater. Lett. 2016, 171, 10.
doi: 10.1016/j.matlet.2016.02.050 |
94 |
Shen J. ; Li X. ; Wan L ; Liang K. ; Tay B. K. ; Kong L. B. ; Yan X. ACS Appl. Mater. Interfaces 2017, 9 (1), 668.
doi: 10.1021/acsami.6b12370 |
95 |
Xi Y. ; Wei G. ; Li J. ; Liu X. ; Pang M. ; Yang Y. ; Ji Y. ; Izotov V. Y. ; Guo Q. ; Han W. Electrochim. Acta 2017, 233, 26.
doi: 10.1016/j.electacta.2017.02.038 |
96 |
Wang Y. ; Wang Y. ; Jiang L. J. Appl. Electrochem. 2018, 48 (5), 495.
doi: 10.1007/s10800-018-1183-5 |
97 |
Diao Z. P. ; Zhang Y. X. ; Hao X. D. ; Wen Z. Q. Ceram. Int. 2014, 40, 2115.
doi: 10.1016/j.ceramint.2013.07.127 |
98 |
Gu T. H. ; Gunjakar J. L. ; Kim I. Y. ; Patil S. B. ; Lee J. M. ; Jin X. ; Lee N. S. ; Hwang S. J. Small 2015, 11, 3921.
doi: 10.1002/smll.201500286 |
99 |
Wang Y. ; Dong S. ; Wu X. ; Li M. J. Electrochem. Soc. 2017, 164, H56.
doi: 10.1149/2.0861702jes |
100 |
Zheng W. ; Sun S. ; Xu Y. ; Yu R. ; Li H. J. Alloys Compd. 2018, 768, 240.
doi: 10.1016/j.jallcom.2018.07.168 |
101 |
Quan W. ; Jiang C. ; Wang S. ; Li Y. ; Zhang Z. ; Tang Z. Electrochim. Acta 2017, 247, 1072.
doi: 10.1016/j.electacta.2017.07.010 |
102 |
Soon J. M. ; Loh K. P. Electrochem. Solid-State Lett. 2007, 10, 250.
doi: 10.1149/1.2778851 |
103 |
Zhou J. ; Fang G. Z. ; Pan A. Q. ; Liang S. Q. ACS Appl. Mater. Interfaces 2016, 8, 33681.
doi: 10.1021/acsami.6b11811 |
104 |
Zheng N. F. ; Bu X. H. ; Feng P. Y. Nature 2003, 426, 428.
doi: 10.1002/chin.200407009 |
105 |
Liao X. ; Zhao Y. ; Wang J. ; Yang W. ; Xu L. ; Tian X. Nano Research 2017, 247, 1072.
doi: 10.1007/s12274-017-1826-6 |
106 |
Yang Y. ; Chuan X. Acta Geolog. Sin. (English Edition). 2017, 91 (supp. 1), 170.
doi: 10.1111/1755-6724.13241 |
107 |
Naguib M. ; Mashtalir O. ; Carle J. ; Presser V. ; Lu J. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. ACS Nano 2012, 6, 1322.
doi: 10.1021/nn204153h |
108 |
Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. Adv. Mater. 2014, 26, 992.
doi: 10.1002/chin.201417232 |
109 |
Kim S. J. ; Naguib M. ; Zhao M. ; Zhang C. ; Jung H. T. ; Barsoum M. W. ; Gogotsi Y. Electrochim. Acta 2015, 163, 246.
doi: 10.1016/j.electacta.2015.02.132 |
110 |
Xie Y. ; Dall'Agnese Y. ; Naguib M. ; Gogotsi Y. ; Barsoum M. W. ; Zhuang H. L. ; Kent P. R. C. ACS Nano 2014, 8, 9606.
doi: 10.1021/nn503921j |
111 |
Rakhi R. B. ; Ahmed B. ; Anjum D. ; Alshareef H. N. ACS Appl. Mater. Interfaces 2016, 8 (29), 18806.
doi: 10.1021/acsami.6b04481 |
112 |
Hanmei J. ; Zegao W. ; Qian Y. ; Muhammad H. ; Zhiming W. ; Lichun D. Electrochim. Acta 2018, 8, 96.
doi: 10.1016/j.electacta.2018.08.096 |
113 |
Tang Y. ; Zhu J. F. ; Yang C. H. ; Wang F. J. Alloys Compd. 2016, 685, 194.
doi: 10.1016/j.jallcom.2016.05.221 |
114 |
Liu W. ; Wang Z. ; Su Y. ; Li Q. ; Zhao Z. ; Geng F. Adv. Energy Mater. 2017, 7 (22), 1602834.
doi: 10.1002/aenm.201602834 |
115 |
Yuan W. ; Cheng L. ; Zhang B. ; Wu H. Ceramics International. 2018, 44 (14), 17539.
doi: 10.1016/j.ceramint.2018.06.086 |
116 |
Xu J. ; Wang Y. ; Zhan J. ; Cao S. ; Zhang G. ; Xue H. ; Xu Q. ; Pang H. J. Mater. Chem. A. 2018, 6, 17329.
doi: 10.1039/c8ta05976d |
117 |
Zhang H. ; Wu L. J. Electrochem. Soc. 2018, 165 (11), A2815.
doi: 10.1149/2.1131811jes |
118 |
Zhao K. ; Xu Z. ; He Z. ; Ye G. ; Gan Q. ; Zhou Z. ; Liu S. J. Mater. Sci. 2018, 53, 13111.
doi: 10.1007/s10853-018-2562-3 |
119 | Xie D. ; Zhang Y. ; Chen J. ; Mei Y. ; Lian P. New Chem. Mater. 2017, 45, 23. |
谢丹艳; 张燕; 陈江; 梅毅; 廉培超. 化工新型材料, 2017, 45, 23. | |
120 |
Kavil J. ; Anjana P. M. ; Periya P. ; Rakhi R. B. Sustainable Energy & Fuels 2018, 2, 2244.
doi: 10.1039/C8SE00279G |
121 |
Sun S. ; Guo L. ; Chang X. ; Yu Y. ; Zhai X. Mater. Lett. 2019, 236, 558.
doi: 10.1016/j.matlet.2018.11.001 |
122 |
Shan Q. Y. ; Guo X. L. ; Dong F. ; Zhang Y. X. Mater. Lett. 2017, 202, 103.
doi: 10.1016/j.matlet.2017.05.061 |
123 |
Choi I. Y. ; Lee J. ; Ahn H. ; Lee J. ; Choi H. C. ; Park M. J. Angew. Chem. Int. Ed. 2015, 54 (36), 10497.
doi: 10.1002/anie.201503332 |
124 |
Ma Y. ; Li B. ; Yang S. Mater. Chem. Front. 2017, 2 (3), 456.
doi: 10.1039/C7QM00548B |
125 |
Yang B. ; Hao C. ; Wen F. ACS Appl. Mater. Interfaces 2017, 9 (51), 44478.
doi: 10.1021/acsami.7b13572 |
126 |
Hao C. ; Yang B. ; Wen F. ; Xiang J. ; Li L. ; Wang W. Adv. Mater. 2016, 28 (16), 3194.
doi: 10.1002/adma.201505730 |
127 |
Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32 (4), 817.
doi: 10.3866/PKU.WHXB201603152 |
刘忠范. 物理化学学报, 2016, 32 (4), 817.
doi: 10.3866/PKU.WHXB201603152 |
|
128 |
Sajedi-Moghaddam A. ; Mayorga-Martinez C. C. ; Sofer Z. ; Bouša D. ; Saievar-Iranizad E. ; Pumera M. J. Phys. Chem. C 2017, 121, 20532.
doi: 10.1021/acs.jpcc.7b06958 |
129 |
Liu B. ; Liu Y. ; Chen H. ; Yang M. ; Li H. ACS Sustainable Chem. Eng. 2019, 7 (3)
doi: 10.1021/acssuschemeng.8b04817 |
[1] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-0. |
[2] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-0. |
[3] | Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057-0. |
[4] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-0. |
[5] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-0. |
[6] | Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin,Xiaoji Xie,Ling Huang. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907011-0. |
[7] | Jing Miao,Ruifeng Guo,Zhihong Liu. Preparation of BaO·4B2O3·5H2O Nanomaterial and Evaluation of Its Flame Retardant Performance to PP by Thermal Decomposition Kinetics Method [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905052-0. |
[8] | Hui Li,Shuangyu Liu,Tianci Yuan,Bo Wang,Peng Sheng,Li Xu,Guangyao Zhao,Huitao Bai,Xin Chen,Zhongxue Chen,Yuliang Cao. Electrochemical Mechanism of Na0.44MnO2 in Alkaline Aqueous Solution [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905027-0. |
[9] | Ruolan Zhang,Chao Wang,Hao Chen,Heng Zhao,Jing Liu,Yu Li,Baolian Su. Cadmium Sulfide Inverse Opal for Photocatalytic Hydrogen Production [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1803014-0. |
[10] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-0. |
[11] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-0. |
[12] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-0. |
[13] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-0. |
[14] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-0. |
[15] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-0. |
|