Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (8): 1906026.doi: 10.3866/PKU.WHXB201906026
• Article • Previous Articles Next Articles
Kunfang Tu, Guang Li, Yanxia Jiang()
Received:
2019-06-26
Accepted:
2019-07-23
Published:
2020-05-19
Contact:
Yanxia Jiang
E-mail:yxjiang@xmu.edu.cn
Supported by:
MSC2000:
Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol[J].Acta Phys. -Chim. Sin., 2020, 36(8): 1906026.
Fig 2
Schematic diagram of the electrode potential temperature coefficient measuring device. WE: working electrode; RE: reference electrode; 1: constant temperature water bath; 2, 3: electrolyte; T1, T2, T3: thermometer. Th: temperature of the heating piece of temperature controlled electrode; Ts: surface temperature of the electrode."
Fig 3
(a–c) Open circuit electrode potentials (OCP) measured at different temperatures in 5 mmol?L?1 K3[Fe(CN)6] + 5 mmol?L?1 K4[Fe(CN)6] + 0.5 mol?L?1 KCl solution; (d) relationship between heating temperature (Th) and electrode surface temperature (TS). inset: the linear relationship between OCP and T."
Table 2
The various vibration frequencies of ethanol oxidation in the infrared spectrum."
Wavenumber/cm?1 | Assignment |
2341–2345 | O―C―O asymmetric stretching |
2040–2060 | linearly adsorbed COL |
1713–1723 | C―O stretching of acetaldehyde and acetic acid in solution |
1640–1650 1274–1284 | H―O―H bending coupling C―O stretching and OH deformation of acetic acid |
1 |
Chen X. B. ; Li C. ; Gratzel M. ; Kostecki R. ; Mao S. S. Chem. Soc. Rev. 2012, 41, 7909.
doi: 10.1039/C2CS35230C |
2 |
Antolini E. J. Power Sources 2007, 170, 1.
doi: 10.1016/j.jpowsour.2007.04.009 |
3 |
An L. ; Zhao T. S. ; Li Y. S. Renew. Sust. Energ. Rev 2015, 50, 1462.
doi: 10.1016/j.rser.2015.05.074 |
4 |
Yajima T. ; Uchida H. ; Watanabe M. J. T. J. Phys. Chem. B 2004, 108 (8), 2654.
doi: 10.1021/jp037215q |
5 |
Ye J. Y. ; Jiang Y. X. ; Sheng T. ; Sun S. G. Nano Energy 2016, 29, 414.
doi: 10.1016/j.nanoen.2016.06.023 |
6 |
Watanabe M. ; Sato T. ; Kunimatsu K. ; Uchida H. Electrochim. Acta 2008, 53 (23), 6928.
doi: 10.1016/j.electacta.2008.02.023 |
7 |
Wang J. Anal. Chim. Acta 1999, 396, 33.
doi: 10.1016/S0003-2670(99)00355-4 |
8 |
Zhou Z. Y. ; Wang Q. ; Lin J. L. ; Tian N. ; Sun S. G. Electrochim. Acta 2010, 55 (27), 7995.
doi: 10.1016/j.electacta.2010.02.071 |
9 |
Jenkins D. M. ; Song C. Y. ; Fares S. ; Cheng H. ; Barrettino D. Sens Actu B: Chem. 2009, 137, 222.
doi: 10.1016/j.snb.2008.09.046 |
10 |
Compton R. G. ; Coles B. A. ; Marken F. Chem. Commun 1998, 2595, 2595.
doi: 10.1039/A806511J |
11 |
Yuan Q. ; Zhou Z. Y. ; Zhuang J. ; Wang X. Chem. Mater 2010, 22, 2395.
doi: 10.1021/cm903844t |
12 |
Hitmi H. ; Belgsir E. M. ; Léger J. M. ; Lamy C. ; Lezna R. O. Electrochim. Acta 1994, 39, 407.
doi: 10.1016/0013-4686(94)80080-4 |
13 |
Rao L. ; Jiang Y. X. ; Zhang B. W. ; Cai Y. R. ; Sun S. G. Phys. Chem. Chem. Phys. 2014, 16, 13662.
doi: 10.1039/C3CP55059A |
14 |
Iwasita T. ; Pastor E. Electrochim. Acta 1994, 39, 531.
doi: 10.1016/0013-4686(94)80097-9 |
15 |
Rasch B. ; Iwasita T. Electrochim. Acta 1990, 35, 989.
doi: 10.1016/0013-4686(90)90032-U |
16 |
Colmati F. ; Tremiliosi-Filho G. ; Gonzalez E. R. ; Berná A. ; Herrero E. ; Feliu ; J M. Faraday Discuss 2008, 140, 379.
doi: 10.1039/B802160K |
17 |
Liu H. X. ; Tian N. ; Brandon M. P. ; Zhou Z. Y. ; Lin J. L. ; Hardacre C. ; Lin W. F. ; Sun S. G. ACS Catal 2012, 2, 708.
doi: 10.1021/cs200686a |
18 |
Lu G. Q. ; Sun S. G. ; Cai L. R. ; Chen S. P. ; Tian Z. W. Langmuir 2000, 16, 778.
doi: 10.1021/la990282k |
19 |
Tian N. ; Xiao J. ; Zhou Z. Y. ; Liu H. X. ; Xu B. B. ; Sun S. G. Faraday Discuss. 2013, 162, 77.
doi: 10.1039/C3FD20146E |
20 |
Ghumman A. ; Pickup P. G. J. Power Sources 2008, 179, 280.
doi: 10.1016/j.jpowsour.2007.12.071 |
21 |
Rao V. ; Cremers C. ; Stimming U. J. Eletrochem. Soc 2007, 154, 1138.
doi: 10.1149/1.2777108 |
22 |
Camara G.A. ; Iwasita T. J. Eletrochem. Soc. 2005, 578, 315.
doi: 10.1016/j.jelechem.2005.01.013 |
23 |
Severson M. W. ; Stuhlmann C. ; Villegas I. ; Weaver M. J. J. Chem Phys. 1995, 103, 9832.
doi: 10.1063/1.469950 |
24 |
Zhang B. W. ; Sheng T. ; Wang Y. X. ACS Catal. 2017, 7 (1), 892.
doi: 10.1021/acscatal.6b03021 |
25 |
Wang H. F ; Liu Z. P. J. Am. Chem. Soc 2008, 130 (33), 10996.
doi: 10.1021/ja801648h |
[1] | Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009098-0. |
[2] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[3] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-0. |
[4] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-0. |
[5] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-0. |
[6] | Menggang Li, Zhonghong Xia, Yarong Huang, Lu Tao, Yuguang Chao, Kun Yin, Wenxiu Yang, Weiwei Yang, Yongsheng Yu, Shaojun Guo. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912049-0. |
[7] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
[8] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-0. |
[9] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-0. |
[10] | Jingxuan Ge, Jun Hu, Yingting Zhu, Zonish Zeb, Dejin Zang, Zhaoxian Qin, Yichao Huang, Jiangwei Zhang, Yongge Wei. Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906063-0. |
[11] | Shuyi ZHANG,Jingxian BAO,Bo WU,Liangshu ZHONG,Yuhan SUN. Research Progress on the Photocatalytic Conversion of Methane and Methanol [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 923-939. |
[12] | Jincheng GUO,Yanfen LIN,Na TIAN,Shigang SUN. Modification of Tetrahexahedral Pd Nanocrystals with Ru and Their Performance for Methanol Electro-oxidation [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 749-754. |
[13] | Xiaodong YANG,Chi CHEN,Zhiyou ZHOU,Shigang SUN. Advances in Active Site Structure of Carbon-Based Non-Precious Metal Catalysts for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 472-485. |
[14] | Zhou LIN,Linfan SHEN,Ximing QU,Junming ZHANG,Yanxia JIANG,Shigang SUN. Molybdenum Carbide Prepared by a Salt Sealing Approach as an Electrocatalyst for Enhanced Hydrogen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 523-530. |
[15] | Yazhi YIN,Bing HU,Guoliang LIU,Xiaohai ZHOU,Xinlin HONG. ZnO@ZIF-8 Core-Shell Structure as Host for Highly Selective and Stable Pd/ZnO Catalysts for Hydrogenation of CO2 to Methanol [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 327-336. |
|