Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2006017.doi: 10.3866/PKU.WHXB202006017
Special Issue: Energy and Materials Chemistry
• ARTICLE • Previous Articles Next Articles
Huidong Jin1,2, Likun Xiong1,2, Xiang Zhang1,2, Yuebin Lian1,2, Si Chen1,2, Yongtao Lu1,2,*(), Zhao Deng1,2, Yang Peng1,2,*(
)
Received:
2020-06-09
Accepted:
2020-07-04
Published:
2020-07-13
Contact:
Yongtao Lu,Yang Peng
E-mail:sudalyt@suda.edu;ypeng@suda.edu.cn
About author:
Email: ypeng@suda.edu.cn (Y. P.)Supported by:
MSC2000:
Huidong Jin, Likun Xiong, Xiang Zhang, Yuebin Lian, Si Chen, Yongtao Lu, Zhao Deng, Yang Peng. Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2[J].Acta Phys. -Chim. Sin., 2021, 37(11): 2006017.
Fig 3
Performance of electrochemical CO2 reduction by Cu2O/Cu@NC-400, Cu2O/Cu@NC-600 and Cu2O/Cu@NC-800, Cu2O/Cu@C-400, Cu2O/Cu@C-600 and Cu2O/Cu@C-800 in CO2-saturated 0.1 mol∙L−1 KHCO3 electrolyte. (a) CV curves; Faradaic efficiency of (b) C2H4, (c) CH4 and (d) formate; (e) partial current density for formate; (f) faradaic efficiency of H2. "
Table 1
Performance of CO2 electrochemical reduction for Cu2O/Cu@NC and Cu2O/Cu@C annealed at different temperatures."
Sample | Max FEproduct (%) | ||
C2H4 (−1.4 V vs. RHE) | CH4 (−1.6 V vs. RHE) | Formate (−1.2 V vs. RHE) | |
Cu2O/Cu@NC-400 | 20.4% | 23.9% | 40.1% |
Cu2O/Cu@NC-600 | 16.3% | 17.4% | 57.4% |
Cu2O/Cu@NC-800 | 4.4% | 3.8% | 67.9% |
Cu2O/Cu@C-400 | 0% | 2.3% | 25.0% |
Cu2O/Cu@C-600 | 0% | 0.8% | 30.0% |
Cu2O/Cu@C-800 | 0% | 0% | 30.8% |
1 | Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
2 |
Costentin C. ; Robert M. ; Saveant J. M. Chem. Soc. Rev. 2013, 42, 2423.
doi: 10.1039/TF9050100085 |
3 |
Hori Y. ; Murata A. ; Takahashi R. J. Chem. Soc. Faraday. Trans. 1 1989, 85, 2309.
doi: 10.1039/F19898502309 |
4 |
Hori Y. ; Kikuchi K. ; Murata A. ; Suzuki S. Chem. Lett. 1986, 15, 897.
doi: 10.1246/cl.1986.897 |
5 |
Hori Y. ; Takahashi R. ; Yoshinami Y. ; Murata A. J. Phys. Chem. B 1997, 101, 7075.
doi: 10.1021/jp970284i |
6 |
Bagger A. ; Ju W. ; Varela A. S. ; Strasser P. ; Rossmeisl J. ChemPhysShem 2017, 18, 3266.
doi: 10.1002/cphc.201700736 |
7 |
Peterson A. A. ; Nørskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
doi: 10.1021/jz201461p |
8 |
Hansen H. A. ; Varley J. B. ; Peterson A. A. ; Norskov J. K. J. Phys. Chem. Lett. 2013, 4, 388.
doi: 10.1021/jz3021155 |
9 | Zhu Q. G. ; Sun X. F. ; Kang X. C. ; Ma J. ; Qian Q. L. ; Han B. X. Acta Phys. -Chim. Sin. 2016, 32, 261. |
朱庆宫; 孙晓甫; 康欣晨; 马珺; 钱庆利; 韩布兴. 物理化学学报, 2016, 32, 261.
doi: 10.3866/PKU.WHXB201512101 |
|
10 |
Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energy Environ. Sci. 2012, 5
doi: 10.1039/C2EE21234J |
11 |
Kim D. ; Kley C. S. ; Li Y. ; Yang P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560.
doi: 10.1073/pnas.1711493114 |
12 | Meng Y. C. ; Kuang S. Y. ; Liu H. ; Fan Q. ; Ma X. B. ; Zhang S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
13 |
Gattrell M. ; Gupta N. ; Co A. J. Electroanal. Chem. 2006, 594, 1.
doi: 10.1016/j.jelechem.2006.05.013 |
14 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Norskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
15 |
Baturina O. A. ; Lu Q. ; Padilla M. A. ; Xin L. ; Li W. ; Serov A. ACS Catal. 2014, 4, 3682.
doi: 10.1021/cs500537y |
16 |
Li Y. ; Cui F. ; Ross M. B. ; Kim D. ; Sun Y. ; Yang P. Nano Lett. 2017, 17, 1312.
doi: 10.1021/acs.nanolett.6b05287 |
17 |
Li Q. ; Zhu W. ; Fu J. ; Zhang H. ; Wu G. ; Sun S. Nano Energy 2016, 24, 1.
doi: 10.1016/j.nanoen.2016.03.024 |
18 | Ning H. ; Wang W. ; Mao Q. ; Zheng S. ; Yang Z. ; Zhao Q. ; Wu M. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂. 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
19 | Wang, J.; Li, Z.; Dong, C.; Feng, Y.; Yang, J.; Liu, H.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 2763. doi: 1021/acsami.8b20545 |
20 |
Ting L. R. L. ; Piqué O. ; Lim S. Y. ; Tanhaei M. ; Calle-Vallejo F. ; Yeo B. S. ACS Catal. 2020, 10, 4059.
doi: 10.1021/acscatal.9b05319 |
21 |
Li Y. C. ; Wang Z. ; Yuan T. ; Nam D. H. ; Luo M. ; Wicks J. ; Chen B. ; Li J. ; Li F. W. ; de Arguer F. P. G. ; et al J. Am. Chem. Soc. 2019, 141, 8584.
doi: 10.1021/jacs.9b02945 |
22 |
Kottakkat T. ; Klingan K. ; Jiang S. ; Jovanov Z. P. ; Davies V. H. ; El-Nagar G. A. M. ; Dau H. ; Roth C. ACS Appl. Mater. Interfaces 2019, 11, 14734.
doi: 10.1021/acsami.8b22071 |
23 | Zhang C. ; Chen Z. ; Lian Y. ; Chen Y. ; Li Q. ; Gu Y. ; Lu Y. ; Deng Z. ; Peng Y. Acta Phys. -Chim. Sin. 2019, 35, 1404. |
张楚风; 陈哲伟; 连跃斌; 陈宇杰; 李沁; 顾银冬; 陆永涛; 邓昭; 彭扬. 物理化学学报, 2019, 35, 1404.
doi: 10.3866/PKU.WHXB201905030 |
|
24 |
Machan C. W. ; Chabolla S. A. ; Yin J. ; Gilson M. K. ; Tezcan F. A. ; Kubiak C. P. J. Am. Chem. Soc. 2014, 136, 14598.
doi: 10.1021/ja5085282 |
25 |
Hinogami R. ; Yotsuhashi S. ; Deguchi M. ; Zenitani Y. ; Hashiba H. ; Yamada Y. ECS Electrochem. Lett. 2012, 1, H17.
doi: 10.1149/2.001204eel |
26 |
Kumar R. S. ; Kumar S. S. ; Kulandainathan M. A. Electrochem. Commun. 2012, 25, 70.
doi: 10.1016/j.elecom.2012.09.018 |
27 |
Albo J. ; Vallejo D. ; Beobide G. ; Castillo O. ; Castano P. ; Irabien A. ChemSusChem 2017, 10, 1100.
doi: 10.1002/cssc.201600693 |
28 |
Kang X. ; Zhu Q. ; Sun X. ; Hu J. ; Zhang J. ; Liu Z. ; Han B. Chem. Sci. 2016, 7, 266.
doi: 10.1039/c5sc03291a |
29 | Liu Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307. |
刘志敏. 物理化学学报, 2019, 35, 1307.
doi: 10.3866/PKU.WHXB201908014 |
|
30 |
Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. ACS Catal. 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767 |
31 |
Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc. 2015, 137, 14129.
doi: 10.1021/jacs.5b08212 |
32 |
Chen L. ; Li Y. ; Xu N. ; Zhang G. Carbon 2018, 132, 172.
doi: 10.1016/j.carbon.2018.02.051 |
33 |
Ye J. ; Johnson J. K. Catal. Sci. Tech. 2016, 6, 8392.
doi: 10.1039/c6cy01245k |
34 |
Rungtaweevoranit B. ; Baek J. ; Araujo J. R. ; Archanjo B. S. ; Choi K. M. ; Yaghi O. M. ; Somorjai G. A. Nano Lett. 2016, 16, 7645.
doi: 10.1021/acs.nanolett.6b03637 |
35 |
Diercks C. S. ; Liu Y. ; Cordova K. E. ; Yaghi O. M. Nat. Mater. 2018, 17, 301.
doi: 10.1038/s41563-018-0033-5 |
36 |
Nam D. H. ; Bushuyev O. S. ; Li J. ; De Luna P. ; Seifitokaldani A. ; Dinh C. T. ; de Arquer F. P. G. ; Wang Y. ; Liang Z. ; Proppe A. H. ; et al J. Am. Chem. Soc. 2018, 140, 11378.
doi: 10.1021/jacs.8b06407 |
37 |
Qiu Y. L. ; Zhong H. X. ; Zhang T. T. ; Xu W. B. ; Su P. P. ; Li X. F. ; Zhang H. M. ACS Appl. Mater. Interfaces 2018, 10, 2480.
doi: 10.1021/acsami.7b15255 |
38 |
Wang R. M. ; Sun X. H. ; Ould-Chikh S. ; Osadchii D. ; Bai F. ; Kapteijn F. ; Gascon J. ACS Appl. Mater. Interfaces 2018, 10, 14751.
doi: 10.1021/acsami.8b02226 |
39 |
Zhou W. ; Jia J. ; Lu J. ; Yang L. ; Hou D. ; Li G. ; Chen S. Nano Energy 2016, 28, 29.
doi: 10.1016/j.nanoen.2016.08.027 |
40 |
Huan T. N. ; Ranjbar N. ; Rousse G. ; Sougrati M. ; Zitolo A. ; Mougel V. ; Jaouen F. ; Fontecave M. ACS Catal. 2017, 7, 1520.
doi: 10.1021/acscatal.6b03353 |
41 |
Ju W. ; Bagger A. ; Hao G. P. ; Varela A. S. ; Sinev I. ; Bon V. ; Roldan Cuenya B. ; Kaskel S. ; Rossmeisl J. ; Strasser P. Nat. Commun. 2017, 8, 944.
doi: 10.1038/s41467-017-01035-z |
42 |
Cheng Y. S. ; Chu X. P. ; Ling M. ; Li N. ; Wu K. L. ; Wu F. H. ; Li H. ; Yuan G. ; Wei X. W. Catal. Sci. Tech. 2019, 9, 5668.
doi: 10.1039/C9CY01131E |
43 |
Rostamnia S. ; Alamgholiloo H. ; Liu X. J. Colloid Interface Sci. 2016, 469, 310.
doi: 10.1016/j.jcis.2016.02.021 |
44 |
Wang R. ; Wang K. ; Wang Z. ; Song H. ; Wang H. ; Ji S. J. Power Sources 2015, 297, 295.
doi: 10.1016/j.jpowsour.2015.07.107 |
45 |
Zhao K. ; Liu Y. ; Quan X. ; Chen S. ; Yu H. ACS Appl. Mater. Interfaces 2017, 9, 5302.
doi: 10.1021/acsami.6b15402 |
46 |
Han X. ; He X. ; Sun L. ; Han X. ; Zhan W. ; Xu J. ; Wang X. ; Chen J. ACS Catal. 2018, 8, 4.
doi: 10.1021/acscatal.7b04219 |
47 |
Han X. ; He X. ; Wang F. ; Chen J. ; Xu J. ; Wang X. ; Han X. J. Mater. Chem. A 2017, 5, 10220.
doi: 10.1039/c7ta01909b |
48 |
Ishizuka S. ; Kato S. ; Maruyama T. ; Akimoto K. Jpn. J. Appl. Phys. 2001, 40, 2765.
doi: 10.1143/JJAP.40.2765 |
49 |
Zheng Y. ; Cheng P. ; Xu J. ; Han J. ; Wang D. ; Hao C. ; Alanagh H. R. ; Long C. ; Shi X. ; Tang Z. Nanoscale 2019, 11, 4911.
doi: 10.1039/c8nr10236h |
50 |
Zhang L. S. ; Liang X. Q. ; Song W. G. ; Wu Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055.
doi: 10.1039/c0cp00789g |
51 |
Zhong H. X. ; Wang J. ; Zhang Y. W. ; Xu W. L. ; Xing W. ; Xu D. ; Zhang Y. F. ; Zhang X. B. Angew. Chem. Int. Ed. 2014, 53, 14235.
doi: 10.1002/anie.201408990 |
52 |
Nie X. ; Luo W. ; Janik M. J. ; Asthagiri A. J. Catal. 2014, 312, 108.
doi: 10.1016/j.jcat.2014.01.013 |
53 |
Sharma P. P. ; Wu J. ; Yadav R. M. ; Liu M. ; Wright C. J. ; Tiwary C. S. ; Yakobson B. I. ; Lou J. ; Ajayan P. M. ; Zhou X. D. Angew. Chem. Int. Ed. 2015, 54, 13701.
doi: 10.1002/anie.201506062 |
[1] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[2] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[3] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[4] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[5] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[6] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[7] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[8] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[9] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
[10] | Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008043-. |
[11] | Frits Mathias Dautzenberg, Yong Lu, Bin Xu. Controlling the Global Mean Temperature by Decarbonization [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008066-. |
[12] | Ping An, Yu Fu, Danlei Wei, Yanglong Guo, Wangcheng Zhan, Jinshui Zhang. Hollow Nitrogen-Rich Carbon Nanoworms with High Activity for Metal-Free Selective Aerobic Oxidation of Benzyl Alcohol [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001025-. |
[13] | Shuhua Duan,Shufeng Wu,Lei Wang,Houde She,Jingwei Huang,Qizhao Wang. Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905086-. |
[14] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-. |
[15] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-. |
|