Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2007070.doi: 10.3866/PKU.WHXB202007070
Special Issue: Energy and Materials Chemistry
• REVIEW • Previous Articles Next Articles
Han Wang1, Hanwen An1, Hongmei Shan2, Lei Zhao1, Jiajun Wang1,*()
Received:
2020-07-25
Accepted:
2020-08-20
Published:
2020-08-26
Contact:
Jiajun Wang
E-mail:jiajunhit@hit.edu.cn
About author:
Jiajun Wang, Email: jiajunhit@hit.edu.cn; Tel.: +86-451-86412114Supported by:
MSC2000:
Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(11): 2007070.
Fig 3
Modification of solid-state electrolyte. (a) Schematic of synthetic steps of LLTO framework composite electrolytes; (b) Electrochemical properties of LLTO composite electrolyte; (c) Schematics of conduction mechanism in composite electrolytes with agglomerated nanoparticles and LLTO framework 29. "
Fig 6
Schematic representation of element diffusion and interface reaction. (a) Cross-sectional high-angle annular dark field (HAADF) TEM images of the interface between the LiCoO2 electrode and the Li2S-P2S5 solid electrolyte 8; (b) Schematic of the experimental setup of nanobattery mounted on a TEM grid and electrochemical profile of the in situ cell 61. "
Fig 7
Schematic diagram of positive fragmentation and interface reaction characterization. (a) and (b) X-ray nano-tomography reconstruction with volume rendering shows the morphological evolution of NCM after cycling. (c) and (d) SEM images of the NCM microsphere after 100 and 200 cycles. (e) Operando 2D chemical phase mappings at the Ni K-edge of NCM particles during the first and 201st cycles. (f) SEM image and SAM mapping of Mn, S, and Cl elements from a cross-section of the composite LMO electrode after 22 cycles 65. "
1 |
Hoshina K. ; Dokko K. ; Kanamura K. J. Electrochem. Soc. 2005, 152, A2138.
doi: 10.1149/1.2041967 |
2 |
Huo H. Y. ; Liang J. N. ; Zhao N. ; Li X. N. ; Lin X. T. ; Zhao Y. ; Adair K. ; Li R. Y. ; Guo X. X. ; Sun X. L. ACS Energy Lett. 2020, 5, 2156.
doi: 10.1021/acsenergylett.0c00789 |
3 |
Huo H. Y. ; Sun J. Y. ; Chen C. ; Meng X. L. ; He M. H. ; Zhao N. ; Guo X. X. J. Power Sources 2018, 383, 150.
doi: 10.1016/j.jpowsour.2018.02.026 |
4 |
Yamamoto K. ; Yoshida R. ; Sato T. ; Matsumoto H. ; Kurobe H. ; Hamanaka T. ; Kato T. ; Iriyama Y. ; Hirayama T. J. Power Sources 2014, 266, 414.
doi: 10.1016/j.jpowsour.2014.04.154 |
5 |
Haruyama J. ; Sodeyama K. ; Han L. Y. ; Takada K. ; Tateyama Y. Chem. Mater. 2014, 26, 4248.
doi: 10.1021/cm5016959 |
6 |
Zhang W. B. ; Richter F. H. ; Culver S. P. ; Leichtweiss T. ; Lozano J. G. ; Dietrich C. ; Bruce P. G. ; Zeier W. G. ; Janek J. ACS Appl. Mater. Interfaces 2018, 10, 22226.
doi: 10.1021/acsami.8b05132 |
7 |
Wenzel S. ; Randau S. ; Leichtwei T. ; Weber D. A. ; Sann J. ; Zeier W. G. ; Janek J. Chem. Mater. 2016, 28, 2400.
doi: 10.1021/acs.chemmater.6b00610 |
8 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. Chem. Mater. 2010, 22, 949.
doi: 10.1021/cm901819c |
9 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. R. ; Wang Z. F. ; Yang W. J. ; Hu C. C. ; Luo W. ; Huang Y. H. Angew. Chem. Int. Ed. 2020, 59, 3699.
doi: 10.1002/anie.201914417 |
10 |
Xia Y. Y. ; Fujieda T. ; Tatsumi K. ; Prosini P. P. ; Sakai T. J. Power Sources 2001, 92, 234.
doi: 10.1016/S0378-7753(00)00533-4 |
11 |
Zhang D. C. ; Zhang L. ; Yang K. ; Wang H. Q. ; Yu C. ; Xu D. ; Xu B. ; Wang L. M. ACS Appl. Mater. Interfaces 2017, 9, 36886.
doi: 10.1021/acsami.7b12186 |
12 |
Xu B ; Y . ; Li W. L. ; Duan H. N. ; Wang H. J. ; Guo Y. P. ; Li H. ; Liu H. Z. J. Power Sources 2017, 354, 68.
doi: 10.1016/j.jpowsour.2017.04.026 |
13 |
Fu K. ; Gong Y. H. ; Fu Z. Z. ; Xie H. ; Yao Y. G. ; Liu B. Y. ; Carter M. ; Wachsman E. ; Hu L. B. Angew. Chem. Int. Ed. 2017, 56, 14942.
doi: 10.1002/anie.201708637 |
14 |
Xiong S. Z. ; Liu Y. Y. ; Jankowski P. ; Liu Q. ; Nitze F. ; Xie K. ; Song J. X. ; Matic A. Adv. Funct. Mater. 2020, 30, 2001444.
doi: 10.1002/adfm.202001444 |
15 |
Kato A. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2016, 309, 27.
doi: 10.1016/j.jpowsour.2016.01.068 |
16 |
Wakasugi J. ; Munakata H. ; Kanamura K. J. Electrochem. Soc. 2017, 164, A1022.
doi: 10.1149/2.0471706jes |
17 |
Han F. D. ; Westover A. S. ; Yue J. ; Fan X. L. ; Wang F. ; Chi M. F. ; Leonard D. N. ; Dudney N. ; Wang H. ; Wang C. S. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
18 |
Han X. G. ; Gong Y. H. ; Fu K. ; He X. F. ; Hitz G. T. ; Dai J. Q. ; Pearse A. ; Liu B. Y. ; Wang H. ; Rublo G. ; et al Nat. Mater. 2017, 16, 572.
doi: 10.1038/NMAT4821 |
19 |
Feng W. L. ; Dong X. L. ; Li P. L. ; Wang Y. G. ; Xia Y. Y. J. Power Sources 2019, 419, 91.
doi: 10.1016/j.jpowsour.2019.02.066 |
20 |
Deng T. ; Ji X. ; Zhao Y. ; Cao L. S. ; Li S. ; Hwang S. ; Luo C. ; Wang P. F. ; Jia H. P. ; Fan X. L. Adv. Mater. 2020, 32, 2000030.
doi: 10.1002/adma.202000030 |
21 |
Huo H. Y. ; Chen Y. ; Li R. Y. ; Zhao N. ; Luo J. ; da Silva J. G. P. ; Mucke R. ; Kaghazchi P. ; Guo X. X. ; Sun X. L. Energy Environ. Sci. 2020, 13, 127.
doi: 10.1039/c9ee01903k |
22 |
Manthiram A. ; Yu X. W. ; Wang S. F. Nat. Rev. Mater. 2017, 2, 16103.
doi: 10.1038/natrevmats.2016.103 |
23 | Jin F. ; Li J. ; Hu C. J. ; Dong H. C. ; Chen P. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399. |
金锋; 李静; 胡晨吉; 董厚才; 陈鹏; 沈炎宾; 陈立桅. 物理化学学报, 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085 |
|
24 | Du A. B. ; Chai J. C. ; Zhang J. J. ; Liu Z. H. ; Cui G. L. Energy Storage Sci. Technol. 2016, 5, 627. |
杜奥冰; 柴敬超; 张建军; 刘志宏; 崔光磊. 储能科学与技术, 2016, 5, 627.
doi: 10.12028/j.issn.2095-4239.2016.0020 |
|
25 | Li Y. ; Ding F. ; Sang L. ; Zhong H. ; Liu X. J. Energy Storage Sci. Technol. 2016, 5, 615. |
李杨; 丁飞; 桑林; 钟海; 刘兴江. 储能科学与技术, 2016, 5, 615.
doi: 10.12028/j.issn.2095-4239.2016.0043 |
|
26 |
Huo H. Y. ; Zhao N. ; Sun J. Y. ; Du F. M. ; Li Y. Q. ; Guo X. X. J. Power Sources 2017, 372, 1.
doi: 10.1016/j.jpowsour.2017.10.059 |
27 |
Huo H. Y. ; Li X. N. ; Sun Y. P. ; Lin X. T. ; Kieran D. D. ; Liang J. W. ; Gao X. J. ; Li R. Y. ; Huang H. ; Guo X. X. ; et al Nano Energy 2020, 73, 104836.
doi: 10.1016/j.nanoen.2020.104836 |
28 |
Huo H. Y. ; Chen Y. ; Luo J. ; Yang X. F. ; Guo X. X. Adv. Energy Mater. 2019, 9, 1804004.
doi: 10.1002/aenm.201804004 |
29 |
Bae J. ; Li Y. T. ; Zhang J. ; Zhou X. Y. ; Zhao F. ; Shi Y. ; Goodenough J. B. ; Yu G. H. Angew. Chem. Int. Ed. 2018, 57, 2096.
doi: 10.1002/anie.201710841 |
30 |
Liu Q. ; Liu Y. Y. ; Jiao X. X. ; Song Z. X. ; Sadd M. ; Xu X. X. ; Matic A. ; Xiong S. Z. ; Song J. X. Energy Storage Mater. 2019, 23, 105.
doi: 10.1016/j.ensm.2019.05.023 |
31 |
Cao Y. ; Zuo P. J. ; Lou S. F. ; Sun Z. ; Li Q. ; Huo H. ; Ma Y. L. ; Du C. Y. ; Gao Y. Z. ; Yin G. P. J. Mater. Chem. A 2019, 7, 6533.
doi: 10.1039/c9ta00146h |
32 |
Li Y. T. ; Chen X. ; Dolocan A. ; Cui Z. M. ; Xin S. ; Xue L. G. ; Xu H. H. ; Park K. ; Goodenough J. B. J. Am. Chem. Soc. 2018, 140, 6448.
doi: 10.1021/jacs.8b03106 |
33 |
Huo H. Y. ; Chen Y. ; Zhao N. ; Lin X. T. ; Luo J. ; Yang X. F. ; Liu Y. L. ; Guo X. X. ; Sun X. L. Nano Energy 2019, 61, 119.
doi: 10.1016/j.nanoen.2019.04.058 |
34 |
Huo H. Y. ; Luo J. ; Thangadurai V. ; Guo X. X. ; Nan C. W. ; Sun X. L. ACS Energy Lett. 2020, 5, 252.
doi: 10.1021/acsenergylett.9b02401 |
35 |
Liang J. W. ; Chen N. ; Li X. N. ; Li X. ; Adair K. R. ; Li J. J. ; Wang C. H. ; Yu C. ; Banis M. N. ; Zhang L. ; et al Chem. Mater. 2020, 32, 2664.
doi: 10.1021/acs.chemmater.9b04764 |
36 |
Lepley N. D. ; Holzwarth N. A. W. ; Du Y. J. A. Phys. Rev. B 2013, 88, 104103.
doi: 10.1103/PhysRevB.88.104103 |
37 |
Ong S. P. ; Mo Y. F. ; Richards W. D. ; Miara L. ; Lee H. S. ; Ceder G. Energy Environ. Sci. 2013, 6, 148.
doi: 10.1039/c2ee23355j |
38 |
Wu F. ; Fitzhugh W. ; Ye L. h. ; Ning J. X. ; Li X. Nat. Commun. 2018, 9, 4037.
doi: 10.1038/s41467-018-06123-2 |
39 |
Zhou W. D. ; Wang S. F. ; Li Y. T. ; Xin S. ; Manthiram A. ; Goodenough J. B. J. Am. Chem. Soc. 2016, 138, 9385.
doi: 10.1021/jacs.6b05341 |
40 |
Wu J. F. ; Pang W. K. ; Peterson V. K. ; Wei L. ; Guo X. ACS Appl. Mater. Interfaces 2017, 9, 12461.
doi: 10.1021/acsami.7b00614 |
41 |
Du F. M. ; Zhao N. ; Li Y. Q. ; Chen C. ; Liu Z. W. ; Guo X. X. J. Power Sources 2015, 300, 24.
doi: 10.1016/j.jpowsour.2015.09.061 |
42 |
Li H. Q. ; Liu F. Y. ; Li Z. Y. ; Wang S. F. ; Jin R. H. ; Liu C. Y. ; Chen Y. M. ACS Appl. Mater. Interfaces 2019, 11, 17925.
doi: 10.1021/acsami.9b06754 |
43 |
Cao D. X. ; Zhang Y. B. ; Nolan A. M. ; Sun X. ; Liu C. ; Sheng J. Z. ; Mo Y. F. ; Wang Y. ; Zhu H. L. Nano Lett. 2020, 20, 1483.
doi: 10.1021/acs.nanolett.9b02678 |
44 |
Wang L. P. ; Zhang X. D. ; Wang T. S. ; Yin Y. X. ; Shi J. L. ; Wang C. R. ; Guo Y. G. Adv. Energy Mater. 2018, 8, 1801528.
doi: 10.1002/aenm.201801528 |
45 |
Ohta N. ; Takada K. ; Zhang L. Q. ; Ma R. Z. ; Osada M. ; Sasaki T. Adv. Mater. 2006, 18, 2226.
doi: 10.1002/adma.200502604 |
46 |
Takada K. Langmuir 2013, 29, 7538.
doi: 10.1021/la3045253 |
47 |
Liang J. Y. ; Zeng X. X. ; Zhang X. D. ; Wang P. F. ; Ma J. Y. ; Yin Y. X. ; Wu X. W. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 140, 6767.
doi: 10.1021/jacs.8b03319 |
48 |
Liang J. Y. ; Zeng X. X. ; Zhang X. D. ; Zuo T. T. ; Yan M. ; Yin Y. X. ; Shi J. L. ; Wu X. W. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2019, 141, 9165.
doi: 10.1021/jacs.9b03517 |
49 |
Yan H. F. ; Voorhees P. W. ; Xin H. L. L. MRS Bull. 2020, 45, 264.
doi: 10.1557/mrs.2020.90 |
50 |
Hovden R. ; Muller D. A. MRS Bull. 2020, 45, 298.
doi: 10.1557/mrs.2020.87 |
51 |
Yu Z. J. ; Wang J. J. ; Wang L. G. ; Xie Y. ; Lou S. F. ; Jiang Z. X. ; Ren Y. ; Lee S. ; Zuo P. J. ; Huo H. ; et al ACS Energy Lett. 2019, 4, 2007.
doi: 10.1021/acsenergylett.9b01347 |
52 |
Yu Z. J. ; Wang J. J. ; Liu Y. J. MRS Bull. 2020, 45, 283.
doi: 10.1557/mrs.2020.86 |
53 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Baudry P. ; Lascaud S. Electrochim. Acta 1998, 43, 1569.
doi: 10.1016/S0013-4686(97)10055-X |
54 |
Ren Y. Y. ; Shen Y. ; Lin Y. H. ; Nan C. W. Electrochem. Commun. 2015, 57, 27.
doi: 10.1016/j.elecom.2015.05.001 |
55 |
Golozar M. ; Hovington P. ; Paolella A. ; Bessette S. ; Lagace M. ; Bouchard P. ; Demers H. ; Gauvin R. ; Zaghib K. Nano Lett. 2018, 18, 7583.
doi: 10.1021/acs.nanolett.8b03148 |
56 |
Harry K. J. ; Hallinan D. T. ; Parkinson D. Y. ; MacDowell A. A. ; Balsara N. P. Nat. Mater. 2014, 13, 69.
doi: 10.1038/NMAT3793 |
57 |
Gittleson F. S. ; El Gabaly F. Nano Lett. 2017, 17, 6974.
doi: 10.1021/acs.nanolett.7b03498 |
58 |
Zarabian M. ; Bartolini M. ; Pereira-Almao P. ; Thangadurai V. J. Electrochem. Soc. 2017, 164, A1133.
doi: 10.1149/2.0621706jes |
59 |
Park K. ; Yu B. C. ; Jung J. W. ; Li Y. T. ; Zhou W. D. ; Gao H. C. ; Son S. ; Goodenough J. B. Chem. Mater. 2016, 28, 8051.
doi: 10.1021/acs.chemmater.6b03870 |
60 |
Hovington P. ; Lagace M. ; Guerfi A. ; Bouchard P. ; Manger A. ; Julien C. M. ; Armand M. ; Zaghib K. Nano Lett. 2015, 15, 2671.
doi: 10.1021/acs.nanolett.5b00326 |
61 |
Wang Z. Y. ; Santhanagopalan D. ; Zhang W. ; Wang F. ; Xin H. L. L. ; He K. ; Li J. C. ; Dudney N. ; Meng Y. S. Nano Lett. 2016, 16, 3760.
doi: 10.1021/acs.nanolett.6b01119 |
62 |
Sun N. ; Liu Q. S. ; Cao Y. ; Lou S. F. ; Ge M. Y. ; Xiao X. H. ; Lee W. K. ; Gao Y. Z. ; Yin G. P. ; Wang J. J. Angew. Chem. Int. Ed. 2019, 58, 18647.
doi: 10.1002/anie.201910993 |
63 |
Nakayama M. ; Wada S. ; Kuroki S. ; Nogami M. Energy Environ. Sci. 2010, 3, 1995.
doi: 10.1039/c0ee00266f |
64 |
Auvergniot J. ; Cassel A. ; Ledeuil J. B. ; Viallet V. ; Seznec V. ; Dedryvere R. Chem. Mater. 2017, 29, 3883.
doi: 10.1021/acs.chemmater.6b04990 |
65 |
Zhang F. ; Lou S. F. ; Li S. ; Yu Z. J. ; Liu Q. S. ; Dai A. ; Cao C. T. ; Toney M. F. ; Ge M. Y. ; Wang J. J. ; et al Nat. Commun. 2020, 11, 3050.
doi: 10.1038/s41467-020-16824-2 |
66 |
Besli M. M. ; Xia S. H. ; Kuppan S. ; Huang Y. Q. ; Metzger M. ; Shukla A. K. ; Schneider G. ; Hellstrom S. ; Christensen J. ; Doeff M. M. ; et al Chem. Mater. 2019, 31, 491.
doi: 10.1021/acs.chemmater.8b04418 |
[1] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[2] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[3] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[4] | Yuhao Yin, Yang Shen, Hu Wang, Xiao Chen, Lin Shao, Wenyu Hua, Juan Wang, Yi Cui. In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006016-. |
[5] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[6] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[7] | Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002024-. |
[8] | Mingkai Chang, Na Hu, Yao Li, Dongfan Xian, Wanqiang Zhou, Jingyi Wang, Yanlin Shi, Chunli Liu. Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003031-. |
[9] | Zhiyang Chen, Yating Tang, Ze Lü, Xiaohan Meng, Qianwei Liang, Jianguo Feng. Citronella Oil Nanoemulsion: Formulation, Characterization, Antibacterial Activity, and Cytotoxicity [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2205053-. |
[10] | Houfu Song, Feiyu Kang. Recent Progress on Thermal Conduction of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101013-. |
[11] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[12] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[13] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-. |
[14] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-. |
[15] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-. |
|