Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2005027.doi: 10.3866/PKU.WHXB202005027
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Zuzeng Qin1,*(), Jing Wu1, Bin Li1, Tongming Su1, Hongbing Ji1,2,*(
)
Received:
2020-05-11
Accepted:
2020-06-18
Published:
2020-06-24
Contact:
Zuzeng Qin,Hongbing Ji
E-mail:qinzuzeng@gxu.edu.cn;jihb@mail.sysu.edu.cn
About author:
Email: jihb@mail.sysu.edu.cn (H.J.); Tel.: +86-20-84113658 (H. J.)Supported by:
MSC2000:
Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2005027.
Fig 7
Transition metals and sulfur group elements contained in about 40 kinds of TMDC displayed in color in the periodic table. Only part of Co, Rh, IR and Ni are shown in color, indicating that only part of these transition elements are layered. Adapted from Nature Chemistry, Springer publisher 68. Color online."
Fig 10
(a) UV-Vis diffuse reflectance spectra and (b) Tauc plots of gersiloxenes (x = 0.1, 0.3, 0.5, 0.7, 0.9), GeH and Si6H3(OH)3; (c) schematic illustration of topotactic deintercalation of CaGe2−2xSi2x to gersiloxenes (GeH)1−x(SiOH)x (x < 0.5) or (GeH)1−xSix(OH)0.5Hx−0.5(x ≥ 0.5) 84. Ca, blue; Ge, green; H, white; O, red; Si, yellow. Color online."
Table 1
Preparation, modification methods, photocatalytic activity test conditions, and product yield of ultrathin layered catalyst for photocatalytic CO2 reduction"
Photocatalyst species | Preparation method | Sacrificial agent | Reaction phase state | Light source | Product | Catalyst dosage (mg) | Yield (μmol∙h−1) | Ref |
g-C3N4 | Annealed at 550 ℃ | G-S | 300 W Xe lamp | CH4 | 20 | 0.10 | ||
S@g-C3N4 | Using thiourea instead of melamine as raw material | G-S | 300 W Xe lamp | CH3OH | 100 | 0.037 | ||
(VN)g-C3N4 | Post-treatment with 3% hydrogen argon at 550 ℃ in a tubular furnace | G-S | 500 W Xe lamp, 400 nm filter | CH4 | 1.16 (g−1) | |||
0D/2D BP/g-C3N4 | Mechanical mixing | G-S | 300 W Xe lamp | CO | 30 | 0.20 | ||
2D/2D g-C3N4/NiAl-LDH | In situ hydrothermal synthesis of NiAl-LDH on g-C3N4 | G-S | 300 W Xe lamp, 420 nm filter | CO | 50 | 0.41 | ||
(VO)ZnAl-(LDH) | Reverse micelle method | G-S | 300 W Xe lamp | CO | 100 | 0.76 | ||
(VO)TiO2QDs/g-C3N4 | In situ pyrolysis of mixture of melamine and NH2-MIL-125 (Ti) | TEOA | G-L-S | 300 W Xe lamp, 400 nm filter | CO | 5 | 0.47 | |
0D/2D B4C/TiO2 | In situ formation of TiO2 on B4C by solvothermal addition | G-S | 300 W Xe lamp | CH4 | 6 | 0.025 | ||
0D/2D Cu/TiO2 | In situ online synchronous photo deposition | G-L-S | 300 W Xe lamp | CO | 100 | 0.16 | ||
2D/2D SnS2/TiO2 | In situ hydrothermal synthesis of SnS2 on TiO2 | G-S | 300 W Xe lamp | CH4 | 100 | 2.3 | ||
GO | Use mild oxidant H3PO4 instead of H2SO4 | G-S | 300 W Halogen lamp | CH3OH | 200 | 0.030 | ||
MEA-ZnO | Amino functionalization of monoethanolamine by hydrothermal method | G-S | 300 W Xe lamp | CO | 20 | 0.13 | ||
0D/2D Cu2O/WO3-001 | Electrodeposition of Cu2O on the surface of WO3 | G-S | 300 W Xe lamp, (400 nm filter) | CO | 85 | 0.49 | ||
Co3O4(Adding photosensitizer) | Calcination of Co-MOF nano tablets as precursors | TEOA | G-L-S | 5 W LED lamp | CO | 7.5 | 4.5 | |
Bi2WO6 | Intermediate precursor method of lamellar Bi-oleate complex | G-L-S | 300 W Xe lamp, AM 1.5G filter | CH3OH | 200 | 15 | ||
Bi2MoO6 | Solvothermal method | G-L-S | 13 W LED lamp | C2H5OH | 50 | 1.7 | ||
Co@BiVO4 | In situ doping, self-assembly of surfactant (CTAB) | G-S | 25 W Ultraviolet lamp | CH4 | 30 | 0.69 | ||
(VV)BiVO4 | Self-assembly of surfactant (CTAB), Lower reaction temperature and longer reaction time | G-L-S | 300 W Xe lamp, AM 1.5 filter | CH3OH | 200 | 79.66 | ||
Sr3Ti(2−x−y)FexSO(7−z)Nz | In situ doping of Fe2O3 and thiourea | NaOH | G-L-S | 77 W Mercury lamp | CH3OH | 400 | 24 | |
Ag/BaLa4Ti4O15 | Ag loaded as cocatalyst | G-L-S | 400 W Mercury lamp | CO | 300 | 22 | ||
BiOCl | Self-assembly of surfactant (CTAB) | G-L-S | 500 W Xe lamp | CH4 | 100 | 0.15 | ||
(VO)BiOBr | Solvothermal method of glycol instead of water | G-S | 500 W Xe lamp, AM 1.5 filter | CH4 | 0.96 (g−1) | |||
Bi4O5Br2-UN | Self-assembly of surfactant (CTAB) | G-S | 300 W Xe lamp | CO | 20 | 0.63 | ||
0D/2D Ag/2H-MoS2 | Phase transformation in o-dichlorobenzene after liquid flaking, then loading Ag particles by chemical reduction | G-L-S | 250 W Mercury lamp | CH3OH | 20 | 7.3 | ||
Partial oxidation SnS2 | Solvothermal method of glycol replacing one sixth of water | G-S | 300 W Xe lamp, AM 1.5 filter, 420 nm filter | CO | 100 | 1.2 | ||
Zn-MOF(Adding photosensitizer) | Solvothermal method | TEOA | G-L-S | 300 W Xe lamp, 420 nm filter | CO | 10 | 133.8 | |
HGeSiOH | Accomplished by the typical topotactic deintercalation of the Zintl-phase precursor in −30 ℃ hydrochloric acid | NaSO3 | G-L-S | 300 W Xe lamp | CO | 60 | 0.41 |
Fig 12
ESR spectra of (A) ZnAl-1, (B) ZnAl-2, and (C) ZnAl-3; (D) UV-vis diffuse reflectance spectra of (a) ZnAl-1, (b) ZnAl-2, and (c) ZnAl-3 22. Each plot (A)–(C) contains spectra for (a) fresh catalyst, (b) catalyst after 20 min of visible light irradiation (λ > 400 nm), and (c) catalyst after 20 min of UV-Vis light irradiation. All ESR spectra were collected at room temperature under an Ar atmosphere. "
Fig 13
DFT calculations for calculated density of states of (A) V-defective o-BiVO4 single-unit-cell layer slab and (B) perfect o-BiVO4 single-·unit-cell layer slab along the [001] orientation; (C) positron lifetime spectrum of defects characterization for the Vv-rich and Vv-poor o-BiVO4 atomic layers; (D, E) schematic representation of trapped positrons 120."
Fig 14
(a) Photocatalytic CO2 → CO reduction activity of Cu/TiO2-2 for three consecutive runs, (b) high-resolution XPS spectra of the Cu 2p region of Cu/TiO2-2/24 h and Cu/TiO2-2, (c) UV-Vis absorption spectra of pristine TiO2, Cu/TiO2-2, Cu/TiO2-2/24 h, and Cu/TiO2/Air, (d) high-resolution XPS spectra of the O 1s region of Cu/TiO2-2/24 h and Cu/TiO2-2, (e) EDS mapping images of Cu/TiO2-2 125."
Fig 15
(a) PL spectra and (b) transient photocurrent responses of g-C3N4, NiAl-LDH, and g-C3N4/NiAl-LDH heterojunction photocatalysts; (c) Schematic illustration of the proposed mechanism for CO2 photoreduction in the g-C3N4/NiAl-LDH heterojunctions; (d) schematic illustration of the synthesis process of g-C3N4/NiAl-LDH hybrid heterojunctions 128."
1 |
Vergara J. ; McKesson C. ; Walczak M. Energy Policy 2012, 49, 333.
doi: 10.1016/j.enpol.2012.06.026 |
2 |
Zhao Y. ; Liu Z. Chin. J. Chem. 2018, 36 (5), 455.
doi: 10.1002/cjoc.201800014 |
3 |
Steinlechner C. ; Junge H. Angew. Chem. Int. Edit. 2018, 57 (1), 44.
doi: 10.1002/anie.201709032 |
4 |
Guo S. H. ; Zhou J. ; Zhao X. ; Sun C. Y. ; You S. Q. ; Wang X. L. ; Su Z. M. J. Catal. 2019, 369, 201.
doi: 10.1016/j.jcat.2018.11.004 |
5 |
Li A. ; Wang T. ; Li C. ; Huang Z. ; Luo Z. ; Gong J. Angew. Chem. Int. Edit. 2019, 58 (12), 3804.
doi: 10.1002/anie.201812773 |
6 |
Zhou B. ; Song J. ; Xie C. ; Chen C. ; Qian Q. ; Han B. ACS Sustain. Chem. Eng. 2018, 6 (5), 5754.
doi: 10.1021/acssuschemeng.8b00956 |
7 |
Ye J. ; He J. ; Wang S. ; Zhou X. ; Zhang Y. ; Liu G. ; Yang Y. Sep. Purif. Technol. 2019, 220, 8.
doi: 10.1016/j.seppur.2019.03.042 |
8 |
Ávila-López M. A. ; Luévano-Hipólito E. ; Torres-Martínez L. M. J. Photochem. Photobiol. A 2019, 382, 111933.
doi: 10.1016/j.jphotochem.2019.111933 |
9 |
Wang Z. -J. ; Song H. ; Pang H. ; Ning Y. ; Dao T. D. ; Wang Z. ; Chen H. ; Weng Y. ; Fu Q. ; Nagao T. Appl. Catal. B 2019, 250, 10.
doi: 10.1016/j.apcatb.2019.03.003 |
10 |
Wang H. ; Zhang L. ; Wang K. ; Sun X. ; Wang W. Appl. Catal. B 2019, 243, 771.
doi: 10.1016/j.apcatb.2018.11.021 |
11 |
Qin Z. ; Tian H. ; Su T. ; Ji H. ; Guo Z. RSC Adv. 2016, 6 (58), 52665.
doi: 10.1039/C6RA03340G |
12 |
Su T. ; Tian H. ; Qin Z. ; Ji H. Appl. Catal. B 2017, 202, 364.
doi: 10.1016/j.apcatb.2016.09.035 |
13 |
Teh Y. W. ; Goh Y. W. ; Kong X. Y. ; Ng B. -J. ; Yong S. -T. ; Chai S. -P. ChemCatChem 2019, 11 (24), 6431.
doi: 10.1002/cctc.201901653 |
14 |
Li P. ; Xu H. ; Liu L. ; Kako T. ; Umezawa N. ; Abe H. ; Ye J. J. Mater. Chem. A 2014, 2 (16), 5606.
doi: 10.1039/C4TA00105B |
15 | Shen W. J. Acta Phys. -Chim. Sin. 2017, 33 (3), 455. |
申文杰. 物理化学学报, 2017, 33 (3), 455.
doi: 10.3866/PKU.WHXB201702231 |
|
16 |
Pang H. ; Meng X. ; Song H. ; Zhou W. ; Yang G. ; Zhang H. ; Izumi Y. ; Takei T. ; Jewasuwan W. ; Fukata N. ; et al Appl. Catal. B 2019, 244, 1013.
doi: 10.1016/j.apcatb.2018.12.010 |
17 |
Zhang P. ; Wang S. ; Guan B. Y. ; Lou X. W. Energy Environ. Sci. 2019, 12 (1), 164.
doi: 10.1039/C8EE02538J |
18 |
Xia W. ; Wu J. ; Hu J. C. ; Sun S. ; Li M. -D. ; Liu H. ; Lan M. ; Wang F. ChemSusChem 2019, 12 (20), 4617.
doi: 10.1002/cssc.201901633 |
19 | Zhou L ; Zhang X. H. ; Lin L. ; Li P. ; Shao K. J. ; Li C. Z. ; He T. Acta Phys. -Chim. Sin. 2017, 33 (9), 1884. |
周亮; 张雪华; 林琳; 李盼; 邵坤娟; 李春忠; 贺涛. 物理化学学报, 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084 |
|
20 |
Zhang Y. ; Zhou Y. ; Tang L. ; Wang M. ; Li P. ; Tu W. ; Liu J. ; Zou Z. Part. Part. Syst. Charact. 2016, 33 (8), 583.
doi: 10.1002/ppsc.201500235 |
21 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨. 物理化学学报, 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
22 |
Zhao Y. ; Chen G. ; Bian T. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. -Z. ; Tung C. -H. ; Smith L. J. ; O'Hare D. ; Zhang T. .Adv. Mater. 2015, 27 (47), 7824.
doi: 10.1002/adma.201503730 |
23 |
Wu H. -Z. ; Bandaru S. ; Huang X. -L. ; Liu J. ; Li L. -L. ; Wang Z. .Phys. Chem. Chem. Phys. 2019, 21 (3), 1514.
doi: 10.1039/C8CP06956E |
24 |
Han C. ; Wang B. ; Wu C. ; Shen S. ; Zhang X. ; Sun L. ; Tian Q. ; Lei Y. ; Wang Y. ChemistrySelect 2019, 4 (7), 2211.
doi: 10.1002/slct.201900102 |
25 |
Sun S. ; Watanabe M. ; Wang P. ; Ishihara T. ACS Appl. Energy Mater. 2019, 2 (3), 2104.
doi: 10.1021/acsaem.8b02153 |
26 |
Kulandaivalu T. ; Abdul Rashid S. ; Sabli N. ; Tan T. L. Diam. Relat. Mater. 2019, 91, 64.
doi: 10.1016/j.diamond.2018.11.002 |
27 |
Du F. ; Lu H. ; Lu S. ; Wang J. ; Xiao Y. ; Xue W. ; Cao S. Int. J. Hydrog. Energy 2018, 43 (6), 3223.
doi: 10.1016/j.ijhydene.2017.12.181 |
28 |
Feng L. P. ; Li A. ; Wang P. C. ; Liu Z. T. J. Phys. Chem. C 2018, 122 (42), 24359.
doi: 10.1021/acs.jpcc.8b06211 |
29 |
Meng M. ; Gan Z. ; Zhang J. ; Liu K. ; Wang L. ; Li S. ; Yao Y. ; Zhu Y. ; Li J. Phys. Status Solidi B 2017, 254 (7), 1700011.
doi: 10.1002/pssb.201700011 |
30 |
Liu C. ; Huang H. ; Ye L. ; Yu S. ; Tian N. ; Du X. ; Zhang T. ; Zhang Y. Nano Energy 2017, 41, 738.
doi: 10.1016/j.nanoen.2017.10.031 |
31 |
Hu S. ; Zhu M. ChemCatChem 2019, 11 (24), 6147.
doi: 10.1002/cctc.201901597 |
32 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075 |
33 |
Wang L. ; Hou Y. ; Xiao S. ; Bi F. ; Zhao L. ; Li Y. ; Zhang X. ; Gai G. ; Dong X. RSC Adv. 2019, 9 (67), 39304.
doi: 10.1039/C9RA08922E |
34 |
Samanta S. ; Yadav R. ; Kumar A. ; Kumar Sinha A. ; Srivastava R. Appl. Catal. B 2019, 259, 118054.
doi: 10.1016/j.apcatb.2019.118054 |
35 |
Niu P. ; Yang Y. ; Yu J. C. ; Liu G. ; Cheng H. -M. Chem. Commun. 2014, 50 (74), 10837.
doi: 10.1039/C4CC03060E |
36 |
Ding F. ; Yang D. ; Tong Z. ; Nan Y. ; Wang Y. ; Zou X. ; Jiang Z. Environ. Sci. Nano 2017, 4 (7), 1455.
doi: 10.1039/C7EN00255F |
37 |
Carvalho A. ; Wang M. ; Zhu X. ; Rodin A. S. ; Su H. ; Castro Neto A. H. Nat. Rev. Mater. 2016, 1 (11), 16061.
doi: 10.1038/natrevmats.2016.61 |
38 |
Liu H. ; Neal A. T. ; Zhu Z. ; Luo Z. ; Xu X. ; Tománek D. ; Ye P. D. ACS Nano 2014, 8 (4), 4033.
doi: 10.1021/nn501226z |
39 |
Xia F. ; Wang H. ; Xiao D. ; Dubey M. ; Ramasubramaniam A. Nat. Photonics 2014, 8 (12), 899.
doi: 10.1038/nphoton.2014.271 |
40 |
Low J. ; Cao S. ; Yu J. ; Wageh S. Chem. Commun. 2014, 50 (74), 10768.
doi: 10.1039/C4CC02553A |
41 |
Guo Z. ; Chen S. ; Wang Z. ; Yang Z. ; Liu F. ; Xu Y. ; Wang J. ; Yi Y. ; Zhang H. ; Liao L. ; et al Adv. Mater. 2017, 29 (42), 1703811.
doi: 10.1002/adma.201703811 |
42 |
Wang X. ; Jones A. M. ; Seyler K. L. ; Tran V. ; Jia Y. ; Zhao H. ; Wang H. ; Yang L. ; Xu X. ; Xia F. Nat. Nanotechnol. 2015, 10 (6), 517.
doi: 10.1038/nnano.2015.71 |
43 |
Ezawa M. New J. Phys. 2014, 16 (11), 115004.
doi: 10.1088/1367-2630/16/11/115004 |
44 |
Rudenko A. N. ; Katsnelson M. I. Phys. Rev. B 2014, 89 (20), 201408.
doi: 10.1103/PhysRevB.89.201408 |
45 |
Han C. ; Li J. ; Ma Z. ; Xie H. ; Waterhouse G. I. N. ; Ye L. ; Zhang T. Sci. China Mater. 2018, 61 (9), 1159.
doi: 10.1007/s40843-018-9245-y |
46 |
Bai H. ; Li C. ; Shi G. Adv. Mater. 2011, 23 (9), 1089.
doi: 10.1002/adma.201003753 |
47 |
Dreyer D. R. ; Park S. ; Bielawski C. W. ; Ruoff R. S. Chem. Soc. Rev. 2010, 39 (1), 228.
doi: 10.1039/B917103G |
48 |
Albero J. ; Mateo D. ; Garcia H. Molecules 2019, 24 (5), 906.
doi: 10.3390/molecules24050906 |
49 |
Yeh T. F. ; Syu J. M. ; Cheng C. ; Chang T. H. ; Teng H. Adv. Funct. Mater. 2010, 20 (14), 2255.
doi: 10.1002/adfm.201000274 |
50 |
Hsu H. C. ; Shown I. ; Wei H. Y. ; Chang Y. C. ; Du H. Y. ; Lin Y. G. ; Tseng C. A. ; Wang C. H. ; Chen L. C. ; Lin Y. C. ; et al Nanoscale 2013, 5 (1), 262.
doi: 10.1039/C2NR31718D |
51 |
Zhang X. ; Yang J. ; Cai T. ; Zuo G. ; Tang C. Appl. Surf. Sci. 2018, 443, 558.
doi: 10.1016/j.apsusc.2018.02.275 |
52 |
Liao Y. ; Hu Z. ; Gu Q. ; Xue C. Molecules 2015, 20 (10), 18847.
doi: 10.3390/molecules201018847 |
53 |
Shi W. ; Guo X. ; Cui C. ; Jiang K. ; Li Z. ; Qu L. ; Wang J. C. Appl. Catal. B 2019, 243, 236.
doi: 10.1016/j.apcatb.2018.09.076 |
54 |
Chen W. ; Han B. ; Tian C. ; Liu X. ; Liang S. ; Deng H. ; Lin Z. Appl. Catal. B 2019, 244, 996.
doi: 10.1016/j.apcatb.2018.12.045 |
55 |
Shi R. ; Waterhouse G. I. N. ; Zhang T. Solar RRL 2017, 1 (11), 1700126.
doi: 10.1002/solr.201700126 |
56 |
Yi H. ; Qin L. ; Huang D. ; Zeng G. ; Lai C. ; Liu X. ; Li B. ; Wang H. ; Zhou C. ; Huang F. ; et al Chem. Eng. J. 2019, 358, 480.
doi: 10.1016/j.cej.2018.10.036 |
57 |
Silva Ribeiro C. ; Azário Lansarin M. React. Kinet. Mech. Catal. 2019, 127 (2), 1059.
doi: 10.1007/s11144-019-01591-z |
58 |
Jeyalakshmi V. ; Mahalakshmy R. ; Ramesh K. ; Rao P. V. C. ; Choudary N. V. ; Sri Ganesh G. ; Thirunavukkarasu K. ; Krishnamurthy K. R. ; Viswanathan B. RSC Adv. 2015, 5 (8), 5958.
doi: 10.1039/C4RA11985A |
59 |
Iizuka K. ; Wato T. ; Miseki Y. ; Saito K. ; Kudo A. J. Am. Chem. Soc. 2011, 133 (51), 20863.
doi: 10.1021/ja207586e |
60 |
Yang Y. ; Zhang C. ; Lai C. ; Zeng G. ; Huang D. ; Cheng M. ; Wang J. ; Chen F. ; Zhou C. ; Xiong W. Adv. Colloid Interface Sci. 2018, 254, 76.
doi: 10.1016/j.cis.2018.03.004 |
61 |
Wang Z. ; Chen M. ; Huang D. ; Zeng G. ; Xu P. ; Zhou C. ; Lai C. ; Wang H. ; Cheng M. ; Wang W. Chem. Eng. J. 2019, 374, 1025.
doi: 10.1016/j.cej.2019.06.018 |
62 |
Zhou C. ; Lai C. ; Xu P. ; Zeng G. ; Huang D. ; Zhang C. ; Cheng M. ; Hu L. ; Wan J. ; Liu Y. ; et al ACS Sustain. Chem. Eng. 2018, 6 (3), 4174.
doi: 10.1021/acssuschemeng.7b04584 |
63 |
Zhao L. ; Zhang X. ; Fan C. ; Liang Z. ; Han P. Physica B 2012, 407 (17), 3364.
doi: 10.1016/j.physb.2012.04.039 |
64 |
Zhang L. ; Wang W. ; Jiang D. ; Gao E. ; Sun S. Nano Res. 2015, 8 (3), 821.
doi: 10.1007/s12274-014-0564-2 |
65 |
Wu D. ; Ye L. ; Yip H. Y. ; Wong P. K. Catal. Sci. Technol. 2017, 7 (1), 265.
doi: 10.1039/C6CY02040B |
66 |
Ye L. ; Jin X. ; Ji X. ; Liu C. ; Su Y. ; Xie H. ; Liu C. Chem. Eng. J. 2016, 291, 39.
doi: 10.1016/j.cej.2016.01.032 |
67 |
Kong X. Y. ; Lee W. P. C. ; Ong W. -J. ; Chai S. -P. ; Mohamed A. R. ChemCatChem 2016, 8 (19), 3074.
doi: 10.1002/cctc.201600782 |
68 |
Chhowalla M. ; Shin H. S. ; Eda G. ; Li L. -J. ; Loh K. P. ; Zhang H. Nat. Chem. 2013, 5 (4), 263.
doi: 10.1038/nchem.1589 |
69 |
Zheng Y. ; Yin X. ; Jiang Y. ; Bai J. ; Tang Y. ; Shen Y. ; Zhang M. Energy Technol. 2019, 7 (11), 1900582.
doi: 10.1002/ente.201900582 |
70 |
Jiao X. ; Li X. ; Jin X. ; Sun Y. ; Xu J. ; Liang L. ; Ju H. ; Zhu J. ; Pan Y. ; Yan W. ; et al J. Am. Chem. Soc. 2017, 139 (49), 18044.
doi: 10.1021/jacs.7b10287 |
71 |
Zhang J. ; Wang Y. ; Jin J. ; Zhang J. ; Lin Z. ; Huang F. ; Yu J. ACS Appl. Mater. Interfaces 2013, 5 (20), 10317.
doi: 10.1021/am403327g |
72 |
Su T. ; Hood Z. D. ; Naguib M. ; Bai L. ; Luo S. ; Rouleau C. M. ; Ivanov I. N. ; Ji H. ; Qin Z. ; Wu Z. ACS Appl. Energy Mater. 2019, 2 (7), 4640.
doi: 10.1021/acsaem.8b02268 |
73 |
Su T. ; Hood Z. D. ; Naguib M. ; Bai L. ; Luo S. ; Rouleau C. M. ; Ivanov I. N. ; Ji H. ; Qin Z. ; Wu Z. Nanoscale 2019, 11 (17), 8138.
doi: 10.1039/C9NR00168A |
74 |
Sun Z. ; Talreja N. ; Tao H. ; Texter J. ; Muhler M. ; Strunk J. ; Chen J. Angew. Chem. Int. Edit. 2018, 57 (26), 7610.
doi: 10.1002/anie.201710509 |
75 |
Zhang X. ; Zhang Z. ; Li J. ; Zhao X. ; Wu D. ; Zhou Z. J. Mater. Chem. A 2017, 5 (25), 12899.
doi: 10.1039/C7TA03557H |
76 |
Zhao Y. ; Jia X. ; Waterhouse G. I. N. ; Wu L. -Z. ; Tung C. -H. ; O'Hare D. ; Zhang T. .Adv. Energy Mater. 2016, 6 (6), 1501974.
doi: 10.1002/aenm.201501974 |
77 |
Liu C. ; Wang W. ; Liu B. ; Qiao J. ; Lv L. ; Gao X. ; Zhang X. ; Xu D. ; Liu W. ; Liu J. ; et al Catalysts 2019, 9 (8), 658.
doi: 10.3390/catal9080658 |
78 |
Fu Y. ; Wu J. ; Du R. ; Guo K. ; Ma R. ; Zhang F. ; Zhu W. ; Fan M. RSC Adv. 2019, 9 (65), 37733.
doi: 10.1039/C9RA08097J |
79 |
Ye L. ; Gao Y. ; Cao S. ; Chen H. ; Yao Y. ; Hou J. ; Sun L. Appl. Catal. B 2018, 227, 54.
doi: 10.1016/j.apcatb.2018.01.028 |
80 |
Wang C. ; Liu X. -M. ; Zhang M. ; Geng Y. ; Zhao L. ; Li Y. -G. ; Su Z. -M. ACS Sustain. Chem. Eng. 2019, 7 (16), 14102.
doi: 10.1021/acssuschemeng.9b02699 |
81 |
Wang S. ; Wang X. Small 2015, 11 (26), 3097.
doi: 10.1002/smll.201500084 |
82 |
Matthes L. ; Pulci O. ; Bechstedt F. J. Phys. Condens. Matter 2013, 25 (39), 395305.
doi: 10.1088/0953-8984/25/39/395305 |
83 |
Zhou S. ; Pei W. ; Zhao J. ; Du A. Nanoscale 2019, 11 (16), 7734.
doi: 10.1039/C9NR01336A |
84 |
Zhao F. ; Feng Y. ; Wang Y. ; Zhang X. ; Liang X. ; Li Z. ; Zhang F. ; Wang T. ; Gong J. ; Feng W. Nat. Commun. 2020, 11 (1), 1443.
doi: 10.1038/s41467-020-15262-4 |
85 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306 (5696), 666.
doi: 10.1126/science.1102896 |
86 |
Castellanos-Gomez A. ; Vicarelli L. ; Prada E. ; Island J. O. ; Narasimha-Acharya K. L. ; Blanter S. I. ; Groenendijk D. J. ; Buscema M. ; Steele G. A. ; Alvarez J. V. ; et al 2D Mater. 2014, 1 (2), 025001.
doi: 10.1088/2053-1583/1/2/025001 |
87 |
Xiao H. ; Zhao M. ; Zhang J. ; Ma X. ; Zhang J. ; Hu T. ; Tang T. ; Jia J. ; Wu H. Electrochem. Commun. 2018, 89, 10.
doi: 10.1016/j.elecom.2018.02.010 |
88 |
Sun Z. ; Fan Q. ; Zhang M. ; Liu S. ; Tao H. ; Texter J. Adv. Sci. 2019, 6 (18), 1901084.
doi: 10.1002/advs.201901084 |
89 |
Wang J. ; Shen Z. ; Yi M. Carbon 2019, 153, 156.
doi: 10.1016/j.carbon.2019.07.008 |
90 | Zhang F. ; Ye C. ; Cui N. ; Guo P. ; Wu M. ; Lyu L. ; Lin C. ; Zhan Z. Surf. Technol. 2019, 48 (6), 20. |
张帆; 叶辰; 崔乃元; 郭沛; 吴明亮; 吕乐; 林正得; 詹肇麟. 表面技术, 2019, 48 (6), 20.
doi: 10.16490/j.cnki.issn.1001-3660.2019.06.002 |
|
91 |
Miao J. ; Xu G. ; Liu J. ; Lv J. ; Wu Y. J. Solid State Chem. 2017, 246, 186.
doi: 10.1016/j.jssc.2016.11.028 |
92 |
Fan C. ; Miao J. ; Xu G. ; Liu J. ; Lv J. ; Wu Y. RSC Adv. 2017, 7 (59), 37185.
doi: 10.1039/C7RA05732F |
93 |
Zheng X. ; Wang G. ; Huang F. ; Liu H. ; Gong C. ; Wen S. ; Hu Y. ; Zheng G. ; Chen D. Front. Chem. 2019, 7, 544.
doi: 10.3389/fchem.2019.00544 |
94 |
Brent J. R. ; Savjani N. ; Lewis E. A. ; Haigh S. J. ; Lewis D. J. ; O'Brien P. Chem. Commun. 2014, 50 (87), 13338.
doi: 10.1039/C4CC05752J |
95 |
Yasaei P. ; Kumar B. ; Foroozan T. ; Wang C. ; Asadi M. ; Tuschel D. ; Indacochea J. E. ; Klie R. F. ; Salehi-Khojin A. Adv. Mater. 2015, 27 (11), 1887.
doi: 10.1002/adma.201405150 |
96 |
Di J. ; Xia J. ; Li X. ; Ji M. ; Xu H. ; Chen Z. ; Li H. Carbon 2016, 107, 1.
doi: 10.1016/j.carbon.2016.05.028 |
97 |
Peng J. ; Chen X. ; Ong W. -J. ; Zhao X. ; Li N. Chem 2019, 5 (1), 18.
doi: 10.1016/j.chempr.2018.08.037 |
98 |
She X. ; Wu J. ; Zhong J. ; Xu H. ; Yang Y. ; Vajtai R. ; Lou J. ; Liu Y. ; Du D. ; Li H. ; et al Nano Energy 2016, 27, 138.
doi: 10.1016/j.nanoen.2016.06.042 |
99 |
He M. ; Lei J. ; Zhou C. ; Shi H. ; Sun X. ; Gao B. Mater. Res. Express 2019, 6 (11), 1150.
doi: 10.1088/2053-1591/ab4d70 |
100 |
Srivastava S. ; Kashyap P. K. ; Singh V. ; Senguttuvan T. D. ; Gupta B. K. New J. Chem. 2018, 42 (12), 9550.
doi: 10.1039/C8NJ00885J |
101 |
Khalifa Z. S. ; Mahmoud S. A. Phys. E 2017, 91, 60.
doi: 10.1016/j.physe.2017.03.010 |
102 |
Meier A. J. ; Garg A. ; Sutter B. ; Kuhn J. N. ; Bhethanabotla V. R. ACS Sustain. Chem. Eng. 2019, 7 (1), 265.
doi: 10.1021/acssuschemeng.8b03168 |
103 |
Zhou C. ; Zhao Y. ; Shang L. ; Shi R. ; Wu L. -Z. ; Tung C. -H. ; Zhang T. Chem. Commun. 2016, 52 (53), 8239.
doi: 10.1039/C6CC03739A |
104 |
Cheng W. ; He J. ; Yao T. ; Sun Z. ; Jiang Y. ; Liu Q. ; Jiang S. ; Hu F. ; Xie Z. ; He B. ; et al J. Am. Chem. Soc. 2014, 136 (29), 10393.
doi: 10.1021/ja504088n |
105 |
Zhou Y. ; Zhang Y. ; Lin M. ; Long J. ; Zhang Z. ; Lin H. ; Wu J. C. S. ; Wang X. Nat. Commun. 2015, 6 (1), 8340.
doi: 10.1038/ncomms9340 |
106 |
Liang L. ; Lei F. ; Gao S. ; Sun Y. ; Jiao X. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Edit. 2015, 54 (47), 13971.
doi: 10.1002/anie.201506966 |
107 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136 (19), 6826.
doi: 10.1021/ja501866r |
108 |
Gao S. ; Sun Y. ; Lei F. ; Liu J. ; Liang L. ; Li T. ; Pan B. ; Zhou J. ; Xie Y. Nano Energy 2014, 8, 205.
doi: 10.1016/j.nanoen.2014.05.017 |
109 |
Lopez-Bezanilla A. Phys. Rev. B 2016, 93 (3), 035433.
doi: 10.1103/PhysRevB.93.035433 |
110 |
Bai Y. ; Yang P. ; Wang L. ; Yang B. ; Xie H. ; Zhou Y. ; Ye L. Chem. Eng. J. 2019, 360, 473.
doi: 10.1016/j.cej.2018.12.008 |
111 |
Ahsaine H. A. ; Slassi A. ; Naciri Y. ; Chennah A. ; Jaramillo-Páez C. ; Anfar Z. ; Zbair M. ; Benlhachemi A. ; Navío J. A. ChemistrySelect 2018, 3 (27), 7778.
doi: 10.1002/slct.201801729 |
112 |
Wang K. ; Zhang L. ; Su Y. ; Sun S. ; Wang Q. ; Wang H. ; Wang W. Catal. Sci. Technol. 2018, 8 (12), 3115.
doi: 10.1039/C8CY00513C |
113 |
Liu G. ; Niu P. ; Sun C. ; Smith S. C. ; Chen Z. ; Lu G. Q. ; Cheng H. -M. J. Am. Chem. Soc. 2010, 132 (33), 11642.
doi: 10.1021/ja103798k |
114 |
Wang K. ; Li Q. ; Liu B. ; Cheng B. ; Ho W. ; Yu J. Appl. Catal. B 2015, 176, 44.
doi: 10.1016/j.apcatb.2015.03.045 |
115 |
Di J. ; Zhao X. ; Lian C. ; Ji M. ; Xia J. ; Xiong J. ; Zhou W. ; Cao X. ; She Y. ; Liu H. ; et al Nano Energy 2019, 61, 54.
doi: 10.1016/j.nanoen.2019.04.029 |
116 |
Yang X. ; Wang S. ; Yang N. ; Zhou W. ; Wang P. ; Jiang K. ; Li S. ; Song H. ; Ding X. ; Chen H. ; et al Appl. Catal. B 2019, 259, 118088.
doi: 10.1016/j.apcatb.2019.118088 |
117 |
Du P. ; Su T. ; Luo X. ; Zhou X. ; Qin Z. ; Ji H. ; Chen J. Chin. J. Chem. 2018, 36 (6), 538.
doi: 10.1002/cjoc.201700761 |
118 |
Tang J. Y. ; Kong X. Y. ; Ng B. -J. ; Chew Y. -H. ; Mohamed A. R. ; Chai S. -P. Catal. Sci. Technol. 2019, 9 (9), 2335.
doi: 10.1039/C9CY00449A |
119 |
Du C. ; Zhang Q. ; Lin Z. ; Yan B. ; Xia C. ; Yang G. Appl. Catal. B 2019, 248, 193.
doi: 10.1016/j.apcatb.2019.02.027 |
120 |
Gao S. ; Gu B. ; Jiao X. ; Sun Y. ; Zu X. ; Yang F. ; Zhu W. ; Wang C. ; Feng Z. ; Ye B. ; et al J. Am. Chem. Soc. 2017, 139 (9), 3438.
doi: 10.1021/jacs.6b11263 |
121 |
Xiao S. ; Weiyue X. ; Xiaohong Y. Beilstein J. Nanotechnol. 2017, 8, 2264.
doi: 10.3762/bjnano.8.226 |
122 |
Shi H. ; Long S. ; Hu S. ; Hou J. ; Ni W. ; Song C. ; Li K. ; Gurzadyan G. G. ; Guo X. Appl. Catal. B 2019, 245, 760.
doi: 10.1016/j.apcatb.2019.01.036 |
123 |
Qiao B. ; Wang A. ; Yang X. ; Allard L.F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3 (8), 634.
doi: 10.1038/nchem.1095 |
124 |
Wang L. ; Chen W. ; Zhang D. ; Du Y. ; Amal R. ; Qiao S. ; Wu J. ; Yin Z. Chem. Soc. Rev. 2019, 48 (21), 5310.
doi: 10.1039/C9CS00163H |
125 |
Jiang Z. ; Sun W. ; Miao W. ; Yuan Z. ; Yang G. ; Kong F. ; Yan T. ; Chen J. ; Huang B. ; An C. ; et al Adv. Sci. 2019, 6 (15), 1900289.
doi: 10.1002/advs.201900289 |
126 |
Su T. ; Qin Z. ; Ji H. ; Wu Z. Nanotechnology 2019, 30 (50), 502002.
doi: 10.1088/1361-6528/ab3f15 |
127 |
Su T. ; Shao Q. ; Qin Z. ; Guo Z. ; Wu Z. ACS Catal. 2018, 8 (3), 2253.
doi: 10.1021/acscatal.7b03437 |
128 |
Tonda S. ; Kumar S. ; Bhardwaj M. ; Yadav P. ; Ogale S. ACS Appl. Mater. Interfaces 2018, 10 (3), 2667.
doi: 10.1021/acsami.7b18835 |
129 |
Han C. ; Lei Y. ; Wang B. ; Wang Y. ChemSusChem 2018, 11 (24), 4237.
doi: 10.1002/cssc.201802088 |
130 |
She H. ; Zhou H. ; Li L. ; Zhao Z. ; Jiang M. ; Huang J. ; Wang L. ; Wang Q. ACS Sustain. Chem. Eng. 2019, 7 (1), 650.
doi: 10.1021/acssuschemeng.8b04250 |
[1] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[2] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[3] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[4] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[5] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[6] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[7] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[8] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[9] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[10] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[11] | Xiaoqing Jia, Xiaoyu Bai, Zhezhe Ji, Yi Li, Yan Sun, Xueyue Mi, Sihui Zhan. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010042-. |
[12] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[13] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[14] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[15] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
|