Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2010040.doi: 10.3866/PKU.WHXB202010040
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Qi Yuan, Hao Yang, Miao Xie, Tao Cheng()
Received:
2020-10-19
Accepted:
2020-11-30
Published:
2020-12-10
Contact:
Tao Cheng
E-mail:tcheng@suda.edu.cn
About author:
Tao Cheng, Email: tcheng@suda.edu.cn; Tel.: +86-512-65885861Supported by:
MSC2000:
Qi Yuan, Hao Yang, Miao Xie, Tao Cheng. Theoretical Research on the Electroreduction of Carbon Dioxide[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2010040.
Table 1
Electrochemical reactions with equilibrium potentials."
Product | Name, abbreviation | E0 (V vs. RHE) |
HCOOH(aq) | formic acid | -0.12 |
CO | carbon monoxide | -0.10 |
CH3OH | methanol | 0.03 |
C(s) | graphite | 0.21 |
CH4(g) | methane | 0.17 |
CH3COOH | acetic acid | 0.11 |
CH3CHO | acetaldehyde | 0.06 |
C2H5OH | ethanol, EtOH | 0.09 |
C2H4 | ethylene | 0.08 |
C2H6 | ethane | 0.14 |
C2H5CHO | propionaldehyde | 0.09 |
C3H7OH | propanol, PrOH | 0.10 |
1 |
Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazábal G. O. ; Pérez-Ramírez J. Energy Environ. Sci. 2013, 6, 3112.
doi: 10.1039/C3EE41272E |
2 |
Appel A. M. ; Bercaw J. E. ; Bocarsly A. B. ; Dobbek H. ; DuBois D. L. ; Dupuis M. ; Ferry J. G. ; Fujita E. ; Hille R. ; Kenis P. J.A. ; et al Chem. Rev. 2013, 113, 6621.
doi: 10.1021/cr300463y |
3 |
Davis S. J. ; Lewis N. S. ; Shaner M. ; Aggarwal S. ; Arent D. ; Azevedo I. L. ; Benson S. M. ; Bradley T. ; Brouwer J. ; Chiang Y.-M. ; et al Science 2018, 360, eaas9793.
doi: 10.1126/science.aas9793 |
4 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2014, 43, 631.
doi: 10.1039/C3CS60323G |
5 |
Lewis N. S. ; Nocera D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
doi: 10.1073/pnas.0603395103 |
6 |
Graves C. ; Ebbesen S. D. ; Mogensen M. ; Lackner K. S. Renew. Sust. Energ. Rev. 2011, 15, 1.
doi: 10.1016/j.rser.2010.07.014 |
7 |
Chu S. ; Cui Y. ; Liu N. Nat. Mater. 2017, 16, 16.
doi: 10.1038/nmat4834 |
8 |
Nitopi S. ; Bertheussen E. ; Scott S. B. ; Liu X. ; Engstfeld A. K. ; Horch S. ; Seger B. ; Stephens I. E.L. ; Chan K. ; Hahn C. ; et al Chem. Rev. 2019, 119, 7610.
doi: 10.1021/acs.chemrev.8b00705 |
9 |
Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energy Environ. Sci. 2012, 5, 7050.
doi: 10.1039/C2EE21234J |
10 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H. Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
11 |
Jouny M. ; Luc W. ; Jiao F. Ind. Eng. Chem. Res. 2018, 57, 2165.
doi: 10.1021/acs.iecr.7b03514 |
12 |
Spurgeon J. M. ; Kumar B. Energy Environ. Sci. 2018, 11, 1536.
doi: 10.1039/C8EE00097B |
13 |
Whipple D. T. ; Kenis P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451.
doi: 10.1021/jz1012627 |
14 |
Yoshio H. ; Katsuhei K. ; Shin S. Chem. Lett. 1985, 14, 1695.
doi: 10.1246/cl.1985.1695 |
15 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94)85172-7 |
16 |
Bagger A. ; Ju W. ; Varela A. S. ; Strasser P. ; Rossmeisl J. ChemPhysChem 2017, 18, 3266.
doi: 10.1002/cphc.201700736 |
17 |
Hori Y. ; Murata A. ; Takahashi R. J. Chem. Soc. Faraday Trans. 1989, 85, 2309.
doi: 10.1039/F19898502309 |
18 |
Hori Y. ; Kikuchi K. ; Murata A. ; Suzuki S. Chem. Lett. 1986, 15, 897.
doi: 10.1246/cl.1986.897 |
19 |
Hori Y. ; Murata A. ; Takahashi R. ; Suzuki S. J. Chem. Soc. Chem. Commun. 1988, 17
doi: 10.1039/C39880000017 |
20 |
Xu S. ; Carter E. A. Chem. Rev. 2019, 119, 6631.
doi: 10.1021/acs.chemrev.8b00481 |
21 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Nørskov J. K. ; Jaramillo T. F. Science 2017, 355, eaad4998.
doi: 10.1126/science.aad4998 |
22 |
Hammer B. ; Hansen L. B. ; Nørskov J. K. Phys. Rev. B 1999, 59, 7413.
doi: 10.1103/PhysRevB.59.7413 |
23 |
Hammer B. ; Morikawa Y. ; Nørskov J. K. Phys. Rev. Lett. 1996, 76, 2141.
doi: 10.1103/PhysRevLett.76.2141 |
24 |
Mathew K. ; Sundararaman R. ; Letchworth-Weaver K. ; Arias T. A. ; Hennig R. G. J. Chem. Phys 2014, 140, 084106.
doi: 10.1063/1.4865107 |
25 |
Tomasi J. ; Mennucci B. ; Cammi R. Chem. Rev. 2005, 105, 2999.
doi: 10.1021/cr9904009 |
26 |
Skyner R. E. ; McDonagh J. L. ; Groom C. R. ; van Mourik T. ; Mitchell J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174.
doi: 10.1039/C5CP00288E |
27 |
Nørskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J. R. ; Bligaard T. ; Jónsson H. J. Phys. Chem. B 2004, 108, 17886.
doi: 10.1021/jp047349j |
28 |
Taylor C. D. ; Wasileski S. A. ; Filhol J.-S. ; Neurock M. Phys. Rev. B 2006, 73, 165402.
doi: 10.1103/PhysRevB.73.165402 |
29 |
Lozovoi A. Y. ; Alavi A. ; Kohanoff J. ; Lynden-Bell R. M. J. Chem. Phys. 2001, 115, 1661.
doi: 10.1063/1.1379327 |
30 |
Letchworth-Weaver K. ; Arias T. A. Phys. Rev. B 2012, 86, 075140.
doi: 10.1103/PhysRevB.86.075140 |
31 |
Sundararaman R. ; Letchworth-Weaver K. ; Arias T. A. J. Chem. Phys. 2012, 137, 044107.
doi: 10.1063/1.4737392 |
32 |
Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2015, 6, 2663.
doi: 10.1021/acs.jpclett.5b01043 |
33 |
Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2016, 7, 1686.
doi: 10.1021/acs.jpclett.6b00382 |
34 |
Liu X. ; Schlexer P. ; Xiao J. ; Ji Y. ; Wang L. ; Sandberg R. B. ; Tang M. ; Brown K.S. ; Peng H. ; Ringe S. ; et al Nat. Commun 2019, 10, 32.
doi: 10.1038/s41467-018-07970-9 |
35 |
Schouten K. J. P. ; Pérez Gallent E. ; Koper M. T. M. J. Electroanal. Chem. 2014, 716, 53.
doi: 10.1016/j.jelechem.2013.08.033 |
36 |
Wuttig A. ; Yoon Y. ; Ryu J. ; Surendranath Y. J. Am. Chem. Soc. 2017, 139, 17109.
doi: 10.1021/jacs.7b08345 |
37 |
Laio A. ; Parrinello M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
doi: 10.1073/pnas.202427399 |
38 |
Ciccotti G. ; Ryckaert J. P. Comput. Phys. Rep. 1986, 4, 346.
doi: 10.1016/0167-7977(86)90022-5 |
39 |
Ryckaert J. P. ; Ciccotti G. J. Chem. Phys. 1983, 78, 7368.
doi: 10.1063/1.444728 |
40 |
Fixman M. Proc. Natl. Acad. Sci. USA 1974, 71, 3050.
doi: 10.1073/pnas.71.8.3050 |
41 |
Carter E. A. ; Ciccotti G. ; Hynes J. T. ; Kapral R. Chem. Phys. Lett. 1989, 156, 472.
doi: 10.1016/S0009-2614(89)87314-2 |
42 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Nørskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
43 |
Yoo J. S. ; Christensen R. ; Vegge T. ; Nørskov J. K. ; Studt F. ChemSusChem 2016, 9, 358.
doi: 10.1002/cssc.201501197 |
44 |
Lim H.-K. ; Shin H. ; Goddard W. A. ; Hwang Y. J. ; Min B. K. ; Kim H. J. Am. Chem. Soc. 2014, 136, 11355.
doi: 10.1021/ja503782w |
45 |
Cheng T. ; Xiao H. ; Goddard W. A. J. Am. Chem. Soc. 2016, 138, 13802.
doi: 10.1021/jacs.6b08534 |
46 |
Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
doi: 10.1038/nature16455 |
47 |
Jia L. ; Yang H. ; Deng J. ; Chen J. ; Zhou Y. ; Ding P. ; Li L. ; Han N. ; Li Y. Chin. J. Chem. 2019, 37, 497.
doi: 10.1002/cjoc.201900010 |
48 |
Schouten K. J. P. ; Kwon Y. ; van der Ham C. J. M. ; Qin Z. ; Koper M. T. M. Chem. Sci. 2011, 2, 1902.
doi: 10.1039/C1SC00277E |
49 |
Peterson A. A. ; Nørskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
doi: 10.1021/jz201461p |
50 |
Roberts F. S. ; Kuhl K. P. ; Nilsson A. Angew. Chem. Int. Ed. 2015, 54, 5179.
doi: 10.1002/anie.201412214 |
51 |
Cheng T. ; Xiao H. ; Goddard W. A. Proc. Natl. Acad. Sci. USA 2017, 114, 1795.
doi: 10.1073/pnas.1612106114 |
52 |
Wang L. ; Nitopi S. A. ; Bertheussen E. ; Orazov M. ; Morales-Guio C. G. ; Liu X. ; Higgins D. C. ; Chan K. ; Nørskov J.K. ; Hahn C. ; et al ACS Catal. 2018, 8, 7445.
doi: 10.1021/acscatal.8b01200 |
53 |
Montoya J. H. ; Shi C. ; Chan K. ; Nørskov J. K. J. Phys. Chem. Lett. 2015, 6, 2032.
doi: 10.1021/acs.jpclett.5b00722 |
54 |
Garza A. J. ; Bell A. T. ; Head-Gordon M. ACS Catal. 2018, 8, 1490.
doi: 10.1021/acscatal.7b03477 |
55 |
Ma W. ; Xie S. ; Liu T. ; Fan Q. ; Ye J. ; Sun F. ; Jiang Z. ; Zhang Q. ; Cheng J. ; Wang Y. Nat. Catal. 2020, 3, 478.
doi: 10.1038/s41929-020-0450-0 |
56 |
Luc W. ; Fu X. ; Shi J. ; Lv J.-J. ; Jouny M. ; Ko B.H. ; Xu Y. ; Tu Q. ; Hu X. ; Wu J. ; et al Nat. Catal. 2019, 2, 423.
doi: 10.1038/s41929-019-0269-8 |
57 |
Kuhl K. P. ; Hatsukade T. ; Cave E. R. ; Abram D. N. ; Kibsgaard J. ; Jaramillo T. F. J. Am. Chem. Soc. 2014, 136, 14107.
doi: 10.1021/ja505791r |
58 |
Pokharel U. R. ; Fronczek F. R. ; Maverick A. W. Nat. Commun 2014, 5, 5883.
doi: 10.1038/ncomms6883 |
59 |
Francke R. ; Schille B. ; Roemelt M. Chem. Rev. 2018, 118, 4631.
doi: 10.1021/acs.chemrev.7b00459 |
60 |
Dalle K. E. ; Warnan J. ; Leung J. J. ; Reuillard B. ; Karmel I. S. ; Reisner E. Chem. Rev. 2019, 119, 2752.
doi: 10.1021/acs.chemrev.8b00392 |
61 |
Handoko A. D. ; Wei F. ; Jenndy Yeo B. S. ; Seh Z. W. Nat. Catal. 2018, 1, 922.
doi: 10.1038/s41929-018-0182-6 |
62 |
Lum Y. ; Ager J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
doi: 10.1002/anie.201710590 |
63 |
Lum Y. ; Cheng T. ; Goddard W. A. ; Ager J. W. J. Am. Chem. Soc. 2018, 140, 9337.
doi: 10.1021/jacs.8b03986 |
64 |
Favaro M. ; Xiao H. ; Cheng T. ; Goddard W. A. ; Yano J. ; Crumlin E. J. Proc. Natl. Acad. Sci. USA 2017, 114, 6706.
doi: 10.1073/pnas.1701405114 |
65 |
Eilert A. ; Roberts F. S. ; Friebel D. ; Nilsson A. J. Phys. Chem. Lett. 2016, 7, 1466.
doi: 10.1021/acs.jpclett.6b00367 |
66 |
Dunwell M. ; Yang X. ; Setzler B. P. ; Anibal J. ; Yan Y. ; Xu B. ACS Catal. 2018, 8, 3999.
doi: 10.1021/acscatal.8b01032 |
67 |
Pander J. E. ; Baruch M. F. ; Bocarsly A. B. ACS Catal. 2016, 6, 7824.
doi: 10.1021/acscatal.6b01879 |
68 |
Baruch M. F. ; Pander J. E. ; White J. L. ; Bocarsly A. B. ACS Catal. 2015, 5, 3148.
doi: 10.1021/acscatal.5b00402 |
69 |
Figueiredo M. C. ; Ledezma-Yanez I. ; Koper M. T. M. ACS Catal. 2016, 6, 2382.
doi: 10.1021/acscatal.5b02543 |
70 |
Pérez-Gallent E. ; Figueiredo M. C. ; Calle-Vallejo F. ; Koper M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621.
doi: 10.1002/anie.201700580 |
71 |
Chernyshova I. V. ; Somasundaran P. ; Ponnurangam S. Proc. Natl. Acad. Sci. USA 2018, 115, E9261.
doi: 10.1073/pnas.1802256115 |
72 |
Sun K. ; Cheng T. ; Wu L. ; Hu Y. ; Zhou J. ; Maclennan A. ; Jiang Z. ; Gao Y. ; Goddard W. A. ; Wang Z. J. Am. Chem. Soc. 2017, 139, 15608.
doi: 10.1021/jacs.7b09251 |
73 |
Feng X. ; Jiang K. ; Fan S. ; Kanan M. W. ACS Cent. Sci. 2016, 2, 169.
doi: 10.1021/acscentsci.6b00022 |
74 |
Wang Z. ; Yang G. ; Zhang Z. ; Jin M. ; Yin Y. ACS Nano 2016, 10, 4559.
doi: 10.1021/acsnano.6b00602 |
75 |
Reske R. ; Mistry H. ; Behafarid F. ; Roldan Cuenya B. ; Strasser P. J. Am. Chem. Soc. 2014, 136, 6978.
doi: 10.1021/ja500328k |
76 |
Gao D. ; Scholten F. ; Roldan Cuenya B. ACS Catal. 2017, 7, 5112.
doi: 10.1021/acscatal.7b01416 |
77 |
Rosen B. A. ; Salehi-Khojin A. ; Thorson M. R. ; Zhu W. ; Whipple D. T. ; Kenis P. J. A. ; Masel R. I. Science 2011, 334, 643.
doi: 10.1126/science.1209786 |
78 |
Cheng T. ; Fortunelli A. ; Goddard W. A. Proc. Natl. Acad. Sci. USA 2019, 116, 7718.
doi: 10.1073/pnas.1821709116 |
79 |
Jouny M. ; Lv J.-J. ; Cheng T. ; Ko B. H. ; Zhu J.-J. ; Goddard W. A. ; Jiao F. Nat. Chem. 2019, 11, 846.
doi: 10.1038/s41557-019-0312-z |
80 |
Feng Y. ; Yang H. ; Zhang Y. ; Huang X. ; Li L. ; Cheng T. ; Shao Q. Nano Lett. 2020, 11, 8282.
doi: 10.1021/acs.nanolett.0c03400 |
81 |
Ma X. ; Li Z. ; Achenie L. E. K. ; Xin H. J. Phys. Chem. Lett. 2015, 6, 3528.
doi: 10.1021/acs.jpclett.5b01660 |
82 |
Tran K. ; Ulissi Z. W. Nat. Catal. 2018, 1, 696.
doi: 10.1038/s41929-018-0142-1 |
83 |
Zhong M. ; Tran K. ; Min Y. ; Wang C. ; Wang Z. ; Dinh C.-T. ; De Luna P. ; Yu Z. ; Rasouli A.S. ; Brodersen P. ; et al Nature 2020, 581, 178.
doi: 10.1038/s41586-020-2242-8 |
84 |
Ulissi Z. W. ; Tang M. T. ; Xiao J. ; Liu X. ; Torelli D. A. ; Karamad M. ; Cummins K. ; Hahn C. ; Lewis N. S. ; Jaramillo T.F. ; et al ACS Catal. 2017, 7, 6600.
doi: 10.1021/acscatal.7b01648 |
[1] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[2] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[3] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[4] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[5] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[6] | Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008017-. |
[7] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-. |
[8] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[9] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[10] | Tong Xu, Benyuan Ma, Jie Liang, Luchao Yue, Qian Liu, Tingshuai Li, Haitao Zhao, Yonglan Luo, Siyu Lu, Xuping Sun. Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009043-. |
[11] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-. |
[12] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[13] | Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007052-. |
[14] | Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009098-. |
[15] | Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2005027-. |
|