Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2010025.doi: 10.3866/PKU.WHXB202010025
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Zengqiang Gao1, Congyong Wang2,3, Junjun Li1, Yating Zhu1, Zhicheng Zhang1,*(), Wenping Hu1,2,*(
)
Received:
2020-10-13
Accepted:
2020-11-25
Published:
2020-11-30
Contact:
Zhicheng Zhang,Wenping Hu
E-mail:zczhang19@tju.edu.cn;huwp@tju.edu.cn
About author:
Email: huwp@tju.edu.cn (W.H.); Tel: +86-22-83613363 (Z.Z.)Supported by:
MSC2000:
Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities[J].Acta Phys. -Chim. Sin., 2021, 37(7): 2010025.
"
Type | Catalyst | Electrolyte | Potential | FE | Ref. |
CO2RR | Fe_MOF-525 films | 1.0 mol·L-1 TBAPF6 + 1 mol·L-1 TFE | -1.3 V vs. NHE | ∼100% (CO + H2) | |
HKUST-1 (Cu, Ru) | 0.5 mol·L-1 KHCO3 | -1.0 V vs. Ag/AgCl | 47.2% (alcohol) | ||
Al2(OH)2TCPP-Co | 0.5 mol·L-1 potassium carbonate | -0.7 V vs. RHE | 76% (CO) | ||
Ag@Al-PMOFs | 0.1 mol·L-1 KHCO3 | -1.1 V vs. RHE | 55.8% (CO) | ||
Cu2(CuTCPP) | 0.5 mol·L-1 EMIMBF4 | -1.55 V vs. Ag/Ag+ | 68.4% (formate); 16.8% (acetate) | ||
bismuthine (Bi-ene) | 1 mol·L-1 KOH | -0.57V vs. RHE | 99.8% (formate) | ||
ORR | Ni3(HITP)2 | 0.1 mol·L-1 KOH | ∼0.75 V vs. RHE | 63% (H2O2) | |
(Co)PCN222 | 0.1 mol·L-1 HClO4 | 0.43V vs. RHE | |||
NRR | Mo3(HAB)2 | 0.18 V | |||
Co3(HHTP)2 | 0.5 mol·L-1 LiClO4 | –0.40 V vs. RHE | 3.34% | ||
OER | {Fe3(μ3-O)(bdc)3}4{Co2(na)4(LT)2}3 | water at pH = 13 | 225 mV | ||
Fe/Ni-BTC | 0.1 mol·L-1 KOH | 270 mV | 95% | ||
NiCo-UMOFNs | 1.0 mol·L-1 KOH | ∼189 mV | 99.3% | ||
MAF-X27-OH(Cu) | 1.0 mol·L-1 KOH | 292 mV | 100% | ||
NiFe-NFF | 1.0 mol·L-1 KOH | 227 mV | ~100% | ||
NiFe MOF/OM-NFH | 1.0 mol·L-1 KOH | 270 mV | |||
HER | NiFe-MOF | 0.1 mol·L-1 KOH | 240 mV | ||
Pd@MOF-74 | 0.5 mol·L-1 H2SO4 | -0.106 V vs. RHE | |||
Ni3(Ni3·HAHATN)2 | 0.1 mol·L-1 KOH | 115 mV |
1 |
Li H. ; Eddaoudi M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
2 |
Tranchemontagne D. J. ; Mendoza-Cortés J. L. ; O'Keeffe M. ; Yaghi O. M. Chem. Soc. Rev. 2009, 38, 1257.
doi: 10.1039/B817735J |
3 |
Zhang Z. ; Chen Y. ; Xu X. ; Zhang J. ; Xiang G. ; He W. ; Wang X. Angew. Chem. Int. Ed. 2014, 53, 429.
doi: 10.1002/anie.201308589 |
4 |
Zhou H.-C. ; Long J. R. ; Yaghi O. M. Chem. Rev 2012, 112, 673.
doi: 10.1021/cr300014x |
5 |
Furukawa H. ; Cordova K. E. ; O'Keeffe M. ; Yaghi O. M. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444 |
6 |
Chen X.-H. ; Wei Q. ; Hong J.-D. ; Xu R. ; Zhou T.-H. Rare Met. 2019, 38, 413.
doi: 10.1007/s12598-019-01259-6 |
7 |
Bavykina A. ; Kolobov N. ; Khan I. S. ; Bau J. A. ; Ramirez A. ; Gascon J. Chem. Rev 2020, 120, 8468.
doi: 10.1021/acs.chemrev.9b00685 |
8 |
Wang Y. ; Li Q. ; Shi W. ; Cheng P. Chin. Chem. Lett. 2020, 31, 1768.
doi: 10.1016/j.cclet.2020.01.010 |
9 |
Zhang K. ; Liang Z. ; Zou R. Sci. China Mater. 2020, 63, 7.
doi: 10.1007/s11426-019-9613-1 |
10 |
Song Z. ; Zhang L. ; Doyle-Davis K. ; Fu X. ; Luo J.-L. ; Sun X. Adv. Energy Mater. 2020, 10, 2001561.
doi: 10.1002/aenm.202001561 |
11 |
Zhao M. ; Huang Y. ; Peng Y. ; Huang Z. ; Ma Q. ; Zhang H. Chem. Soc. Rev. 2018, 47, 6267.
doi: 10.1039/C8CS00268A |
12 |
Liu J. ; Wöll C. Chem. Soc. Rev. 2017, 46, 5730.
doi: 10.1039/C7CS00315C |
13 |
Li B. ; Wen H.-M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
14 |
Ding M. ; Flaig R. W. ; Jiang H.-L. ; Yaghi O. M. Chem. Soc. Rev 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
15 |
Li J.-R. ; Sculley J. ; Zhou H.-C. Chem. Rev 2012, 112, 869.
doi: 10.1021/cr200190s |
16 |
Zhang Z. ; Chen Y. ; He S. ; Zhang J. ; Xu X. ; Yang Y. ; Nosheen F. ; Saleem F. ; He W. ; Wang X. Angew. Chem. Int. Ed 2014, 53, 12517.
doi: 10.1002/anie.201406484 |
17 |
Dhakshinamoorthy A. ; Asiri A. M. ; Garcia H. Adv. Mater 2019, 31, 1900617.
doi: 10.1002/adma.201900617 |
18 |
Sun L. ; Campbell M. G. ; Dincă M. Angew. Chem. Int. Ed 2016, 55, 3566.
doi: 10.1002/anie.201506219 |
19 |
Talin A. A. ; Centrone A. ; Ford A. C. ; Foster M. E. ; Stavila V. ; Haney P. ; Kinney R. A. ; Szalai V. ; El Gabaly F. ; Yoon H.P. ;et al Science 2014, 343, 66.
doi: 10.1126/science.1246738 |
20 |
Li W.-H. ; Deng W.-H. ; Wang G.-E. ; Xu G. Energy Chem. 2020, 2, 100029.
doi: 10.1016/j.enchem.2020.100029 |
21 |
Li W. H. ; Ding K. ; Tian H. R. ; Yao M.-S. ; Nath B. ; Deng W.-H. ; Wang Y. ; Xu G. Adv. Funct. Mater 2017, 27, 1702067.
doi: 10.1002/adfm.201702067 |
22 |
Ko M. ; Mendecki L. ; Mirica K. A. Chem. Commun. 2018, 54, 7873.
doi: 10.1039/C8CC02871K |
23 |
Li P. ; Wang B. Isr. J. Chem. 2018, 58, 1010.
doi: 10.1002/ijch.201800078 |
24 |
Stavila V. ; Talin A. A. ; Allendorf M. D. Chem. Soc. Rev 2014, 43, 5994.
doi: 10.1039/C4CS00096J |
25 |
Bhardwaj S. K. ; Bhardwaj N. ; Kaur R. ; Mehta J. ; Sharma A. L. ; Kim K.-H. ; Deep A. J. Mater. Chem. A 2018, 6, 14992.
doi: 10.1039/C8TA04220A |
26 |
Clough A. J. ; Yoo J. W. ; Mecklenburg M. H. ; Marinescu S. C. J. Am. Chem. Soc. 2015, 137, 118.
doi: 10.1021/ja5116937 |
27 |
Miner E. M. ; Fukushima T. ; Sheberla D. ; Sun L. ; Surendranath Y. ; Dincă M. Nat. Commun. 2016, 7, 10942.
doi: 10.1038/ncomms10942 |
28 |
Miner E. M. ; Wang L. ; Dincă M. Chem. Sci. 2018, 9, 6286.
doi: 10.1039/C8SC02049C |
29 |
Cheng W.-Z. ; Liang J.-L. ; Yin H.-B. ; Wang Y.-J. ; Yan W.-F. ; Zhang J.-N. Rare Met. 2020, 39, 815.
doi: 10.1007/s12598-020-01440-2 |
30 |
Liu X. ; Yue T. ; Qi K. ; Qiu Y. ; Xia B. Y. ; Guo X. Chin. Chem. Lett 2020, 31, 2189.
doi: 10.1016/j.cclet.2019.12.009 |
31 |
Zhao R. ; Liang Z. ; Zou R. ; Xu Q. Joule 2018, 2, 2235.
doi: 10.1016/j.joule.2018.09.019 |
32 |
Shinde S. S. ; Lee C. H. ; Jung J.-Y. ; Wagh N. K. ; Kim S.-H. ; Kim D.-H. ; Lin C. ; Lee S. U. ; Lee J.-H. Energy Environ. Sci. 2019, 12, 727.
doi: 10.1039/C8EE02679C |
33 |
Liu J. ; Song X. ; Zhang T. ; Liu S. ; Wen H. ; Chen L. Angew. Chem. Int. Ed. 2020, 59, 2.
doi: 10.1002/anie.202006102 |
34 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater. 2017, 16, 220.
doi: 10.1038/nmat4766 |
35 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
36 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
37 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
38 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
39 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
40 |
Wu G. ; Huang J. ; Zang Y. ; He J. ; Xu G. J. Am. Chem. Soc 2017, 139, 1360.
doi: 10.1021/jacs.6b08511 |
41 |
Huang X. ; Sheng P. ; Tu Z. ; Zhang F. ; Wang J. ; Geng H. ; Zou Y. ; Di C.-A. ; Yi Y. ; Sun Y. ; Xu W. ; Zhu D. Nat. Commun. 2015, 6, 7408.
doi: 10.1038/ncomms8408 |
42 |
Lahiri N. ; Lotfizadeh N. ; Tsuchikawa R. ; Deshpande V. V. ; Louie J. J. Am. Chem. Soc 2017, 139, 19.
doi: 10.1021/jacs.6b09889 |
43 |
Wang B. ; Luo Y. ; Liu B. ; Duan G. ACS Appl. Mater. Interfaces 2019, 11, 35935.
doi: 10.1021/acsami.9b14319 |
44 |
Song X. ; Wang X. ; Li Y. ; Zheng C. ; Zhang B. ; Di C.-A. ; Li F. ; Jin C. ; Mi W. ; Chen L. ; Hu W. Angew. Chem. Int. Ed 2020, 59, 1118.
doi: 10.1002/anie.201911543 |
45 |
Zhao W. ; Peng J. ; Wang W. ; Liu S. ; Zhao Q. ; Huang W. Coordin. Chem. Rev. 2018, 377, 44.
doi: 10.1016/j.ccr.2018.08.023 |
46 |
Dong R. ; Zhang Z. ; Tranca D.C. ; Zhou S. ; Wang M. ; Adler P. ; Liao Z. ; Liu F. ; Sun Y. ; Shi W. ;et al Nat. Commun 2018, 9, 2637.
doi: 10.1038/s41467-018-05141-4 |
47 |
Yang C. ; Dong R. ; Wang M. ; Petkov P. S. ; Zhang Z. ; Wang M. ; Han P. ; Ballabio M. ; Bräuninger S.A. ; Liao Z. ;et al Nat. Commun. 2019, 10, 3260.
doi: 10.1038/s41467-019-11267-w |
48 |
Qiu T. ; Liang Z. ; Guo W. ; Tabassum H. ; Gao S. ; Zou R. ACS Energy Lett. 2020, 5, 520.
doi: 10.1021/acsenergylett.9b02625 |
49 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
50 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
51 |
Wang H.-F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49, 1414.
doi: 10.1039/C9CS00906J |
52 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev. 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
53 |
Sheberla D. ; Sun L. ; Blood-Forsythe M. A. ; Er S. ; Wade C. R. ; Brozek C. K. ; Aspuru-Guzik A. ; Dincă M. J. Am. Chem. Soc 2014, 136, 8859.
doi: 10.1021/ja502765n |
54 |
Narayan T. C. ; Miyakai T. ; Seki S. ; Dincă M. J. Am. Chem. Soc 2012, 134, 12932.
doi: 10.1021/ja3059827 |
55 |
Park S. S. ; Hontz E. R. ; Sun L. ; Hendon C. H. ; Walsh A. ; Van Voorhis T. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 1774.
doi: 10.1021/ja512437u |
56 |
Xie L. S. ; Alexandrov E. V. ; Skorupskii G. ; Proserpio D. M. ; Dincă M. Chem. Sci 2019, 10, 8558.
doi: 10.1039/C9SC03348C |
57 |
Pathak A. ; Shen J.-W. ; Usman M. ; Wei L.-F. ; Mendiratta S. ; Chang Y.-S. ; Sainbileg B. ; Ngue C.-M ; Chen R.-S. ; Hayashi M. ;et al Nat. Commun. 2019, 10, 1721.
doi: 10.1038/s41467-019-09682-0 |
58 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
59 |
Makiura R. ; Motoyama S. ; Umemura Y. ; Yamanaka H. ; Sakata O. ; Kitagawa H. Nat. Mater. 2010, 9, 565.
doi: 10.1038/nmat2769 |
60 |
Dong R. ; Pfeffermann M. ; Liang H. ; Zheng Z. ; Zhu X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed 2015, 54, 12058.
doi: 10.1002/anie.201506048 |
61 |
Kambe T. ; Sakamoto R. ; Hoshiko K. ; Takada K. ; Miyachi M. ; Ryu J.-H. ; Sasaki S. ; Kim J. ; Nakazato K. ; Takata M. ;et al J. Am. Chem. Soc. 2013, 135, 2462.
doi: 10.1021/ja312380b |
62 |
Pal T. ; Kambe T. ; Kusamoto T. ; Foo M. L. ; Matsuoka R. ; Sakamoto R. ; Nishihara H. ChemPlusChem 2015, 80, 1255.
doi: 10.1002/cplu.201500206 |
63 |
Sun X. ; Wu K.-H. ; Sakamoto R. ; Kusamoto T. ; Maeda H. ; Ni X. ; Jiang W. ; Liu F. ; Sasaki S. ; Masunaga H. ;et al Chem. Sci 2017, 8, 8078.
doi: 10.1039/C7SC02688A |
64 |
Pal T. ; Doi S. ; Maeda H. ; Wada K. ; Tan C. M. ; Fukui N. ; Sakamoto R. ; Tsuneyuki S. ; Sasaki S. ; Nishihara H. Chem. Sci 2019, 10, 5218.
doi: 10.1039/C9SC01144G |
65 |
Huang X. ; Li H. ; Tu Z. ; Liu L. ; Wu X. ; Chen J. ; Liang Y. ; Zou Y. ; Yi Y. ; Sun J. ; et al J. Am. Chem. Soc 2018, 140, 15153.
doi: 10.1021/jacs.8b07921 |
66 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater 2017, 16, 220.
doi: 10.1038/nmat4766 |
67 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
68 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
69 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
70 |
Dunwell M. ; Lu Q. ; Heyes J. M. ; Rosen J. ; Chen J. G. ; Yan Y. ; Jiao F. ; Xu B. J. Am. Chem. Soc. 2017, 139, 3774.
doi: 10.1021/jacs.6b13287 |
71 |
Zhao C. ; Dai X. ; Yao T. ; Chen W. ; Wang X. ; Wang J. ; Yang J. ; Wei S. ; Wu Y. ; Li Y. J. Am. Chem. Soc. 2017, 139, 8078.
doi: 10.1021/jacs.7b02736 |
72 |
Lu Y. ; Zhang J. ; Wei W. ; Ma D. D. ; Wu X. T. ; Zhu Q. L. ACS Appl. Mater. Interfaces 2020, 12, 37986.
doi: 10.1021/acsami.0c06537 |
73 |
Li X. ; Zhu Q. L. EnergyChem 2020, 2, 100033.
doi: 10.1016/j.enchem.2020.100033 |
74 |
Ma D. D. ; Zhu Q. L. Coord. Chem. Rev. 2020, 422, 213483.
doi: 10.1016/j.ccr.2020.213483 |
75 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc. 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
76 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc. 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
77 |
Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. ACS Catal 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767 |
78 |
Albo J. ; Vallejo D. ; Beobide G. ; Castillo O. ; Castaño P. ; Irabien A. ChemSusChem 2017, 10, 1100.
doi: 10.1002/cssc.201600693 |
79 |
Dong B.-X. ; Qian S.-L. ; Bu F.-Y. ; Wu Y.-C. ; Feng L.-G. ; Teng Y.-L. ; Liu W.-L. ; Li Z.-W. ACS Appl. Energy Mater 2018, 1, 4662.
doi: 10.1021/acsaem.8b00797 |
80 |
Perfecto-Irigaray M. ; Albo J. ; Beobide G. ; Castillo O. ; Irabien A. ; Pérez-Yáñez S. RSC Adv 2018, 8, 21092.
doi: 10.1039/C8RA02676A |
81 |
Qiu Y.-L. ; Zhong H.-X. ; Zhang T.-T. ; Xu W.-B. ; Su P.-P. ; Li X.-F. ; Zhang H.-M. ACS Appl. Mater. Interfaces 2018, 10, 2480.
doi: 10.1021/acsami.7b15255 |
82 |
Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc 2015, 137, 14129.
doi: 10.1021/jacs.5b08212 |
83 |
Guntern Y. T. ; Pankhurst J. R. ; Vávra J. ; Mensi M. ; Mantella V. ; Schouwink P. ; Buonsanti R. Angew. Chem. Int. Ed. 2019, 58, 12632.
doi: 10.1002/anie.201905172 |
84 |
Wu J.-X. ; Hou S.-Z. ; Zhang X.-D. ; Xu M. ; Yang H.-F. ; Cao P.-S. ; Gu Z.-Y. Chem. Sci 2019, 10, 2199.
doi: 10.1039/C8SC04344B |
85 |
Cao C. ; Ma D. D. ; Gu J. F. ; Xie X. ; Zeng G. ; Li X. ; Han S. G. ; Zhu Q. L. ; Wu X. T. ; Xu Q. Angew. Chem. Int. Ed. 2020, 59, 15014.
doi: 10.1002/anie.202005577 |
86 |
Brezny A. C. ; Johnson S. I. ; Raugei S. ; Mayer J. M. J. Am. Chem. Soc. 2020, 142, 4108.
doi: 10.1021/jacs.9b13654 |
87 |
Pegis M. L. ; Wise C. F. ; Martin D. J. ; Mayer J. M. Chem. Rev. 2018, 118, 2340.
doi: 10.1021/acs.chemrev.7b00542 |
88 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Yin G. ; Zhao H. ; Liu S. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
89 |
Lai Q. ; Zheng L. ; Liang Y. ; He J. ; Zhao J. ; Chen J. ACS Catal 2017, 7, 1655.
doi: 10.1021/acscatal.6b02966 |
90 |
Guo J. ; Li Y. ; Cheng Y. ; Dai L. ; Xiang Z. ACS Nano 2017, 11, 8379.
doi: 10.1021/acsnano.7b03807 |
91 |
Yin P. ; Yao T. ; Wu Y. ; Zheng L. ; Lin Y. ; Liu W. ; Ju H. ; Zhu J. ; Hong X. ; Deng Z. ; et al Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.201604802 |
92 |
Liu X.-H. ; Hu W.-L. ; Jiang W.-J. ; Yang Y.-W. ; Niu S. ; Sun B. ; Wu J. ; Hu J.-S. ACS Appl. Mater. Interfaces 2017, 9, 28473.
doi: 10.1021/acsami.7b07410 |
93 |
Yoon H. ; Lee S. ; Oh S. ; Park H. ; Choi S. ; Oh M. Small 2019, 15, 1805232.
doi: 10.1002/smll.201805232 |
94 |
Chen G. ; Stevens M. B. ; Liu Y. ; King L. A. ; Park J. ; Kim T. R. ; Bao Z. ; Sinclair R. ; Jaramillo T. F. ; Bao Z. Small Methods 2020, 4, 2000085.
doi: 10.1002/smtd.202000085 |
95 |
Roger I. ; Shipman M. A. ; Symes M. D. Nat. Rev. Chem. 2017, 1, 1.
doi: 10.1038/s41570-016-0003 |
96 |
Chen W. ; Pei J. ; He C.-T. ; Wan J. ; Ren H. ; Wang Y. ; Dong J. ; Wu K. ; Cheong W.-C. ; Mao J. ;et al Adv. Mater. 2018, 30, 1800396.
doi: 10.1002/adma.201800396 |
97 |
Liu T. ; Li P. ; Yao N. ; Cheng G. ; Chen S. ; Luo W. ; Yin Y. Angew. Chem. Int. Ed. 2019, 306, 627.
doi: 10.1002/anie.201901409 |
98 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 15341.
doi: 10.1038/ncomms15341 |
99 |
Zheng F. ; Zheng C. ; Gao X. ; Du C. ; Zhang Z. ; Chen W. Electrochim. Acta 2019, 7, 9743.
doi: 10.1016/j.electacta.2019.03.175 |
100 |
Huang H. ; Zhao Y. ; Bai Y. ; Li F. ; Zhang Y. ; Chen Y. Adv. Sci. 2020, 7, 2000012.
doi: 10.1002/advs.202000012 |
101 |
Yang C. ; Zhu Y. ; Liu J. ; Qin Y. ; Wang H. ; Liu H. ; Chen Y. ; Zhang Z. ; Hu W. Nano Energy 2020, 77, 105126.
doi: 10.1016/j.nanoen.2020.105126 |
102 |
Geng Z. ; Liu Y. ; Kong X. ; Li P. ; Li K. ; Liu Z. ; Du J. ; Shu M. ; Si R. ; Zeng J. Adv. Mater 2018, 30, 1803498.
doi: 10.1002/adma.201803498 |
103 |
Guo C. ; Ran J. ; Vasileff A. ; Qiao S.-Z. Energy Environ. Sci. 2018, 11, 45.
doi: 10.1039/C7EE02220D |
104 |
Yuan L. ; Wu Z. ; Jiang W. ; Tang T. ; Niu S. ; Hu J.-S. Nano Res. 2020, 13, 1376.
doi: 10.1007/s12274-020-2637-8 |
105 |
Abghoui Y. ; Garden A. L. ; Howalt J. G. ; Vegge T. ; Skúlason E. ACS Catal 2016, 6, 635.
doi: 10.1021/acscatal.5b01918 |
106 |
Fukushima T. ; Drisdell W. ; Yano J. ; Surendranath Y. J. Am. Chem. Soc 2015, 137, 10926.
doi: 10.1021/jacs.5b06737 |
107 |
Cui Q. ; Qin G. ; Wang W. ; K. R G. ; Du A. ; Sun Q. J. Mater. Chem. A 2019, 7, 14510.
doi: 10.1039/C9TA02926E |
108 |
Xiong W. ; Cheng X. ; Wang T. ; Luo Y. ; Feng J. ; Lu S. ; Asiri A. M. ; Li W. ; Jiang Z. ; Sun X. Nano Res. 2020, 13, 1008.
doi: 10.1007/s12274-020-2733-9 |
109 |
Zhou J. ; Dou Y. ; Zhou A. ; Guo R.-M. ; Zhao M.-J. ; Li J.-R. Adv. Energy Mater. 2017, 7, 1602643.
doi: 10.1002/aenm.201602643 |
110 | Li M. ; Xia Z. ; Huang Y. ; Tao L. ; Chao Y. ; Yin K. ; Yang W. ; Yang W. ; Yu Y. ; Guo S. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
111 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interf. Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
112 |
Shen J.-Q. ; Liao P.-Q. ; Zhou D.-D. ; He C.-T. ; Wu J.-X. ; Zhang W.-X. ; Zhang J.-P. ; Chen X.-M. J. Am. Chem. Soc 2017, 139, 1778.
doi: 10.1021/jacs.6b12353 |
113 |
Wang L. ; Wu Y. ; Cao R. ; Ren L. ; Chen M. ; Feng X. ; Zhou J. ; Wang B. ACS Appl. Mater. Interfaces 2016, 8, 16736.
doi: 10.1021/acsami.6b05375 |
114 |
Zhao S. ; Wang Y. ; Dong J. ; He C.-T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ;et al Nat. Energy 2016, 1, 16184.
doi: 10.1038/nenergy.2016.184 |
115 |
Lu X.-F. ; Liao P.-Q. ; Wang J.-W. ; Wu J.-X. ; Chen X.-W. ; He C.-T. ; Zhang J.-P. ; Li G.-R. ; Chen X.-M. J. Am. Chem. Soc. 2016, 138, 8336.
doi: 10.1021/jacs.6b03125 |
116 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29, 1807418.
doi: 10.1002/adfm.201807418 |
117 |
Li X. ; Ma D. D. ; Cao C. ; Zou R. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Small 2019, 15, 1902218.
doi: 10.1002/smll.201902218 |
118 |
Zheng F. ; Zhang C. ; Gao X. ; Du C. ; Zhuang Z. ; Chen W. Electrochim. Acta 2019, 306, 627.
doi: 10.1016/j.electacta.2019.03.175 |
119 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
120 |
Zheng F. ; Zhang Z. ; Zhang C. ; Zhang C. ; Chen W. ACS Omega 2020, 5, 2495.
doi: 10.1021/acsomega.9b03295 |
121 |
Centi G. SmartMat 2020, e1005.
doi: 10.1002/smm2.1005 |
[1] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-0. |
[2] | . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-0. |
[3] | Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008017-0. |
[4] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-0. |
[5] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-0. |
[6] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[7] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-0. |
[8] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[9] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-0. |
[10] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-0. |
[11] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-0. |
[12] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-0. |
[13] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-0. |
[14] | Yuan Liu, Weidong Li, Han Wu, Siyu Lu. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009082-0. |
[15] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-0. |
|