Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2009102.doi: 10.3866/PKU.WHXB202009102
Special Issue: Two-Dimensional Photocatalytic Materials
• ARTICLE • Previous Articles Next Articles
Peng Zhang1,2, Jiquan Wang1,*(), Yuan Li2, Lisha Jiang2, Zhuangzhuang Wang2, Gaoke Zhang2,*(
)
Received:
2020-09-29
Accepted:
2020-10-28
Published:
2020-11-02
Contact:
Jiquan Wang,Gaoke Zhang
E-mail:441780131@qq.com;gkzhang@whut.edu.cn
About author:
Email: gkzhang@whut.edu.cn (G.Z.)Supported by:
MSC2000:
Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J].Acta Phys. -Chim. Sin., 2021, 37(8): 2009102.
1 |
Wang K. ; Li Y. ; Li J. ; Zhang G. Appl. Catal. B 2020, 263, 117730.
doi: 10.1016/j.apcatb.2019.05.032 |
2 |
Liu M. ; Chen Y. ; Su J. ; Shi J. ; Wang X. ; Guo L. Nat. Energy 2016, 1, 16151.
doi: 10.1038/nenergy.2016.151 |
3 |
Gao Y. ; Li X. ; Wu H. ; Meng S. ; Fan X. ; Huang M. ; Guo Q. ; Tung C. ; Wu L. Adv. Funct. Mater. 2018, 28, 1801769.
doi: 10.1002/adfm.201801769 |
4 |
Wang X. ; Chen L. ; Chong S. Y. ; Little M. A. ; Wu Y. ; Zhu W. ; Clowes R. ; Yan Y. ; Zwijnenburg M. A. ; Sprick R. S. ; et al Nat. Chem. 2018, 10, 1180.
doi: 10.1038/s41557-018-0141-5 |
5 |
Jia J. ; Sun W. ; Zhang Q. ; Zhang X. ; Hu X. ; Liu E. ; Fan J. Appl. Catal. B 2020, 261, 118249.
doi: 10.1016/j.apcatb.2019.118249 |
6 |
Wang L. ; Hong Y. ; Liu E. ; Duan X. ; Lin X. ; Shi J. Carbon 2020, 163, 234.
doi: 10.1016/j.carbon.2020.03.031 |
7 |
Ran J. ; Gao G. ; Li F. ; Ma T. ; Du A. ; Qiao S. Nat. Commun. 2017, 8, 13907.
doi: 10.1038/ncomms13907 |
8 |
Wang Z. ; Wang K. ; Li Y. ; Jiang L. ; Zhang G. Appl. Surf. Sci. 2019, 498, 143850.
doi: 10.1016/j.apsusc.2019.143850 |
9 |
Zeng D. ; Ong W. J. ; Chen Y. ; Tee S. Y. ; Chua C. S. ; Peng D. L. ; Han M. Y. Part. Part. Syst. Charact. 2018, 35, 1700251.
doi: 10.1002/ppsc.201700251 |
10 |
Cheng H. ; Lv X. ; Cao S. ; Zhao Z. ; Chen Y. ; Fu W. Sci. Rep. 2016, 6, 19846.
doi: 10.1038/srep19846 |
11 |
Sun Z. ; Yue Q. ; Li J. ; Xu J. ; Zheng H. ; Du P. J. Mater. Chem. A 2015, 3, 10243.
doi: 10.1039/C5TA02105G |
12 |
Lu Z. ; Li C. ; Han J. ; Wang L. ; Wang S. ; Ni L. ; Wang Y. Appl. Catal. B 2018, 237, 919.
doi: 10.1016/j.apcatb.2018.06.062 |
13 |
Indra A. ; Acharjya A. ; Menezes P. W. ; Merschjann C. ; Hollmann D. ; Schwarze M. ; Aktas M. ; Friedrich A. ; Lochbrunner S. ; Thomas A. ; et al Angew. Chem. Int. Ed. 2017, 56, 1653.
doi: 10.1002/anie.201611605 |
14 |
Shi J. ; Zou Y. ; Cheng L. ; Ma D. ; Sun D. ; Mao S. ; Sun L. ; He C. ; Wang Z. Chem. Eng. J. 2019, 378, 122161.
doi: 10.1016/j.cej.2019.122161 |
15 |
Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8, 76.
doi: 10.1038/nmat2317 |
16 | Li X. W. ; Wang B. ; Yin W. X. ; Di J. ; Xia J. X. ; Zhu W. S. ; Li H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001. |
李小为; 王彬; 尹文轩; 狄俊; 夏杰祥; 朱文帅; 李华明; 物理化学学报, 2020, 36, 1902001.
doi: 10.3866/PKU.WHXB201902001 |
|
17 |
Fu J. ; Yu J. ; Jiang C. ; Cheng B. Adv. Energy Mater. 2018, 8, 1701503.
doi: 10.1002/aenm.201701503 |
18 |
Ren Y. ; Zeng D. ; Wee-Jun O. Chin. J. Catal. 2019, 40, 289.
doi: 10.1016/S1872-2067(19)63293-6 |
19 |
Bu Y. ; Chen Z. ; Li W. Appl. Catal. B 2014, 144, 622.
doi: 10.1016/j.apcatb.2013.07.066 |
20 |
Dong G. ; Jacobs D. L. ; Zang L. ; Wang C. Appl. Catal. B 2017, 218, 515.
doi: 10.1016/j.apcatb.2017.07.010 |
21 |
She X. ; Liu L. ; Ji H. ; Mo Z. ; Li Y. ; Huang L. ; Du D. ; Xu H. ; Li H. Appl. Catal. B 2016, 187, 144.
doi: 10.1016/j.apcatb.2015.12.046 |
22 |
Wang K. ; Zhang G. ; Li J. ; Li Y. ; Wu X. ACS Appl. Mater. Interface 2017, 9, 43704.
doi: 10.1021/acsami.7b14275 |
23 |
Zhang P. ; Wang J. ; Gong J. ; Wang K. ; Li Y. ; Wu X. ; Zhang G. Funct. Mater. Lett. 2020, 13, 2051033.
doi: 10.1142/S1793604720510339 |
24 |
Gong J. ; Li Y. ; Zhao Y. ; Wu X. ; Wang J. ; Zhang G. Chem. Eng. J. 2020, 402, 126147.
doi: 10.1016/j.cej.2020.126147 |
25 |
Shi Y. ; Xu Y. ; Zhuo S. ; Zhang J. ; Zhang B. ACS Appl. Mater. Inter. 2015, 7, 2376.
doi: 10.1021/am5069547 |
26 |
Holst J. R. ; Gillan E. G. J. Am. Chem. Soc. 2008, 130, 7373.
doi: 10.1021/ja709992s |
27 |
Zhu Y. ; Ren T. ; Yuan Z. ACS Appl. Mater. Interface 2015, 7, 16850.
doi: 10.1021/acsami.5b04947 |
28 |
Ran J. ; Guo W. ; Wang H. ; Zhu B. ; Yu J. ; Qiao S. Z. Adv. Mater. 2018, 30, 1800128.
doi: 10.1002/adma.201800128 |
29 |
Ye P. ; Liu X. ; Iocozzia J. ; Yuan Y. ; Gu L. ; Xu G. ; Lin Z. J. Mater. Chem. A 2017, 5, 8493.
doi: 10.1039/C7TA01031A |
30 |
Cao S. ; Fan B. ; Feng Y. ; Chen H. ; Jiang F. ; Wang X. Chem. Eng. J. 2018, 353, 147.
doi: 10.1016/j.cej.2018.07.116 |
31 |
Xu C. ; Li K. ; Zhang W. J. Colloid Interface Sci. 2017, 495, 27.
doi: 10.1016/j.jcis.2017.01.111 |
32 |
Li K. ; Wang R. ; Chen J. Energy & Fuels 2011, 25, 854.
doi: 10.1021/ef101258j |
33 |
Niu P. ; Liu G. ; Cheng H. J. Phys. Chem. C 2012, 116, 11013.
doi: 10.1021/jp301026y |
34 |
Lu L. ; Xu X. ; An K. ; Wang Y. ; Shi F. ACS Sustain. Chem. Eng. 2018, 6, 11869.
doi: 10.1021/acssuschemeng.8b02153 |
35 |
Li J. ; Wang J. ; Zhang G. ; Li Y. ; Wang K. Appl. Catal. B 2018, 234, 167.
doi: 10.1016/j.apcatb.2018.04.016 |
36 |
Chang J. ; Feng L. ; Liu C. ; Xing W. ; Hu X. Energy Environ. Sci. 2014, 7, 1628.
doi: 10.1039/c4ee00100a |
37 |
You B. ; Jiang N. ; Sheng M. ; Bhushan M. W. ; Sun Y. ACS Catal. 2016, 6, 714.
doi: 10.1021/acscatal.5b02193 |
38 |
Liu X. ; Wang R. ; Zhang M. ; Yuan Y. ; Xue C. APL Mater. 2015, 3, 104403.
doi: 10.1063/1.4922151 |
39 |
Hao X. ; Zhou J. ; Cui Z. ; Wang Y. ; Wang Y. ; Zou Z. Appl. Catal. B 2018, 229, 41.
doi: 10.1016/j.apcatb.2018.02.006 |
40 |
Zhang J. ; Zhu Q. ; Wang L. ; Nasir M. ; Cho S. ; Zhang J. Int. J. Hydrog. Energy 2020, 45, 21331.
doi: 10.1016/j.ijhydene.2020.05.171 |
41 |
Iqbal W. ; Yang B. ; Zhao X. ; Rauf M. ; Mohamed I. ; Zhang J. ; Mao Y. Catal. Sci. Technol. 2020, 10, 5499.
doi: 10.1039/C9CY02111F |
42 |
Zhu Q. ; Qiu B. ; Duan H. ; Gong Y. ; Qin Z. ; Shen B. ; Xing M. ; Zhang J. Appl. Catal. B 2019, 259, 118078.
doi: 10.1016/j.apcatb.2019.118078 |
[1] | Yi Zhou, Weilong Ouyang, Yuejun Wang, Haiqiang Wang, Zhongbiao Wu. Core-Shell Structured NH2-UiO-66@TiO2 Photocatalyst for the Degradation of Toluene under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009045-0. |
[2] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-0. |
[3] | Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011022-0. |
[4] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-0. |
[5] | Zhimin Jiang, Qing Chen, Qiaoqing Zheng, Rongchen Shen, Peng Zhang, Xin Li. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010059-0. |
[6] | Liang Wang,Chenglu Zhu,Lisha Yin,Wei Huang. Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907001-0. |
[7] | Yuhong Li,Xin-Ping Wu,Cong Liu,Meng Wang,Benteng Song,Guiyun Yu,Gang Yang,Wenhua Hou,Xue-Qing Gong,Luming Peng. NMR and EPR Studies of Partially Reduced TiO2 [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1905021-0. |
[8] | Xiaowei Li,Bin Wang,Wenxuan Yin,Jun Di,Jiexiang Xia,Wenshuai Zhu,Huaming Li. Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1902001-0. |
[9] | Shangcong Sun,Xuya Zhang,Xianlong Liu,Lun Pan,Xiangwen Zhang,Jijun Zou. Design and Construction of Cocatalysts for Photocatalytic Water Splitting [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905007-0. |
[10] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-0. |
[11] | Cheng GONG,Siwan XIANG,Zeyang ZHANG,Lan SUN,Chenqing YE,Changjian LIN. Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 616-623. |
[12] | Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083. |
[13] | Li ZHOU,Huan-Huan LIU,Yu-Lin YANG,Liang-Sheng QIANG. Preparation and Performance of a SILAR TiO2/CdS/Co-Pi Water Oxidation Photoanode [J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2731-2736. |
[14] | Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13. |
[15] | JIANG Xiao-Jia, JIA Jian-Ming, LU Han-Feng, ZHU Qiu-Lian, HUANG Hai-Feng. Preparation and Characterization of Sr/TiO2 Catalysts with Different Structures and High Photocatalytic Activity under Visible Light [J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1399-1405. |
|