Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2005006.doi: 10.3866/PKU.WHXB202005006
• FEATURE ARTICLE • Previous Articles Next Articles
Jingsong Peng, Qunfeng Cheng()
Received:
2020-05-05
Accepted:
2020-07-10
Published:
2020-07-14
Contact:
Qunfeng Cheng
E-mail:cheng@buaa.edu.cn
About author:
Qunfeng Cheng, Email: cheng@buaa.edu.cnSupported by:
MSC2000:
Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites[J].Acta Phys. -Chim. Sin., 2022, 38(5): 2005006.
Fig 3
(a) Fabrication of rGO-Ca2+-PCDO nanocomposite fiber. (b) SEM image of cross-section of a rGO-Ca2+-PCDO nanocomposite fiber. (c) Tensile stress-strain curves of GO-Ca2+ (Curve 1), rGO-Ca2+ (Curve 2), GO-Ca2+-PCDO (Curve 3) and rGO-Ca2+-PCDO (Curve 4) fibers. (d) Schematic of interface design of rGO-CS-Cu film. (e) Tensile stress-strain curves of GO, rGO, rGO-CS, rGO-CS-Cu films. (f) SEM image of cross-section of a rGO-CS-Cu film. (g) Fabrication process of rGO-WS2-PCDO nanocomposite film. (h) SEM image of the side view fracture morphology of a rGO-WS2-PCDO film. (i) Fatigue testing of rGO, rGO-WS2, rGO-PCDO and rGO-WS2-PCDO films. (a–c) Adapted with permission from Ref.31, Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d–f) Adapted with permission from Ref.34, Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (g–i) Adapted with permission from Ref.35, Copyright 2017, American Chemical Society."
Fig 4
(a) Schematic of interfacial design of sequentially bridged graphene-based (SBG) nanocomposite film. (b) Tensile stress-strain curves of rGO, rGO-PCDO (G-PCO), rGO-AP-PSE (πBG) and SBG films. (c) Electromagnetic interference (EMI) shielding effectiveness as a function of frequency for rGO, G-PCO, πBG and SBG films. (d) Tensile stress-strain curves of GO, rGO films and BPDD-bridged graphene-based (πBG) film. (e) EMI shielding effectiveness as a function of frequency for rGO and πBG films. (f) Property retention in tensile strength, electrical conductivity, and EMI shielding effectiveness as a function of folding cycle number for rGO and πBG films. (a–c) Adapted with permission from Ref.37, Copyright 2018, National Academy of Sciences. (d–f) Adapted with permission from Ref.60, Copyright 2019, Elsevier Inc."
Fig 5
(a) Fabrication process of the inverse nacre-like graphene-epoxy nanocomposite. (b) SEM image of a rGO-CMC scaffold. (c) SEM image of the cross-section of an inverse nacre-like graphene-epoxy nanocomposite. (d) Comparison of fracture toughness among various graphene-epoxy nanocomposites. The fracture toughness for KJC of the inverse nacre-like graphene-epoxy nanocomposite is 3.6-fold that of pure epoxy resin. (e) SEM image of crack propagation of the inverse nacre-like graphene-epoxy nanocomposite. (f) The self-monitoring function of the inverse nacre-like graphene-epoxy nanocomposite. Adapted with permission from Ref.75, Copyright 2019, Elsevier Inc."
Fig 6
(a) SEM images of inverse nacre-like graphene-epoxy nanocomposites with different thickness of epoxy layers through different freezing rates. (b) Electrical resistance as a function of temperature for the inverse nacre-like graphene-epoxy nanocomposite. (c) Infrared thermal images of the inverse nacre-like graphene-epoxy nanocomposite during the electric heating process. (d) Varying electrical resistance during the electric heating process. (e) SEM image of the cross-section of an inverse nacre-like graphene-epoxy nanocomposite with shape memory property. (f) The exhibition of shape memory property. (a–d) Adapted with permission from Ref.76, Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e–f) Adapted with permission from Ref.77, Copyright 2019, The Royal Society of Chemistry."
1 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
2 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
3 |
Berger C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Naud C. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N. ; et al Science 2006, 312, 1191.
doi: 10.1126/science.1125925 |
4 |
Huang C. ; Cheng Q. Compos. Sci. Technol. 2017, 150, 141.
doi: 10.1016/j.compscitech.2017.07.021 |
5 |
Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 7862.
doi: 10.1002/adma.201601934 |
6 |
Wegst U. G. ; Bai H. ; Saiz E. ; Tomsia A. P. ; Ritchie R. O. Nat. Mater. 2015, 14, 23.
doi: 10.1038/nmat4089 |
7 |
Barthelat F. ; Yin Z. ; Buehler M. J. Nat. Rev. Mater. 2016, 1, 16007.
doi: 10.1038/natrevmats.2016.7 |
8 |
Espinosa H. D. ; Rim J. E. ; Barthelat F. ; Buehler M. J. Prog. Mater. Sci. 2009, 54, 1059.
doi: 10.1016/j.pmatsci.2009.05.001 |
9 |
Dikin D. A. ; Stankovich S. ; Zimney E. J. ; Piner R. D. ; Dommett G. H. ; Evmenenko G. ; Nguyen S. T. ; Ruoff R. S. Nature 2007, 448, 457.
doi: 10.1038/nature06016 |
10 |
Keten S. ; Buehler M. J. Nano Lett. 2008, 8, 743.
doi: 10.1021/nl0731670 |
11 |
Park S. ; Lee K. S. ; Bozoklu G. ; Cai W. ; Nguyen S. T. ; Ruoff R. S. ACS Nano 2008, 2, 572.
doi: 10.1021/nn700349a |
12 |
Xu Y. ; Bai H. ; Lu G. ; Li C. ; Shi G. J. Am. Chem. Soc. 2008, 130, 5856.
doi: 10.1021/ja800745y |
13 |
Putz K. W. ; Compton O. C. ; Palmeri M. J. ; Nguyen S. T. ; Brinson L. C. Adv. Funct. Mater. 2010, 20, 3322.
doi: 10.1002/adfm.201000723 |
14 |
Li Y. Q. ; Yu T. ; Yang T. Y. ; Zheng L. X. ; Liao K. Adv. Mater. 2012, 24, 3426.
doi: 10.1002/adma.201200452 |
15 |
Hu K. ; Tolentino L. S. ; Kulkarni D. D. ; Ye C. ; Kumar S. ; Tsukruk V. V. Angew. Chem. Int. Ed. 2013, 52, 13784.
doi: 10.1002/anie.201307830 |
16 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
17 |
Yeh C. N. ; Raidongia K. ; Shao J. ; Yang Q. H. ; Huang J. Nat. Chem. 2014, 7, 166.
doi: 10.1038/nchem.2145 |
18 |
Zhang M. ; Huang L. ; Chen J. ; Li C. ; Shi G. Adv. Mater. 2014, 26, 7588.
doi: 10.1002/adma.201403322 |
19 |
Wang J. ; Qiao J. ; Wang J. ; Zhu Y. ; Jiang L. ACS Appl. Mater. Interfaces 2015, 7, 9281.
doi: 10.1021/acsami.5b02194 |
20 |
Xin G. ; Yao T. ; Sun H. ; Scott S. M. ; Shao D. ; Wang G. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
21 |
Georgakilas V. ; Tiwari J. N. ; Kemp K. C. ; Perman J. A. ; Bourlinos A. B. ; Kim K. S. ; Zboril R. Chem. Rev. 2016, 116, 5464.
doi: 10.1021/acs.chemrev.5b00620 |
22 |
Xiong R. ; Hu K. ; Grant A. M. ; Ma R. ; Xu W. ; Lu C. ; Zhang X. ; Tsukruk V. V. Adv. Mater. 2016, 28, 1501.
doi: 10.1002/adma.201504438 |
23 |
Ye S. ; Chen B. ; Hu D. ; Liu C. ; Feng J. ChemNanoMat 2016, 2, 816.
doi: 10.1002/cnma.201600127 |
24 |
Zhao H. ; Yue Y. ; Zhang Y. ; Li L. ; Guo L. Adv. Mater. 2016, 28, 2037.
doi: 10.1002/adma.201505511 |
25 |
He G. ; Xu M. ; Zhao J. ; Jiang S. ; Wang S. ; Li Z. ; He X. ; Huang T. ; Cao M. ; Wu H. ; et al Adv. Mater. 2017, 29, 1605898.
doi: 10.1002/adma.201605898 |
26 |
Xin G. ; Zhu W. ; Deng Y. ; Cheng J. ; Zhang L. T. ; Chung A. J. ; De S. ; Lian J. Nat. Nanotechnol. 2019, 14, 168.
doi: 10.1038/s41565-018-0330-9 |
27 |
Li P. ; Yang M. ; Liu Y. ; Qin H. ; Liu J. ; Xu Z. ; Liu Y. ; Meng F. ; Lin J. ; Wang F. ; et al Nat. Commun. 2020, 11, 2645.
doi: 10.1038/s41467-020-16494-0 |
28 |
Wan S. ; Cheng Q. Adv. Funct. Mater. 2017, 27, 1703459.
doi: 10.1002/adfm.201703459 |
29 |
Zhang Y. ; Gong S. ; Zhang Q. ; Ming P. ; Wan S. ; Peng J. ; Jiang L. ; Cheng Q. Chem. Soc. Rev. 2016, 45, 2378.
doi: 10.1039/c5cs00258c |
30 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
31 |
Zhang Y. ; Li Y. ; Ming P. ; Zhang Q. ; Liu T. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 2834.
doi: 10.1002/adma.201506074 |
32 |
Zhang Y. ; Peng J. ; Li M. ; Saiz E. ; Wolf S. E. ; Cheng Q. ACS Nano 2018, 12, 8901.
doi: 10.1021/acsnano.8b04322 |
33 |
Wang X. ; Peng J. ; Zhang Y. ; Li M. ; Saiz E. ; Tomsia A. P. ; Cheng Q. ACS Nano 2018, 12, 12638.
doi: 10.1021/acsnano.8b07392 |
34 |
Cheng Y. R. ; Peng J. S. ; Xu H. J. ; Cheng Q. F. Adv. Funct. Mater. 2018, 28, 1800924.
doi: 10.1002/adfm.201800924 |
35 |
Wan S. ; Zhang Q. ; Zhou X. ; Li D. ; Ji B. ; Jiang L. ; Cheng Q. ACS Nano 2017, 11, 7074.
doi: 10.1021/acsnano.7b02706 |
36 |
Akbari A. ; Cunning B. V. ; Joshi S. R. ; Wang C. ; Camacho-Mojica D. C. ; Chatterjee S. ; Modepalli V. ; Cahoon C. ; Bielawski C. W. ; Bakharev P. ; et al Matter 2020, 2, 1198.
doi: 10.1016/j.matt.2020.02.014 |
37 |
Wan S. ; Li Y. ; Mu J. ; Aliev A. E. ; Fang S. ; Kotov N. A. ; Jiang L. ; Cheng Q. ; Baughman R. H. Proc. Natl. Acad. Sci. USA 2018, 115, 5359.
doi: 10.1073/pnas.1719111115 |
38 |
Zhou T. ; Ni H. ; Wang Y. ; Wu C. ; Zhang H. ; Zhang J. ; Tomsia A. P. ; Jiang L. ; Cheng Q. Proc. Natl. Acad. Sci. USA 2020, 117, 8727.
doi: 10.1073/pnas.1916610117 |
39 |
Cui W. ; Li M. ; Liu J. ; Wang B. ; Zhang C. ; Jiang L. ; Cheng Q. ACS Nano 2014, 8, 9511.
doi: 10.1021/nn503755c |
40 |
Wan S. J. ; Peng J. S. ; Li Y. C. ; Hu H. ; Jiang L. ; Cheng Q. F. ACS Nano 2015, 9, 9830.
doi: 10.1021/acsnano.5b02902 |
41 |
Degtyar E. ; Harrington M. J. ; Politi Y. ; Fratzl P. Angew. Chem. Int. Ed. 2014, 53, 12026.
doi: 10.1002/anie.201404272 |
42 |
Huang X. ; Zeng Z. ; Zhang H. Chem. Soc. Rev. 2013, 42, 1934.
doi: 10.1039/c2cs35387c |
43 |
Liu Y. ; Rodrigues J. N. B. ; Luo Y. Z. ; Li L. ; Carvalho A. ; Yang M. ; Laksono E. ; Lu J. ; Bao Y. ; Xu H. ; et al Nat. Nanotechnol. 2018, 13, 828.
doi: 10.1038/s41565-018-0178-z |
44 |
Dong X. ; Fu D. ; Fang W. ; Shi Y. ; Chen P. ; Li L. J. Small 2009, 5, 1422.
doi: 10.1002/smll.200801711 |
45 |
Das B. ; Voggu R. ; Rout C. S. ; Rao C. N. Chem. Commun. 2008, 5155
doi: 10.1039/b808955h |
46 |
Su Y. H. ; Wu Y. K. ; Tu S. L. ; Chang S. J. Appl. Phys. Lett. 2011, 99, 163102.
doi: 10.1063/1.3653284 |
47 |
Ni H. ; Xu F. ; Tomsia A. P. ; Saiz E. ; Jiang L. ; Cheng Q. ACS Appl. Mater. Interfaces 2017, 9, 24987.
doi: 10.1021/acsami.7b07748 |
48 |
Gong S. ; Cui W. ; Zhang Q. ; Cao A. ; Jiang L. ; Cheng Q. ACS Nano 2015, 9, 11568.
doi: 10.1021/acsnano.5b05252 |
49 |
Wan S. ; Li Y. ; Peng J. ; Hu H. ; Cheng Q. ; Jiang L. ACS Nano 2015, 9, 708.
doi: 10.1021/nn506148w |
50 |
Wang J. ; Cheng Q. ; Lin L. ; Jiang L. ACS Nano 2014, 8, 2739.
doi: 10.1021/nn406428n |
51 |
Wan S. ; Xu F. ; Jiang L. ; Cheng Q. Adv. Funct. Mater. 2017, 27, 1605636.
doi: 10.1002/adfm.201605636 |
52 |
Cheng Q. ; Wu M. ; Li M. ; Jiang L. ; Tang Z. Angew. Chem. Int. Ed. 2013, 52, 3750.
doi: 10.1002/anie.201210166 |
53 |
Song P. ; Xu Z. ; Wu Y. ; Cheng Q. ; Guo Q. ; Wang H. Carbon 2017, 111, 807.
doi: 10.1016/j.carbon.2016.10.067 |
54 |
Gong S. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2016, 4, 17073.
doi: 10.1039/c6ta06893f |
55 |
Gong S. ; Zhang Q. ; Wang R. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2017, 5, 16386.
doi: 10.1039/c7ta03535g |
56 |
Ming P. ; Song Z. ; Gong S. ; Zhang Y. ; Duan J. ; Zhang Q. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2015, 3, 21194.
doi: 10.1039/c5ta05742f |
57 |
Gong S. ; Wu M. ; Jiang L. ; Cheng Q. Mater. Res. Express 2016, 3, 075002.
doi: 10.1088/2053-1591/3/7/075002 |
58 |
Wan S. ; Hu H. ; Peng J. ; Li Y. ; Fan Y. ; Jiang L. ; Cheng Q. Nanoscale 2016, 8, 5649.
doi: 10.1039/c6nr00562d |
59 |
Zhang Q. ; Wan S. ; Jiang L. ; Cheng Q. Sci. China: Technol. Sci. 2017, 60, 758.
doi: 10.1007/s11431-016-0529-3 |
60 |
Wan S. ; Chen Y. ; Wang Y. ; Li G. ; Wang G. ; Liu L. ; Zhang J. ; Liu Y. ; Xu Z. ; Tomsia A. P. Matter 2019, 1, 389.
doi: 10.1016/j.matt.2019.04.006 |
61 |
Kumar A. ; Sharma K. ; Dixit A. R. J. Mater. Sci. 2018, 54, 5992.
doi: 10.1007/s10853-018-03244-3 |
62 |
Domun N. ; Hadavinia H. ; Zhang T. ; Sainsbury T. ; Liaghat G. H. ; Vahid S. Nanoscale 2015, 7, 10294.
doi: 10.1039/c5nr01354b |
63 |
Chandrasekaran S. ; Sato N. ; Tölle F. ; Mülhaupt R. ; Fiedler B. ; Schulte K. Compos. Sci. Technol. 2014, 97, 90.
doi: 10.1016/j.compscitech.2014.03.014 |
64 |
Deville S. ; Saiz E. ; Nalla R. K. ; Tomsia A. P. Science 2006, 311, 515.
doi: 10.1126/science.1120937 |
65 |
Munch E. ; Launey M. E. ; Alsem D. H. ; Saiz E. ; Tomsia A. P. ; Ritchie R. O. Science 2008, 322, 1516.
doi: 10.1126/science.1164865 |
66 |
Bouville F. ; Maire E. ; Meille S. ; Van de Moortele B. ; Stevenson A. J. ; Deville S. Nat. Mater. 2014, 13, 508.
doi: 10.1038/nmat3915 |
67 |
Bai H. ; Chen Y. ; Delattre B. ; Tomsia A. P. ; Ritchie R. O. Sci. Adv. 2015, 1, e1500849.
doi: 10.1126/sciadv.1500849 |
68 |
Qiu L. ; Liu J. Z. ; Chang S. L. ; Wu Y. ; Li D. Nat. Commun. 2012, 3, 1241.
doi: 10.1038/ncomms2251 |
69 |
Gao H. L. ; Zhu Y. B. ; Mao L. B. ; Wang F. C. ; Luo X. S. ; Liu Y. Y. ; Lu Y. ; Pan Z. ; Ge J. ; Shen W. ; et al Nat. Commun. 2016, 7, 12920.
doi: 10.1038/ncomms12920 |
70 |
Picot O. T. ; Rocha V. G. ; Ferraro C. ; Ni N. ; D'Elia E. ; Meille S. ; Chevalier J. ; Saunders T. ; Peijs T. ; Reece M. J. ; et al Nat. Commun. 2017, 8, 14425.
doi: 10.1038/ncomms14425 |
71 |
Si Y. ; Wang X. ; Dou L. ; Yu J. ; Ding B. Sci. Adv. 2018, 4, eaas8925.
doi: 10.1126/sciadv.aas8925 |
72 |
Ferraro C. ; Garcia-Tuñon E. ; Rocha V. G. ; Barg S. ; Fariñas M. D. ; Alvarez-Arenas T. E. G. ; Sernicola G. ; Giuliani F. ; Saiz E. Adv. Funct. Mater. 2016, 26, 1636.
doi: 10.1002/adfm.201504051 |
73 |
Zhang H. ; Cooper A. I. Adv. Mater. 2007, 19, 1529.
doi: 10.1002/adma.200700154 |
74 |
Riblett B. W. ; Francis N. L. ; Wheatley M. A. ; Wegst U. G. K. Adv. Funct. Mater. 2012, 22, 4920.
doi: 10.1002/adfm.201201323 |
75 |
Peng J. ; Huang C. ; Cao C. ; Saiz E. ; Du Y. ; Dou S. ; Tomsia A. P. ; Wagner H. D. ; Jiang L. ; Cheng Q. Matter 2019, 2, 220.
doi: 10.1016/j.matt.2019.08.013 |
76 |
Huang C. ; Peng J. ; Wan S. ; Du Y. ; Dou S. ; Wagner H. D. ; Tomsia A. P. ; Jiang L. ; Cheng Q. Angew. Chem. Int. Ed. 2019, 58, 7636.
doi: 10.1002/anie.201902410 |
77 |
Huang C. ; Peng J. ; Cheng Y. ; Zhao Q. ; Du Y. ; Dou S. ; Tomsia A. P. ; Wagner H. D. ; Jiang L. ; Cheng Q. J. Mater. Chem. A 2019, 7, 2787.
doi: 10.1039/c8ta10725d |
78 | Zhang J. ; Wang L. N. ; Chen X. F. ; Wang Y. F. ; Niu C. Y. ; Wu L. X. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 1912002. |
张静; 王丽娜; 陈晓飞; 王玉峰; 牛成艳; 吴立新; 唐智勇. 物理化学学报, 2020, 36, 1912002.
doi: 10.3866/PKU.WHXB201912002 |
|
79 | Li K. X. ; Zhang T. L. ; Li H. Z. ; Li M. Z. ; Song Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. |
李凯旋; 张泰隆; 李会增; 李明珠; 宋延林. 物理化学学报, 2020, 36, 1911057.
doi: 10.3866/PKU.WHXB201911057 |
|
80 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
[1] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[2] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[3] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[4] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[5] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[6] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[7] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[8] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[9] | Shiyi Tang, Gaotian Lu, Yi Su, Guang Wang, Xuanzhang Li, Guangqi Zhang, Yang Wei, Yuegang Zhang. Raman Mapping of Lithiation Process on Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2001007-. |
[10] | Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101001-. |
[11] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
[12] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[13] | Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007093-. |
[14] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[15] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
|